Supporting Information

for

Simple two-step synthesis of 2,4-disubstituted pyrroles and 3,5-disubstituted pyrrole-2-carbonitriles from enones

Murat Kucukdisli ${ }^{1}$, Dorota Ferenc ${ }^{1}$, Marcel Heinz ${ }^{2}$, Christine Wiebe ${ }^{2}$ and Till Opatz* ${ }^{* 1}$

Address: ${ }^{1}$ Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany and ²Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

Email: Till Opatz - opatz@uni-mainz.de
*Corresponding author

Detailed experimental procedures and characterization of compounds $\mathbf{6 e}, \mathbf{6 j}, \mathbf{7 a - i}$ and $\mathbf{1 0 a - j}$ including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Content

General experimental methods S2
General Procedures S3
Analytical data S4
References S15
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S16

General experimental methods

All reactions were carried out in dried glassware under an inert atmosphere (argon) in anhydrous solvents using standard syringe and septa techniques. The solvents used for chromatography were distilled prior to use. All other solvents and reagents were purchased from commercial suppliers and were used without further purification. TLC experiments were carried out on aluminum sheets coated with silica gel $60 \mathrm{~F}_{254}$ and spots were visualized with UV-light (254 nm) and developed with Seebach's reagent or p-anisaldehyde and heating. Column chromatography was carried out on silica gel (32-63 $\mu \mathrm{m}, 60 \AA, 230-400$ mesh). Melting points were determined with a Dr. Tottoli apparatus and are uncorrected. NMR spectra were recorded with a 300, 400 and 500 MHz spectrometer. The spectra were measured in CDCl_{3} or DMSO- d_{6} at ambient temperature unless otherwise stated and the chemical shifts were referenced to the residual solvent signal $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm} ; \mathrm{DMSO}-\mathrm{d}_{6}: \delta \mathrm{H}=\right.$ $2.50 \mathrm{ppm}, \delta \mathrm{C}=39.52 \mathrm{ppm})$. IR spectra were recorded on routine FTIR spectrometers using a diamond ATR unit or a NaCl pellet. For high resolution FAB MS (FAB-HRMS), PEG 300 or PEG 600 was used as internal standard. ESI-HRMS spectra were recorded on a Q-TOF instrument with a dual source and a suitable external calibrant. Microwave reactions were carried out in a CEM Discover instrument.

The cyanopyrrolines 6a-j were prepared according to the literature from commercially available aminoacetonitrile hydrochloride and chalcones [1].

General procedures

General procedure A: synthesis of 2,4-disubstituted pyrroles 7a-i: A solution of cyanopyrrolines 6a-i in dichloromethane was transferred into a microwave reaction vessel. After removing the solvent in vacuo, the vessel was flushed with argon and closed with a cap. It was irradiated for $30 \mathrm{~min}\left(\mathrm{P}_{\max } 180 \mathrm{~W}\right)$ in a monomode microwave apparatus under air cooling. The temperatures reached (IR sensor) are listed in Table S1. The pressurized vessel was opened very carefully inside a wellventilated hood (caution, hydrogen cyanide!) and the residue was purified by column chromatography.

Table S1: Temperature parameters of the microwave experiments

Entry	Product	$\boldsymbol{T}_{\text {set }}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{T}_{\text {max }}$
1	$\mathbf{7 a}$	250	190
2	7b	250	230
3	7c	250	150
4	7d	250	195
5	$\mathbf{7 e}$	250	220
6	$\mathbf{7 f}$	250	200
7	$\mathbf{7 g}$	250	230
8	$\mathbf{7 h}$	250	180
9	$\mathbf{7 i}$	250	160

General procedure B: synthesis of pyrrole-2-carbonitriles 10a-j: A round bottomed flask equipped with a magnetic stir bar was charged with cyanopyrroline 6a-j and DDQ (1.15-1.20 equiv) in toluene ($15-20 \mathrm{~mL} / \mathrm{mmol} 6$). The reaction mixture was stirred under reflux until the starting material was consumed (TLC, 2-4 h). It was diluted with ethyl acetate and washed with 10% aqueous NaOH . The extracts were
dried over MgSO_{4} and concentrated in vacuo to obtain the crude product which was purified by column chromatography.

Analytical data

3-(2,3-Dichlorophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carbonitrile (6e): The title compound was prepared according to literature [1]. $R_{f} 0.16$ (ethyl acetate/cyclohexane 1:7); IR (NaCl) ṽ 3062, 2924, 2243, 1677, 1610, 1574, 1449, $1421,1345,1263,1182,1152,1045,1025,922,763,691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.20-6.90\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right.$, trans and cis), $5.50(\mathrm{dt}, J=8.4,1.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-2$, cis), 5.10 (dt, $J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$, trans), $4.53(\mathrm{dt}, J=8.5,7.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-3$, cis), 4.44 (dt, $J=9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$, trans), 3.72 (ddd, $J=17.6,9.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4a, trans), 3.50 (ddd, $J=17.2,8.7,1.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$, cis), 3.43 (ddd, $J=17.2,7.5$, $1.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}$, cis), 3.28 (ddd, $J=17.6,5.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}$, trans) ppm; APT NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 132.3\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, cis $), 132.3\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, trans $)$, 130.3 $\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, cis $), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, trans $), 129.0\left(\mathrm{C}^{\prime \prime}, 5^{\prime \prime}\right.$, cis $), 128.97\left(\mathrm{C} 3^{\prime \prime}, 5^{\prime \prime}\right.$, trans $), 128.5$ (C2", 6 ", trans), 128.4 ($\mathrm{C}^{\prime \prime}, 6$ ", cis), 128.1 ($\mathrm{CH}_{\mathrm{Ar}}$, trans $), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, cis $), 126.0$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, cis $), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, trans $), 118.7$ (CN), 67.3 (C-2, trans), 65.7 (C2, cis), 46.2 (C3, trans), 43.6 (C 3, cis), 43.0 (C4, trans), 41.2 (C4, cis) ppm; HRMS (FAB) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$315.0460, found 315.0456 .

