Supporting Information

for

Palladium-catalysed 2,5-diheteroarylation of 2,5-

dibromothiophene derivatives

Fatma Belkessam ${ }^{1,2}$, Aidene Mohand ${ }^{2}$, Jean-François Soulé ${ }^{1}$, Abdelhamid Elias ${ }^{1,2^{*}}$, Henri Doucet ${ }^{1 *}$

Address: ${ }^{1}$ Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes, "Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France, Tel.: 00-33-2-23-23-63-84, FAX 00-33-2-23-23-69-39 and ${ }^{2}$ Département de chimie, Tizi Ouzou University, BP 17 RP 15000 Tizi-Ouzou, Algeria.

Email: Abdelhamid Elias - hamghil@yahoo.fr; Henri Doucet - henri.doucet@univ-rennes1.fr
*Corresponding author

Experimental procedures and characterization data

General information

All reactions were run under argon in Schlenk tubes using vacuum lines. DMA analytical grade was not distilled before use. KOAc (99\%) was used. Commercial dibromothiophenes and heteroarenes were used without purification. The reactions were followed by GC and NMR. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker 400 MHz spectrometer in CDCl_{3} solutions. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left(7.25\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.0 for ${ }^{13} \mathrm{C}$ NMR). Flash chromatography was performed on silica gel (230-400 mesh).

General procedure

In a typical experiment, the 2,5-dibromothiophene (1 mmol), heteroarene derivative (3 mmol), KOAc ($0.294 \mathrm{~g}, 3 \mathrm{mmol}$) and $\operatorname{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(12.1 \mathrm{mg}, 0.02 \mathrm{mmol})$, were dissolved in DMA (5 mL) under an argon atmosphere. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 20 h . After evaporation of the solvent, the product was purified by silica gel column chromatography.

Preparation of the $\operatorname{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst [1]: An oven-dried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}(182 \mathrm{mg}, 0.5 \mathrm{mmol})\right.$ and $\mathrm{dppb}(426 \mathrm{mg}, 1 \mathrm{mmol}) .10 \mathrm{~mL}$ of anhydrous dichloromethane were added, then, the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The yellow powder was used without purification. ${ }^{31} \mathrm{P}$ NMR $\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3$ (s).

5-(5-Bromothiophen-2-yl)-2-ethyl-4-methylthiazole (1a)

From 2,5-dibromothiophene ($0.968 \mathrm{~g}, 4 \mathrm{mmol}$) and 2 -ethyl-4-methylthiazole ($0.127 \mathrm{~g}, 1 \mathrm{mmol}$) product $1 \mathbf{a}$ was obtained in $52 \%(0.150 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.47 ($\mathrm{s}, 3 \mathrm{H}$), $1.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
$\delta{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,148.1,135.3,130.2,126.6,123.4,112.1,26.8,16.3$, 14.0.
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNS}_{2}$ (288.23): Calcd C 41.67, H 3.50; Found C 41.80, H 3.38.

2,5-Bis(2-ethyl-4-methylthiazol-5-yl)thiophene (1b)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 -ethyl-4-methylthiazole ($0.381 \mathrm{~g}, 3 \mathrm{mmol}$) product 1 b was obtained in $81 \%(0.270 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.51(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
$\delta{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,147.7,133.9,126.6,123.9,26.8,16.5,14.0$. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{3}$ (334.52): Calcd C 57.45, H 5.42; Found C 57.30, H 5.28.

2,5-Bis(4-methylthiazol-5-yl)thiophene (2)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 4 -methylthiazole ($0.297 \mathrm{~g}, 3 \mathrm{mmol}$) product 2 was obtained in $82 \%(0.228 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,149.6,134.1,127.5,125.0,16.6$.
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{3}$ (278.42): Calcd C 51.77, H 3.62; Found C 51.89, H 3.49.

5,5"-Dimethyl-2,2':5',2"-terthiophene (3) [2]

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-methylthiophene ($0.294 \mathrm{~g}, 3 \mathrm{mmol}$) product 3 was obtained in 74\% (0.204 g) yield.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.24(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.62 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1$, 137.7, 136.4, 128.2, 125.5, 125.4, 16.2.