3-(3,5-Dimethylphenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carbonitrile (6j): The title compound was prepared according to literature [1]. To a solution of (E)-3-(3,5-dimethylphenyl)-1-phenylprop-2-en-1-one ($471 \mathrm{mg}, 2.00 \mathrm{mmol}, 1 \mathrm{j}$) in pyridine (6 mL) was added aminoacetonitrile hydrochloride ($284 \mathrm{mg}, 3.07 \mathrm{mmol}, 1.54$ equiv, 2). The suspension was heated to reflux. The reaction was monitored by TLC and several portions of compound 2 were added: $148 \mathrm{mg}, 1.60 \mathrm{mmol}$ after $2.5 \mathrm{~h} ; 92 \mathrm{mg}$,
1.00 mmol after $4 \mathrm{~h} ; 103 \mathrm{mg}, 1.11 \mathrm{mmol}$ after $20 \mathrm{~h} ; 60 \mathrm{mg}, 0.65 \mathrm{mmol}$ after $22 \mathrm{~h} ; 63$ $\mathrm{mg}, 0.68 \mathrm{mmol}$ after $24 \mathrm{~h} ; 51 \mathrm{mg}, 0.55 \mathrm{mmol}$ after 25 h . After a total time of 26 h stirring at reflux, the mixture was cooled, diluted with ethyl acetate, washed with saturated aqueous NaHCO_{3}, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All volatiles were removed in vacuo and the crude product was purified by column chromatography (ethyl acetate/cyclohexane 1:8) to obtain trans-6j ($188 \mathrm{mg}, 0.69 \mathrm{mmol}, 34 \%$) as a brown oil and cis-6j ($111 \mathrm{mg}, 0.41 \mathrm{mmol}, 20 \%$). Analytical data of the trans-isomer: $R_{f} 0.26$ (ethyl acetate/cyclohexane 1:8); IR (NaCl) v 3059, 3018, 2918, 2244, 1682, 1607, 1575, 1495, 1448, 1468, 1345, 1264, 1179, 1050, 1026, 948, 871, 846, 763, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97-7.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 ", 6$ "), 7.58-7.42 (m, 3H, H-3",5", H-4"), 6.96-6.90 (m, 1H, H-4'), 6.85 (s, 2H, H-2',6'), 4.91 (dt, J = 7.1, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.85 (d-pseudo-t, $J \approx 9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.65 (ddd, J = 17.5, 9.5, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 3.24 (ddd, J = 17.5, $7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}$), 2.29 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$) ppm; APT NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=177.0(\mathrm{C} 5), 140.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.1\left(\mathrm{C} 3\right.$ ", 5 "), $132.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $132.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.9\left(\mathrm{CH}_{\mathrm{Ar}}, 2 \mathrm{C}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}, 2 \mathrm{C}\right), 124.6\left(\mathrm{CH}_{\mathrm{Ar}}, 2 \mathrm{C}\right)$, $119.4(\mathrm{CN}), 69.1(\mathrm{C} 2), 48.8(\mathrm{C} 3), 44.0(\mathrm{C} 4), 21.4\left(2 \mathrm{CH}_{3}\right) \mathrm{ppm}$; HRMS (FAB) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$275.1548, found 275.1548.

2,4-Diphenyl-1H-pyrrole (7a): The title compound was prepared from $\mathbf{6 a}(123 \mathrm{mg}$, 0.50 mmol) according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane 1:4) to obtain 7a ($89 \mathrm{mg}, 0.41 \mathrm{mmol}, 81 \%$) as a white solid: $\mathrm{mp} 178-179{ }^{\circ} \mathrm{C}$ (lit. [2] $178-180^{\circ} \mathrm{C}$); R_{f} 0.38 (ethyl acetate/cyclohexane 1:4); IR (ATR) $\tilde{v} 3440,3029,1605,1491,1453$, 1134, 808, 752, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY (400 MHz , DMSO-d) $\delta 11.44$ (br s, 1 H , NH), 7.70-7.66 (m, 2H, H-2', 6'), 7.63-7.58 (m, 2H, H-2", 6"), 7.40-7.35 (m, 2H, H$\left.3^{\prime}, 5^{\prime}\right), 7.35-7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.20-7.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$
$4 "), 6.96$ (dd, $J=2.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz ,
 (C4'), 125.0 (C4"), 124.7 (C4), 124.4 ($C 2^{\prime \prime}, 6$ "), 123.4 ($C^{\prime}, 6^{\prime}$), 116.6 (C5), 103.2 (C3) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}+\mathrm{H}\right]^{+}$220.1126, found 220.1126.

2-(Naphthalen-2-yl)-4-phenyl-1H-pyrrole (7b): The title compound was prepared from $\mathbf{6 b}$ ($207 \mathrm{mg}, 0.70 \mathrm{mmol}$) according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane $1: 10$) to obtain $\mathbf{7 b}(157 \mathrm{mg}, 0.58 \mathrm{mmol}, 83 \%)$ as a pale yellow solid: $\mathrm{mp} 219-220{ }^{\circ} \mathrm{C}$ (lit. [3] 222-224 ${ }^{\circ} \mathrm{C}$); $R_{f} 0.16$ (ethyl acetate/cyclohexane 1:10); IR (ATR) $\tilde{v} 3390$, 3027, 1602, 1451, 1263, 1128, 856, 824, 802, 743, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.64$ (br s, 1H, NH), 8.17 (s, 1H, H-1'), 7.93-7.89 (m, 2H, H-3', H$\left.4^{\prime}\right), 7.89-7.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-8^{\prime}\right), 7.67-7.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}_{\text {Naphth }}$), 7.46-7.41 (m, 2H, $\mathrm{H}_{\text {Naphth }}, \mathrm{H}-5$), 7.34 (pseudo-t, $\mathrm{J}_{\text {app }} \approx 7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$), 7.17-7.10 (m, 2H, H-4", H-3) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO- d_{6}) δ 135.7 ($\mathrm{C}^{\prime \prime}$), 133.4 ($\mathrm{C}_{\text {Naphth }}$), 132.2 (C2), 131.5 ($\mathrm{C}_{\text {Naphth }}$), 130.2 (C2'), 128.6 (C3", $\mathrm{S}^{\prime \prime}$), $128.2\left(\mathrm{C}^{\prime}\right)$, $127.6\left(\mathrm{CH}_{\text {Naphth }}\right), 127.5\left(\mathrm{CH}_{\text {Naphth }}\right), 126.5\left(\mathrm{CH}_{\text {Naphth }}\right), 125.2(\mathrm{CH}), 125.1$ (CH), 124.9 (C4), 124.4 (C2', 6 "), 123.1 (C3'), 120.5 (C1'), 117.2 (C5), 104.1 (C3) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}+\mathrm{H}\right]^{+}$270.1283, found 270.1273.

2-Methyl-4-phenyl-1H-pyrrole (7c): The title compound was prepared from 6c ($92 \mathrm{mg}, 0.50 \mathrm{mmol}$) according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane 1:4) to obtain 7c ($34 \mathrm{mg}, 0.21 \mathrm{mmol}, 43 \%$) as a yellow oil: $R_{f} 0.26$ (ethyl acetate/cyclohexane 1:4); IR (ATR) $\tilde{v} 3412,3370,3027,2923,1603,1529,1449,1123,795,762,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 10.64$ (br s, 1H, NH), 7.49-7.44 (m, 2H, H-2', 6^{\prime}), 7.287.23 (m, 2H, H-3', 5^{\prime}), $7.08-7.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.02(\mathrm{dd}, J=2.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$,
6.12-6.10 (m, 1H, H-3), $2.19\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO- d_{6}) $\delta 136.5$ (C^{\prime}), 128.5 ($\left.\mathrm{C}^{\prime}, 5^{\prime}\right)$, 128.1 (C2), 124.5 (C4’), 124.2 ($\left.\mathrm{C}^{\prime}, 6^{\prime}\right)$, 123.2 (C4), $113.3(\mathrm{C} 5), 103.3(\mathrm{C} 3), 12.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}+\mathrm{H}\right]^{+}$158.0970, found 158.0956.

4-(2,3-Dichlorophenyl)-2-phenyl-1H-pyrrole (7e): The title compound was prepared from $6 \mathbf{e}(172 \mathrm{mg}, 0.55 \mathrm{mmol})$ according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane 1:4) to obtain 7 e ($104 \mathrm{mg}, 0.36 \mathrm{mmol}, 66 \%$) as a white solid: $\mathrm{mp} 122-123{ }^{\circ} \mathrm{C} ; R_{f} 0.40$ (ethyl acetate/cyclohexane 1:4); IR (ATR) ṽ 3431, 3096, 3058, 1605, 1584, 1482, $1455,1413,1121,1036,814,774,756,729,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY (400 MHz , DMSO-d d_{6}) $\delta 11.65$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.71-7.66 (m, 2H, H-2', 6^{\prime}), 7.58 (dd, $J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 7.47 (dd, J=8.0, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$), $7.41-7.31$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}, \mathrm{H}-5, \mathrm{H}-$ 5'), 7.20 (pseudo-tt, $J_{\text {app }} \approx 7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 6.93 (dd, $J=2.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d $)$ ס 136.9 (C1"), 132.6 (C3"), 132.3 (C1'), 131.5 (C2), 128.8 ($\left.\mathrm{C3}^{\prime}, 5^{\prime}\right)$, 128.7 ($\mathrm{Cb}^{\prime \prime}$), 128.4 (C2"), 128.0 (C5"), 127.4 (C4'), 126.0 (C4'), 123.6 (C2', 6^{\prime}), 121.5 (C4), 120.0 (C5), 106.3 (C3) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NCl}_{2}+\mathrm{H}\right]^{+}$288.0347, found 288.0354.