5,5"-Dichloro-2,2':5',2"-terthiophene (4) [3]

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-chlorothiophene ($0.356 \mathrm{~g}, 3 \mathrm{mmol}$) product 3 was obtained in 77% (0.244 g) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.5,135.4,129.0,126.9,124.4,122.9$.

5,5"-Dicarbonitrile-2,2':5',2"-terthiophene (5) [4]

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene-2-carbonitrile ($0.327 \mathrm{~g}, 3 \mathrm{mmol}$) product 3 was obtained in $62 \% ~(0.185 \mathrm{~g}$) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,138.3,135.9,126.9,124.1,113.8,108.5$.

5,5"-Diethyl [2,2':5',2"-Terthiophene]-5,5"-dicarboxylate (6)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and ethyl thiophene-2-carboxylate ($0.468 \mathrm{~g}, 3$ $\mathrm{mmol})$ product 6 was obtained in $58 \%(0.227 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.35(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,143.0,136.6,134.0,132.3,125.9,124.2,61.3,14.3$.
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{3}$ (392.51): Calcd C 55.08, H 4.11; Found C 55.01, H 4.24.

2,5-Di(2-thienyl)thiophene (7) [5]

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene ($0.504 \mathrm{~g}, 6 \mathrm{mmol}$) product 7 was obtained in $85 \%(0.211 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (s, 2 H), 7.03 (dd, $J=5.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,136.2,127.8,124.4,124.3$, 123.7 .

2,5-Bis(5-butylfuran-2-yl)thiophene (8)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-n-butylfuran ($0.372 \mathrm{~g}, 3 \mathrm{mmol}$) product 8 was obtained in $79 \%(0.259 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{~s}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.68 (t, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 1.68 (quint., $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 1.43 (sext., $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 0.97 (t, $J=$ $7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{C}} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,147.5,132.0,122.0,106.9,105.7,30.2,27.8,22.2,13.8$.
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ (328.47): Calcd C 73.13, H 7.36; Found C 73.21, H 7.24.

1,1'-(5,5'-(Thiophene-2,5-diyl)bis(furan-5,2-diyl))diethanone (9)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-acetylfuran ($0.330 \mathrm{~g}, 3 \mathrm{mmol}$) product 9 was obtained in $60 \%(0.180 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.52 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.0,152.1,151.7,132.8,126.1,119.4,108.2,26.0$.
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ (300.33): Calcd C 63.99, H 4.03; Found C 63.87, H 4.00.

Dimethyl 5,5'-(thiophene-2,5-diyl)bis(2-methylfuran-3-carboxylate) (10)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and methyl 2 -methylfuran- 3 -carboxylate ($0.420 \mathrm{~g}, 3 \mathrm{mmol}$) product 10 was obtained in $63 \%(0.227 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,158.6,146.8,131.5,123.3,115.2,105.6,51.4,13.8$.
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S}$ (360.38): Calcd C 59.99, H 4.47; Found C 60.20, H 4.21.

2,5-Bis(1-methylpyrrol-2-yl)thiophene (11) [6]

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-methylpyrrole ($0.405 \mathrm{~g}, 5 \mathrm{mmol}$) product 11 was obtained in $78 \%(0.189 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{dd}, J=3.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{t}$, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.9,126.9,124.9,124.1,109.8,107.9,35.2$.

2,5-Bis(3,5-dimethylisoxazol-4-yl)thiophene (12)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole ($0.291 \mathrm{~g}, 3 \mathrm{mmol}$) product 12 was obtained in 80% (0.219 g) yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,158.3,131.3,126.4,110.2,12.0,11.1$.
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (274.34): Calcd C 61.29, H 5.14; Found C 61.17, H 5.05.