4-(2-Bromophenyl)-2-(naphthalen-2-yl)-1H-pyrrole (7f): The title compound was prepared from $6 \mathbf{f}$ ($329 \mathrm{mg}, 0.88 \mathrm{mmol}$) according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane $1: 5$) to obtain $7 \mathrm{f}(87 \mathrm{mg}, 0.25 \mathrm{mmol}, 28 \%)$ as a white solid: mp $121-122{ }^{\circ} \mathrm{C} ; R_{f} 0.33$ (ethyl acetate/cyclohexane 1:5); IR (ATR) $\tilde{v} 3432,3054,1603$, 1508, 1466, 1418, 1267, 1122, 855, 810, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY $(400 \mathrm{MHz}$, DMSO-d d_{6}) $\delta 11.75$ (br s, 1H,NH), 8.17 (s, 1H, H-1'), $7.94-7.84\left(m, 4 H, 4 H_{\text {Naphth }}\right)$, 7.67 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ "), 7.59 (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), $7.54-7.47$
($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {Naphth }}$), 7.47-7.36 (m, 2H, $\mathrm{H}_{\text {Naphth }}, \mathrm{H}-5$ "), 7.34 (dd, J = 2.9, 1.7 Hz, 1H, H-5), 7.15 (ddd, $J=8.9,8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 7.04 (dd, $J=2.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d 6) $\delta 136.4$ (C1"), 133.47 (C3"), 133.45, 131.5, 131.2 (C2), 130.7 (C6"), 130.0, 128.3, 127.8, 127.7, 127.5, 127.4, 126.5, 125.3, 123.5 (C4), 123.1, 121.1 (C2"), 120.6 (C1'), 119.8 (C5), 107.2 (C3) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NBr}+\mathrm{H}\right]^{+} 348.0388$, found 348.0398.

4-(5-Phenyl-1 H-pyrrol-3-yl)benzonitrile (7g): The title compound was prepared from $6 \mathbf{g}$ ($282 \mathrm{mg}, 1.04 \mathrm{mmol}$) according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane 1:6) to obtain $\mathbf{7 g}(81 \mathrm{mg}, 0.33 \mathrm{mmol}, 32 \%)$ as a pale yellow solid: $\mathrm{mp} 205-207^{\circ} \mathrm{C} ; R_{f} 0.29$ (ethyl acetate/cyclohexane 1:6); IR (ATR) ṽ 3353, 3052, 2223, 1602, 1492, 1149, 926, 848, 809, 776, 753, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, COSY ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.70$ (br s, 1H,NH), 7.86-7.79 (AA' part of AA'BB' system, 2H, H-3,5), 7.77-7.73 (BB' part of AA'BB' system, 2H, H-2,6), 7.71-7.68 (m, 1H, H-2", 6"), 7.59 (dd, J = 2.8, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-2'), 7.39 (pseudo-t, $J_{\text {app }} \approx 7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$), $7.23-7.18$ (m, 1H, H-4"), 7.09 (dd, J $\left.=2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 140.6$ (C4), 133.0 ($C 5$ '), 132.6 (C2,6), 132.3 ($C 1^{\prime \prime}$), 128.8 ($C 3^{\prime \prime}, 5$ "), 126.1 ($C 4$ "), 124.8 (C3,5), 123.6 (C2",6"), 123.1 (C3'), 119.5 (CN), 118.9 (C2'), 106.7 (C1), 103.5 (C4') ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$245.1079, found 245.1078.

2-(4-Fluorophenyl)-4-(4-methoxyphenyl)-1 H-pyrrole (7h): The title compound was prepared from $6 \mathbf{h}(223 \mathrm{mg}, 0.76 \mathrm{mmol})$ according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane $1: 8$) to obtain 7 h ($123 \mathrm{mg}, 0.46 \mathrm{mmol}, 61 \%$) as a white solid: mp $138-139{ }^{\circ} \mathrm{C} ; R_{f} 0.11$ (ethyl acetate/cyclohexane 1:8); IR (ATR) $\tilde{v} 3443,3427,3008$, 2960, 2840, 1572, 1505, 1439, 1246, 1036, 835, $798 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, COSY (400
$\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.32$ (br s, 1H, NH), 7.71-7.66 (m, 2H, H-2', 6'), 7.53-7.49 (AA' part of $A^{\prime}{ }^{\prime} \mathrm{BB}^{\prime}$ system, $2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$), $7.24-7.17\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}, 5\right.$ ', $\left.\mathrm{H}-5\right), 6.91-6.88$ (BB' part of AA'BB' system, 2H, H-3", 5 "), 6.84 (dd, $J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.75(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d $) \delta 160.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=242.4\right.$ $\left.\mathrm{Hz}, \mathrm{C} 4^{\prime}\right), 157.1$ (C4"), 131.1 (C2), 129.5 ($\left.\mathrm{d}^{4}{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=2.9 \mathrm{~Hz}, \mathrm{C} 1^{\prime}\right), 128.4$ (C1"), 125.5 ($\mathrm{C} 3^{\prime \prime}, 5^{\prime \prime}$), 125.2 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=7.8 \mathrm{~Hz}, \mathrm{C} 2^{\prime}, 6^{\prime}$), 124.6 (C4), 115.6 (C5, overlapped with the doublet of $\mathrm{C} 3^{\prime}, 5^{\prime}$), $115.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=21.8 \mathrm{~Hz}, \mathrm{C} 3^{\prime}, 5^{\prime}\right)$, $114.0\left(\mathrm{C} 3^{\prime \prime}, 5^{\prime \prime}\right), 103.0(\mathrm{C} 3), 55.0$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NOF}+\mathrm{H}\right]^{+}$268.1138, found 268.1129.

4-(2-Chlorophenyl)-2-(4-fluorophenyl)-1H-pyrrole (7i): The title compound was prepared from $6 \mathbf{i}$ ($224 \mathrm{mg}, 0.75 \mathrm{mmol}$) according to general procedure A described above. The product was purified by column chromatography (ethyl acetate/cyclohexane $1: 6$) to obtain $7 \mathbf{i}(78 \mathrm{mg}, 0.29 \mathrm{mmol}, 38 \%)$ as a white solid: mp $124-126^{\circ} \mathrm{C} ; R_{f} 0.24$ (ethyl acetate/cyclohexane 1:6); IR (ATR) $\tilde{v} 3434,3267,3065$, 1661, 1492, 1230, 1097, 930, 835, 810, $753 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, COSY (400 MHz, DMSO-d d_{6}) $\delta 11.58$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.74-7.68$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 7.61 (dd, $J=7.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 7.46 (dd, J = 8.0, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), $7.36-7.30$ (m, 2H, H-5", H-5), 7.26-7.17 (m, 3H, H-3', $5^{\prime}, \mathrm{H}-4$ "), 6.90 (dd, $J=2.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 160.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=242.5 \mathrm{~Hz}, \mathrm{C} 4\right.$ '), 134.2 (C1"), 130.5 (C2), 130.3 (C2"), 130.2 (C3"), 130.0 (C6"), 129.2 (d, ${ }^{4} J_{C, F}=3.1 \mathrm{~Hz}, C 1$ '), 127.3 (C5"), 126.8 ($C^{\prime \prime}$), 125.4 ($\mathrm{d}^{3}{ }^{3} \mathrm{C}_{\mathrm{C}, \mathrm{F}}=7.9 \mathrm{~Hz}, \mathrm{C} 2^{\prime}, 6^{\prime}$), 121.7 (C4), 119.5 (C5), 115.6 (d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=21.5 \mathrm{~Hz}, \mathrm{C} 3^{\prime}, 5^{\prime}\right)$, 106.0 (C3) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NFCl}+\mathrm{H}^{+}\right.$272.0642, found 272.0634 .

3,5-Diphenyl-1H-pyrrole-2-carbonitrile (10a): The title compound was prepared from 6a (292 mg, 1.19 mmol) and DDQ ($310 \mathrm{mg}, 1.36 \mathrm{mmol}$) in 8 mL of toluene according to general procedure B described above. The crude product was purified
by column chromatography (ethyl acetate/cyclohexane 1:10) to obtain 10a (273 mg, 1.12 mmol, 94%) as a white solid: mp $192-193^{\circ} \mathrm{C}$ (lit. [4] $194-195^{\circ} \mathrm{C}$); $R_{f} 0.23$ (ethyl acetate/cyclohexane 1:10); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) $\delta 12.75$ (br s, 1H, NH), 7.83-7.78 (m, 2H, H-2', 6' or H-2", 6"), 7.76-7.72 (m, 2H, H-2', 6'or H-2", 6"), 7.517.43 (m, 4H, H-3', 5', H-3", 5'), 7.39-7.32 (m, 2H, H-4', H-4"), 7.13 (s, 1H, H-4) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMQC (101 MHz, DMSO- d_{6}) $\delta 137.2$ (C5), 134.8 (C3), 132.6, 130.4 ($\left.\mathrm{C} 1^{\prime}, ~ C 1 "\right), 129.0,128.9$ (4C, C3', $5^{\prime}, ~ C 3 ", 5{ }^{\prime \prime}$), 127.9, 127.6 (C4', C4"), 126.2, 124.8 ($\mathrm{C}^{\prime}, 6^{\prime}, \mathrm{C}^{\prime \prime}, 6^{\prime \prime}$), 115.5 (CN), 106.1 (C4), 97.2 (C2) ppm; HRMS (FAB) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2}+\mathrm{H}\right]^{+} 245.1000$, found 245.1000; EA $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$: calcd. $83.58 \% \mathrm{C}$, $4.95 \% \mathrm{H}, 11.47 \% \mathrm{H}$; found $83.47 \% \mathrm{C}, 5.27 \% \mathrm{H}, 11.14 \% \mathrm{~N}$.