2,5-Bis(5-chloro-1,3-dimethylpyrazole-4-yl) thiophene (13)

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 5-chloro-1,3-dimethylpyrazole ($0.392 \mathrm{~g}, 3$ mmol) product 13 was obtained in 83% (0.283 g) yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09$ (s, 2H), 3.77 ($\mathrm{s}, 6 \mathrm{H}$), 2.36 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0,131.8,125.0,111.1,36.0,13.9$.
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~S}$ (341.26): Calcd C 49.27, H 4.14; Found C 49.40, H 4.27.

5,5'-(3-Methylthiophene-2,5-diyl)bis(2-ethyl-4-methylthiazole) (14)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole (0.381 $\mathrm{g}, 3 \mathrm{mmol})$ product 14 was obtained in $83 \%(0.289 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87(\mathrm{~s}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.00$ ($\mathrm{s}, 3 \mathrm{H}$), 1.23-1.13 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,170.6,152.0,149.3,139.3,135.2,131.0,128.4,125.5$, 123.0, 28.1, 28.0, 17.7, 17.1, 15.6, 15.0, 14.9.
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{3}$ (348.55): Calcd C 58.58, H 5.78; Found C 58.41, H 5.58.

5,5'-(3-Methylthiophene-2,5-diyl)bis(4-methylthiazole) (15)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-methylthiazole ($0.297 \mathrm{~g}, 3$ mmol) product 15 was obtained in $80 \%(0.234 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, 2.16 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1$, 151.2, 149.9, 149.1, 138.0, 133.4, 129.8, 126.8, 125.1, 122.8, 16.6, 15.9, 14.6.
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{3}$ (292.44): Calcd C 53.39, H 4.14; Found C 53.29, H 4.27.

3',5,5"-Trimethyl-2,2':5',2"-terthiophene (16) [7]

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-methylthiophene ($0.294 \mathrm{~g}, 3$ mmol) product 16 was obtained in $73 \%(0.212 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 2.36$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, AcetoneD $_{6}$) $\delta 141.3,140.7,136.1,136.0,135.6,135.3,131.1,128.8,127.9$, $127.6,127.0,125.1,16.2,15.9,15.8$.

5,5"-Dichloro-3'-methyl-2,2':5',2"-terthiophene (17)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 -chlorothiophene ($0.356 \mathrm{~g}, 3$ mmol) product 17 was obtained in $74 \% ~(0.245 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, AcetoneD $_{6}$) $\delta 137.3,137.1,136.2,135.5,130.7,130.5,130.1,129.7,129.4$, 129.0, 127.1, 125.1, 16.2.
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~S}_{3}$ (331.30): Calcd C 47.13, H 2.43; Found C 47.11, H 2.34.

5,5"-Diethyl [3'-methyl-2,2':5',2"-terthiophene]-5,5"-dicarboxylate (18)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and ethyl thiophene-2-carboxylate ($0.468 \mathrm{~g}, 3 \mathrm{mmol}$) product 18 was obtained in $60 \% ~(0.244 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.0,161.9,143.1,142.6,136.4,134.7,134.0,133.6,132.9$, $132.2,130.9,129.5,125.6,124.0,61.2,15.8,14.4,14.3$.
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{3}$ (406.54): Calcd C 56.13, H 4.46; Found C 55.98, H 4.57.

3'-Methyl-2, $2^{\prime}: 5$ ', $2^{\prime \prime}$--terthiophene (19) [8]

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene ($0.504 \mathrm{~g}, 6 \mathrm{mmol}$) product 19 was obtained in 78% (0.204 g) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 5,5'-(3-methylthiophene-2,5-diyl)bis(2-methylfuran-3-carboxylate) (20)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and methyl 2-methylfuran-3carboxylate $(0.420 \mathrm{~g}, 3 \mathrm{mmol})$ product 20 was obtained in $51 \%(0.191 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,164.1,156.5,156.1,147.0,146.9,134.4,130.0,126.7$, $125.7,115.2,115.1,106.8,105.5,54.0,51.4,15.6,13.8,13.7$.
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}$ (374.41): Calcd C 60.95, H 4.85; Found C 60.99, H 4.78.