5-(Naphthalen-2-yl)-3-phenyl-1 H-pyrrole-2-carbonitrile (10b): The title compound was prepared from 6b (207 mg, 0.70 mmol$)$ and DDQ (191 mg, 0.84 mmol$)$ in 14 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane 1:3) to obtain 10b (121 mg, $0.41 \mathrm{mmol}, 59 \%$) as a white solid; mp 227-229 ${ }^{\circ} \mathrm{C} ; R_{f} 0.47$ (ethyl acetate/cyclohexane 1:3); IR (ATR) ṽ 3268, 3056, 2213, 1457, 1230, 863, 853, 808, $764 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, COSY (400 MHz, DMSO-d d_{6}) $\delta 12.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.36(\mathrm{~d}, \mathrm{~J}=$ $\left.1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 8.01\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), 7.97 (dd, $\left.J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right)$, 7.94-7.91 (m, 2H, H ${ }_{\text {Naphth }}$), 7.80-7.76 (m, 2H, H-2', 6'), 7.59-7.47 (m, 4H, H-3', 5^{\prime}, $\left.2 H_{\text {Naphth }}\right), 7.40-7.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), $7.29(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 137.2,134.9,133.0,132.6,132.4,129.0(C 3 ', 5$ '), 128.6 (C4"), 127.96, 127.92, 127.73, 127.72, 126.9, 126.4, 126.3 ($\mathrm{C}^{\prime}, 6^{\prime}$), 123.23 ($\mathrm{C} 1^{\prime \prime}$), 123.20 (C3"), 115.6 (CN), 106.8 (C4), 97.5 (C2) ppm; HRMS (ESI) calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$ 295.1235, found 295.1228 .

5-(4-Chlorophenyl)-3-(3-nitrophenyl)-1 H-pyrrole-2-carbonitrile (10d): The title compound was prepared from 6d ($302 \mathrm{mg}, 0.93 \mathrm{mmol}$) and DDQ (252 mg , 1.11 mmol) in 20 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane $1: 6$) to obtain 10d ($195 \mathrm{mg}, 0.60 \mathrm{mmol}, 65 \%$) as a white foam: $R_{f} 0.14$ (ethyl acetate/cyclohexane 1:6); IR (ATR) $\tilde{v} 3299,2925,2212,1533,1350$, 1263, 1094, 799, $740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 13.06$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.56\left(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 8.23-8.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ ', H-6'), 7.88-7.83 (AA' part of AA'BB' system, 2H, H-2", 6 "), $7.80\left(t, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.59-7.53$ (BB' part of AA'BB' system, 2H, H-3", $5^{\prime \prime}$), 7.41 (s, 1H, H-4) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d ${ }_{6}$) $\delta 148.4$ (C^{\prime}), 136.4 (C5), 134.1 (C1'), 132.7 (C4"), 132.4 (C6'), 132.2 (C3), 130.7 (C5'), 129.13 (C1"), 129.09 (C3", 5 '), 126.6 (C2", 6 "), 122.3 (C4'), 120.4 (C2'), 114.9 (CN), 107.2 (C4), 98.2 (C2) ppm; HRMS (ESI) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{H}\right]^{+} 346.0359$, found 346.0367.

3-(2,3-Dichlorophenyl)-5-phenyl-1H-pyrrole-2-carbonitrile (10e): The title compound was prepared from 6 e $(158 \mathrm{mg}, 0.50 \mathrm{mmol})$ and DDQ $(136 \mathrm{mg}$, 0.60 mmol) in 10 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane 1:5) to obtain $\mathbf{1 0 e}$ ($111 \mathrm{mg}, 0.35 \mathrm{mmol}, 71 \%$) as a yellow solid: mp 204-205 ${ }^{\circ} \mathrm{C} ; R_{f} 0.21$ (ethyl acetate/cyclohexane 1:10); IR (ATR) $\tilde{v} 3290,2207$, $1586,1483,1447,1395,1264,1191,1109,1056,1020,820,785,774,754,684 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 9.26$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.56-7.52 (m, 2H, H-2", 6 "), 7.49 (dd, J = 8.0, 1.6 Hz, 1H, H-4'), 7.47-7.41 (m, 2H. H-3",5"), 7.40 (dd, J = 7.7, 1.6 Hz, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ '), 7.27 (dd, $J=8.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $6.75(\mathrm{~d}, J=$ 2.8 Hz, 1H, H-4) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 136.5$ (C5), 134.2 (C3),
132.5, 132.2, 130.3 (2 Cq), 130.18, 130.15, 129.0, 128.3, 128.0, 124.8, 114.1 (CN), 108.7 (C4), 100.1 (C2) ppm; HRMS (FAB) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$313.0307, found: 313.0299.

3-(2-Bromophenyl)-5-(naphthalen-2-yl)-1H-pyrrole-2-carbonitrile (10f): The title compound was prepared from $6 \mathbf{f}(504 \mathrm{mg}, 1.34 \mathrm{mmol})$ and DDQ (366 mg , 1.61 mmol) in 25 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane $1: 5$) to obtain $10 f(234 \mathrm{mg}, 0.63 \mathrm{mmol}, 47 \%)$ as a white solid: $\mathrm{mp} 180-181{ }^{\circ} \mathrm{C}$; $R_{f} 0.26$ (ethyl acetate/cyclohexane 1:5); IR (ATR) $\tilde{v} 3264,3056$, $2214,1507,1446,1265,812,757,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 13.05 (br d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $8.35(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ "), $8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4$ "), $7.96-7.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3\right.$ ", $2 \mathrm{H}_{\text {Naphth }}$), 7.79 (dd, $J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 7.59-7.47 (m, 4H, $2 \mathrm{H}_{\text {Naphth, }} \mathrm{H}^{\prime} 5^{\prime}, \mathrm{H}-6^{\prime}$), 7.36 (ddd, $J=8.0,6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $7.05(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta$ 136.2 (C5), 134.6 (C3), 133.9 (C1'), 133.2 (C3'), 133.1 (C8a"), 132.4 (C4a"), 131.7 (C6'), 130.0 (C4'), 128.7 (C4"), 128.0 (CH), 127.96 (CH), 127.9 (C2"), 127.7 (CH), 126.9, 126.4 (C6", C7"), 123.24, 123.18 (C1", C3"), 122.6 (C2'), 114.5 (CN), 109.3 (C4), 100.3 (C2) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Br}+\mathrm{Na}\right]^{+} 395.0160$, found 395.0154.

3-(4-Cyanophenyl)-5-phenyl-1H-pyrrole-2-carbonitrile (10g): The title compound was prepared from $6 \mathbf{g}(310 \mathrm{mg}, 1.14 \mathrm{mmol})$ and DDQ ($311 \mathrm{mg}, 1.37 \mathrm{mmol}$) in 20 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane 1:4) to obtain $\mathbf{1 0 g}$ ($216 \mathrm{mg}, 0.80 \mathrm{mmol}, 70 \%$) as a yellow solid: $\mathrm{mp} 228-229{ }^{\circ} \mathrm{C} ; R_{f} 0.15$ (ethyl acetate/cyclohexane 1:4); IR (ATR) v 3294, 3065, 2224, 2204, 1606, 1263, 840, 813,
$758,730,689 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 13.01$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.98-7.95 (AA' part of $A A^{\prime} B^{\prime}$ ' system, $2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$), $7.94-7.91$ (BB' part of $A A^{\prime} \mathrm{BB}^{\prime}$ system, 2 H , H-2',6'), 7.83-7.79 (m, 2H, H-2",6"), 7.50-7.45 (pseudo-t, Japp $\left.\approx 7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right)$, $7.38-7.33$ (pseudo-tt, $J_{\text {app }} \approx 1.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), $7.28(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, DMSO-d ${ }_{6}$) $\delta 137.6$ (C5), 137.2 (C1'), 133.0 ($\mathrm{C}^{\prime}, 5^{\prime}$), 132.6 (C3), 130.2 ($\mathrm{C} 1^{\prime \prime}$), 129.1 ($\left.\mathrm{C}^{\prime \prime}, 5^{\prime \prime}\right)$, 128.2 (C 4 "), 126.8 ($\left.\mathrm{C}^{\prime}, 6^{\prime}\right)$, 124.9 (C2",6"), 118.8 (NC-C4'), 115.1 (NC-C2), 109.9 (C4'), 106.7 (C4), 98.1(C2) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}+\mathrm{Na}\right]^{+}$292.0851, found 292.0861.

5-(4-Fluorophenyl)-3-(4-methoxyphenyl)-1 H-pyrrole-2-carbonitrile (10h): The title compound was prepared from $6 \mathrm{~h}(293 \mathrm{mg}, 1.00 \mathrm{mmol})$ and DDQ $(271 \mathrm{mg}$, 1.20 mmol) in 20 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane 1:4) to obtain $10 \mathrm{~h}(225 \mathrm{mg}, 0.77 \mathrm{mmol}, 77 \%)$ as a white solid: $\mathrm{mp} 238-239{ }^{\circ} \mathrm{C}$; $R_{f} 0.26$ (ethyl acetate/cyclohexane 1:4); IR (ATR) $\tilde{v} 3298$, 2927, 2839, 2206, 1599, 1507, 1350, 1254, 1226, 1166, 840, $809 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY (400 MHz, DMSO-d d_{6}) $\delta 12.64$ (s, 1H, NH), 7.87-7.80 (m, 2H, H-2", 6 "), $7.69-7.64$ (AA' part of AA'BB' system, 2H, H-2',6'), 7.35-7.28 (m, 2H, H-3", $5^{\prime \prime}$), 7.09-7.02 (m, $3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}^{\prime}-3^{\prime}, 5^{\prime}$), 3.80 (s, 3H, CH3) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz , DMSO$\left.d_{6}\right) \delta 161.7\left(d,{ }^{1} J_{\mathrm{CF}}=245.3 \mathrm{~Hz}, \mathrm{C} 4{ }^{\prime \prime}\right)$, 158.9 (C4'), 136.2 (C5), 134.8 (C3), 127.5 (C2', 6 '), 127.2 ($\mathrm{d},{ }^{4} J_{\mathrm{CF}}=3.2 \mathrm{~Hz}, \mathrm{C} 1^{\prime \prime}$), 127.0 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=8.3 \mathrm{~Hz}, \mathrm{C} 2^{\prime \prime}, 6$ "), 125.0 ($\mathrm{C} 1^{\prime \prime}$), 116.0 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.7 \mathrm{~Hz}, \mathrm{C} 3^{\prime \prime}, 5^{\prime \prime}$), 115.8 (CN), 114.4 ($\left.\mathrm{C}^{\prime}, 5^{\prime}\right)$, 105.8 (C4), $96.5(\mathrm{C} 2)$, $55.2\left(\mathrm{CH}_{3}\right)$ ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OF}+\mathrm{Na}\right]^{+}$315.0910, found 315.0912.