2,2'-(3-Methylthiophene-2,5-diyl)bis(1-methylpyrrole) (21)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-methylpyrrole ($0.405 \mathrm{~g}, 5$ mmol)) product 21 was obtained in $77 \% ~(0.197 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=3.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8,133.9,127.4,127.3,127.1,125.3,124.1,123.2,111.2$, 109.7, 108.0, 107.5, 35.3, 34.5, 14.9 .
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}$ (256.37): Calcd C 70.27, H 6.29; Found C 70.37, H 6.37.

2,5-Bis(3,5-dimethylisoxazol-4-yl)-3-methylthiophene (22)

From 2,5-dibromo-3-methylthiophene ($0.256 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole ($0.291 \mathrm{~g}, 3$ mmol) product 22 was obtained in 75% (0.216 g) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,165.6,159.8,158.4,137.2,131.3,128.8,124.4,110.3$, 109.1, 14.4, 12.1, 11.7, 11.3, 10.6 .
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (288.36): Calcd C 62.48, H 5.59; Found C 62.19, H 5.69.

2-Ethyl-5-(5-(2-isobutylthiazol-5-yl)thiophen-2-yl)-4-methylthiazole (23)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a (0.288 g, 1 mmol) and 2isobutylthiazole ($0.211 \mathrm{~g}, 1.5 \mathrm{mmol}$) product 23 was obtained in $89 \%(0.310 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.97(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,169.4,147.9,137.9,133.5,133.4,131.1,126.9,125.5$, $123.9,42.3,29.7,26.8,22.2,16.6,14.0$.
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{3}$ (348.55): Calcd C 58.58, H 5.78; Found C 58.40, H 5.71.

2-Ethyl-4-methyl-5-(5'-methyl-2,2'-bithiophen-5-yl)thiazole (24)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a (0.288 g, 1 mmol) and 2methylthiophene $(0.147 \mathrm{~g}, 1.5 \mathrm{mmol})$ product 24 was obtained in $70 \%(0.213 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 169.8,147.6,139.5,138.0,134.5,132.0,127.0,126.0,124.4$, $123.7,123.2,26.9,16.6,15.3,14.1$.

5'-(2-Ethyl-4-methylthiazol-5-yl)-2,2'-bithiophene-5-carbonitrile (25)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a ($0.288 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene2 -carbonitrile ($0.164 \mathrm{~g}, 1.5 \mathrm{mmol}$) product 25 was obtained in $67 \%(0.212 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,148.4,143.9,138.1,135.4,134.4,127.2,126.2,123.5$, 123.2, 113.9, 107.4, 26.8, 16.6, 13.9.
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{3}$ (316.46): Calcd C 56.93, H 3.82; Found C 57.10, H 3.99.

5-(2,2'-Bithiophen-5-yl)-2-ethyl-4-methylthiazole (26)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a ($0.288 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene ($0.202 \mathrm{~g}, 2 \mathrm{mmol}$) product 26 was obtained in $41 \% ~(0.119 \mathrm{~g}$) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58$ $(\mathrm{s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.6,137.6,136.8,132.5,127.9,127.2,124.7,124.4,124.0$, 123.8, 26.8, 16.6, 14.2.
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NS}_{3}$ (291.45): Calcd C 57.69, H 4.50; Found C 57.47, H 4.71.

2-ethyl-4-methyl-5-(5-(1-methylpyrrol-2-yl)thiophen-2-yl)thiazole (27)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a (0.288 g, 1 mmol) and 1methylpyrrole ($0.162 \mathrm{~g}, 2 \mathrm{mmol}$) product 27 was obtained in $74 \%(0.213 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.70(\mathrm{~m}$, $1 \mathrm{H}), 6.36(\mathrm{dd}, J=3.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.6, 147.3, 135.1, 132.4, 126.5, 126.4, 124.8, 124.3, 124.2, $110.0,107.9,35.1,26.7,16.4,14.0$.
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}$ (288.43): Calcd C 62.46, H 5.59; Found C 62.57, H 5.67.