3-(2-Chlorophenyl)-5-(4-fluorophenyl)-1 H-pyrrole-2-carbonitrile (10i): The title compound was prepared from $\mathbf{6 i}(149 \mathrm{mg}, 0.50 \mathrm{mmol})$ and DDQ (136 mg ,
0.60 mmol) in 10 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane $1: 6$) to obtain $\mathbf{1 0 i}(105 \mathrm{mg}, 0.354 \mathrm{mmol}, 71 \%)$ as a white solid: $\mathrm{mp} 214-216{ }^{\circ} \mathrm{C} ; R_{f} 0.20$ (ethyl acetate/cyclohexane 1:6); IR (ATR) $\tilde{v} 3290,3068$, 2926, 2214, 1600, 1508, 1235, 1158, 841, 805, 761, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, COSY (300 MHz, DMSO-d ${ }_{6}$) $\delta 12.88$ (br s, 1H, NH), 7.88-7.79 (m, 2H, H-2", $6^{\prime \prime}$), 7.64-7.58 (m, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)^{\prime}, 7.54-7.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)^{\prime}$, 7.47-7.42 (m, 2H, $\left.\mathrm{H}_{\mathrm{Ar}} \mathrm{r}^{\prime}\right), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.3^{\prime \prime}, 5^{\prime \prime}\right), 6.91$ (s, 1H, H-4) ppm; ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (75 MHz, DMSO-d ${ }_{6}$) $\delta 161.8$ (d, ${ }^{1} J_{\text {CF }}=245.7 \mathrm{~Hz}, \mathrm{C} 4$ "), 135.5 (C5), 132.7 (C3), $131.7\left(\mathrm{C}_{\mathrm{q}}\right)$, 131.6 (C_{q}), 130.0 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{CH}_{\text {Ar}}{ }^{\prime}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}{ }^{\prime}\right), 127.15\left(\mathrm{C} 1^{\prime \prime}\right), 127.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=8.1 \mathrm{~Hz}, \mathrm{C} 2^{\prime \prime}, 6\right.$ " $)$, 116.0 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.7 \mathrm{~Hz}, \mathrm{C} 3^{\prime \prime}, 5^{\prime \prime}$), 114.5 (CN), 108.8 (C4), 100.0 (C2) ppm; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{CIF}+\mathrm{Na}\right]^{+} 319.0414$, found 319.0408.

3-(3,5-Dimethylphenyl)-5-phenyl-1 H-pyrrole-2-carbonitrile (10j): The title compound was prepared from $\mathbf{6 j}(178 \mathrm{mg}, 0.65 \mathrm{mmol})$ and DDQ (171 mg, 0.75 mmol) in 10 mL of toluene according to general procedure B described above. The crude product was purified by column chromatography (ethyl acetate/cyclohexane 1:5) to obtain 10j ($96 \mathrm{mg}, 0.35 \mathrm{mmol}, 54 \%$) as a pale yellow solid: mp 164-165 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.24$ (ethyl acetate/cyclohexane 1:5); IR (NaCl) $\tilde{v} 3027$, 2917, 2208, 1604, 1485, 1323, 1261, 1032, 849, 760, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.60-7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.48-7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right)$, 7.39-7.33 (m, 3H, H-3", H-4", H5"), 7.03-7.00 (m, 1H, H-4'), 6.76 (d, J = $2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;$ APT NMR (101 MHz, CDCl_{3}) δ 138.6, 137.7, 137.1, $132.5,130.6,129.9,129.4,128.6,125.0,124.8,115.7$ (CN), 106.5 (C4), 98.1 (C2), $21.5\left(2 \mathrm{CH}_{3}\right) \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{FAB})$ calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2}+\mathrm{H}\right]^{+} 273.1392$ (273.1386), found 273.1392.

References:

(1) Bergner, I.; Wiebe, C.; Meyer, N.; Opatz, T. J. Org. Chem. 2009, 74, 8243-8253.
(2) Hall, M. J.; McDonnell, S. O.; Killoran, J.; O'Shea, D. F. J. Org. Chem. 2005, 70, 5571-5578.
(3) Chen, F.; Shen, T.; Cui, Y.; Jiao, N. Org. Lett. 2012, 14, 4926-4929.
(4) Alberola, A.; Andres, J. M.; Gonzalez, A.; Pedrosa, R.; Vicente, M. Heterocycles 1990, 31, 1049-1058.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 e}$ (mixture of isomers)

APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 e}$ (mixture of isomers)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of trans-6j

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of $7 \mathbf{a}$

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of $7 \mathbf{b}$

${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) spectrum of 7c

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of 7c

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of $7 \mathbf{e}$

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of 7 f

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of 7 g

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of 7 h

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of $\mathbf{1 0 a}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of 10b

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of 10b

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of 10d

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of $\mathbf{1 0 f}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) spectrum of $\mathbf{1 0 g}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of $\mathbf{1 0 h}$

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) spectrum of $\mathbf{1 0 h}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ spectrum of $\mathbf{1 0 i}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0} \mathbf{j}$

APT NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0} \mathbf{j}$