Methyl 5-(5-(2-ethyl-4-methylthiazol-5-yl)thiophen-2-yl)-2-methylfuran-3-carboxylate (28)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a ($0.288 \mathrm{~g}, 1 \mathrm{mmol}$) and methyl 2-methylfuran-3-carboxylate ($0.210 \mathrm{~g}, 1.5 \mathrm{mmol}$) product 28 was obtained in $62 \%(0.215 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,164.1,158.6,147.8,146.7,132.9,132.6,126.9,124.2$,
$123.2,115.2,105.6,51.4,26.8,16.6,14.1,13.8$.
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$ (347.45): Calcd C 58.77, H 4.93; Found C 58.97, H 4.69.

4-(5-(2-Ethyl-4-methylthiazol-5-yl)thiophen-2-yl)-3,5-dimethylisoxazole (29)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a ($0.288 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5dimethylisoxazole ($0.146 \mathrm{~g}, 1.5 \mathrm{mmol}$) product 29 was obtained in $66 \%(0.201 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,165.9,158.4,147.9,133.9,131.5,126.7,126.5,123.9$, $110.2,26.9,16.6,14.1,12.1,11.2$.
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}_{2}$ (304.43): Calcd C 59.18, H 5.30; Found C 59.07, H 5.22.

5-(5-(5-Chloro-1,3-dimethylpyrazol-4-yl)thiophen-2-yl)-2-ethyl-4-methylthiazole (30)

From 5-(5-bromothiophen-2-yl)-2-ethyl-4-methylthiazole 1a ($0.288 \mathrm{~g}, 1 \mathrm{mmol}$) and 5-chloro-1,3-dimethylpyrazole ($0.196 \mathrm{~g}, 1.5 \mathrm{mmol}$) product 30 was obtained in $72 \%(0.243 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 2.98 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.56 ($\mathrm{s}, 3 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,147.5,146.1,133.3,132.7,126.5,125.5,125.3,124.3$, 111.0, 36.2, 26.9, 16.6, 14.2, 14.0.
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{~S}_{2}$ (337.89): Calcd C 53.32, H 4.77; Found C 53.50, H 4.87.

5-Bromo-5'-methyl-2,2'-bithiophene (31) [9]

From 2,5-dibromothiophene ($0.242 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 -methylthiophene ($0.294 \mathrm{~g}, 3 \mathrm{mmol}$) product 31 was obtained in $35 \% ~(0.090 \mathrm{~g}$) yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.

2,2'-Bithiophene (32)

From 2-bromothiophene ($0.163 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene ($0.504 \mathrm{~g}, 6 \mathrm{mmol}$) product 32 was obtained in $58 \%(0.096 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=$ $5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H})$.

1-Methyl-2-(thiophen-2-yl)-pyrrole (33) [10]

From 2-bromothiophene ($0.163 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-methylpyrrole ($0.486 \mathrm{~g}, 6 \mathrm{mmol}$) product 33 was obtained in $61 \%(0.099 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J$
$=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.

4,7-Bis(2-ethyl-4-methylthiazol-5 yl)benzo[c][1,2,5]thiadiazole (34)

From 4,7-dibromobenzo[c][1,2,5]thiadiazole ($0.294 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.381 \mathrm{~g}, 3 \mathrm{mmol}$) product 34 was obtained in $92 \%(0.355 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,153.6,150.1,129.1,125.3,125.2,26.8,16.9,14.0$.
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{3}$ (386.56): Calcd C 55.93, H 4.69; Found C 55.78, H 4.54.

4,7-Bis(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (35) [11]

From 4,7-dibromobenzo[c][1,2,5]thiadiazole ($0.294 \mathrm{~g}, 1 \mathrm{mmol}$) and 2 -methylthiophene (0.294 $\mathrm{g}, 3 \mathrm{mmol})$ product 35 was obtained in $86 \%(0.282 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.75(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.57 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,141.5,137.1,127.5,126.3,125.7,125.1,15.4$.

4,7-Di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (36) [12]

From 4,7-dibromobenzo[c][1,2,5]thiadiazole ($0.294 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene ($0.504 \mathrm{~g}, 6$ mmol) product 36 was obtained in 82% (0.246 g) yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.12-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.20 (dd, $J=7.0,4.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 153.1,139.9,128.4,128.0,127.4,126.3,126.1$.

4,7-Bis(1-methylpyrrol-2-yl)benzo[c][1,2,5]thiadiazole (37) [13]

From 4,7-dibromobenzo[c][1,2,5]thiadiazole ($0.294 \mathrm{~g}, 1 \mathrm{mmol}$) and 1-methylpyrrole ($0.405 \mathrm{~g}, 5$ $\mathrm{mmol})$) product 37 was obtained in $78 \%(0.229 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{t}$, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,130.1,128.7,125.4,124.9,111.9,108.4,35.7$.

4,7-Bis(3,5-dimethylisoxazol-4-yl)benzo[c][1,2,5]thiadiazole (38)

From 4,7-dibromobenzo[c][1,2,5]thiadiazole ($0.294 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5-dimethylisoxazole ($0.291 \mathrm{~g}, 3 \mathrm{mmol}$) product 38 was obtained in $85 \%(0.277 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ ($\mathrm{s}, 2 \mathrm{H}$), 2.43 ($\mathrm{s}, 6 \mathrm{H}$), 2.29 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,159.1,153.9,129.7,123.8,112.8,12.1,11.1$.
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (326.37): Calcd C 58.88, H 4.32; Found C 58.97, H 4.20.

References

[1] Cantat, T.; Génin, E.; Giroud, C.; Meyer G.; Jutand, A. J. Organomet. Chem. 2003, 687, 365-376.
[2] Beny, J. P.; Dhawan, S. N.; Kagan, J.; Sundlass, S. J. Org. Chem. 1982, 47, 2201-2204.
[3] Kim, E. J.; Jung, K.-J.; Lee, I.-H.; Kim, B. R.; Kim, J.-J.; Park, J. K.; Lee, S.-G.; Yoon, Y.-J. Bull. Korean Chem. Soc. 2010, 31, 2985-2988.
[4] Hu, J.; Liang, L.; Chen, T.; Liu, P.; Deng, W. Dyes Pigments 2014, 158-161.
[5] Hassan Omar, O.; Babudri, F.; Farinola, G. M.; Naso, F.; Operamolla, A.; Pedone, A. Tetrahedron 2011, 67, 486-494.
[6] Borgwarth, K.; Rohde, N.; Ricken, C.; Hallensleben, M. L.; Mandler, D.; Heinze, J. Adv. Mater. 1999, 11, 1221-1226.
[7] Kriste, B.; Tian, P.; Kossmehl, G.; Engelmann, G.; Jugelt, W. Magn. Reson. Chem. 1995, 33, 70-76.
[8] Jadamiec, M.; Lapkowski, M.; Matlengiewicz, M.; Brembilla, A.; Henry, B.; Rodehueser, L. Electrochim. Acta 2007, 52, 6146-6154.
[9] Nagaki, A.; Takabayashi, N.; Tomida, Y.; Yoshida, J.-i. Org. Lett. 2008, 10, 3937-3940.
[10] Lotz, S.; Crause, C.; Olivier, A. J.; Liles, D. C.; Goerls, H.; Landman, M.; Bezuidenhout, D. I. Dalton Trans. 2009, 697-710.
[11] Chen, M.; Haeussler, M.; Moad, G.; Rizzardo, E. Org. Biomol. Chem. 2011, 9, 61116119.
[12] Kim, J.-J.; Choi, H.; Lee, J.-W.; Kang, M.-S.; Song, K.; Kang, S. O.; Ko, J. J. Mater. Chem. 2008, 18, 5223-5229.
[13] Sun, M.; Lan, L.; Wang, L.; Peng, J.; Cao, Y. Macromol. Chem. Physics 2008, 209, 2504-2509.

