One-pot three-component synthesis and photophysical characteristics of novel triene merocyanines

Christian Muschelknautz, Robin Visse, Jan Nordmann, and Thomas J. J. Müller*

Address: Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.

Email: Thomas J. J. Müller - ThomasJJ.Mueller@uni-duesseldorf.de *Corresponding author

Dedicated to Dr. Hans-Ulrich Wagner on the occasion of his 75th birthday.

Experimental procedures, spectroscopic and analytical data, and copies of NMR spectra of compounds 8 and 10.

Content

1. General considerations
2. General Procedure for the synthesis of 1-styryleth-2-enylideneindolones 8
$2.1.\ 3-(1,3-Diphenyl-2-(1,3,3-trimethylindolin-2-ylidene) but-3-en-1-ylidene)-1-methylindolin-2-plidene)-1-methylindolin-2-plidene) but-3-en-1-ylidene)-1-methylindolin-2-plidene) but-3-en-1-ylidene)-1-methylindolin-2-p$
one (8a)
2.2. 3-(3-(4-Methoxyphenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-
1-methylindolin-2-one (8b)
2.3. 3-(3-(4-Chlorophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-1-
methylindolin-2-one (8c)
2.4. 4-(4-(1-Methyl-2-oxoindolin-3-ylidene)-4-phenyl-3-(1,3,3-trimethylindolin-2-ylidene)but-1-
en-2-yl)benzonitrile (8d)
2.5. 1-Methyl-3-(3-(4-nitrophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-
ylidene)indolin-2-one (8e)
3. General Procedure for the synthesis of 4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-
ylideneindolones 10
3.1. (Z)-3-((2Z,4E)-1,3-Diphenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylidene)-1-
tosylindolin-2-one (10a)
3.2. (Z)-3-((2Z,4E)-3-(4-Aminophenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-
1-ylidene)-1-tosylindolin-2-one (10b)
3.3. (Z)-3-((2Z,4E)-3-(4-Chlorphenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-yliden)but-2-en-1-
yliden)-1-tosylindolin-2-one (10c)
3.4. 4-((1Z,2Z,4E)-4-(2-Oxo-1-tosylindolin-3-ylidene)-4-phenyl-1-(1,3,3-trimethyl-indolin-2-
ylidene)but-2-en-2-yl)benzonitrile (10d)
3.5. (Z)-3-((2Z,4E)-3-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-4-(1,3,3-trimethyl-indolin-2-
ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10e)
3.6. (Z)-3-((2Z,4E)-1,3-Bis(4-chlorophenyl)-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-
ylidene)-1-tosylindolin-2-one (10f)
3.7. 4-((1 <i>Z</i> ,2 <i>Z</i> ,4 <i>E</i>)-4-(4-Chlorophenyl)-4-(2-oxo-1-tosylindolin-3-ylidene)-1-(1,3,3-tri-
methylindolin-2-ylidene)but-2-en-2-yl)benzonitrile (10g)
3.8. (Z)-3-((2Z,4Z)-3-(4-Chlorophenyl)-4-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-1-
phenylbut-2-en-1-ylidene)-1-methylindolin-2-one (10h)
4.1. 3-(1,3-Diphenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-1-methylindolin-2-
one (8a)
4.2. 3-(3-(4-Methoxyphenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-
1-methylindolin-2-one (8b)

4.3. 3-(3-(4-Chlorophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-1-	
methylindolin-2-one (8c)) -
4.4. 4-(4-(1-Methyl-2-oxoindolin-3-ylidene)-4-phenyl-3-(1,3,3-trimethylindolin-2-ylidene)but-1-	
en-2-yl)benzonitrile (8d)	ŀ
5.1. (Z)-3-((2Z,4E)-1,3-Diphenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylidene)-1-	
tosylindolin-2-one (10a)	;
5.2. (Z)-3-((2Z,4E)-3-(4-Aminophenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-	
1-ylidene)-1-tosylindolin-2-one (10b))
5.3. (Z)-3-((2Z,4E)-3-(4-Chlorphenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-yliden)but-2-en-1-	
yliden)-1-tosylindolin-2-on (10c)S32) -
5.4. 4-((1 <i>Z</i> ,2 <i>Z</i> ,4 <i>E</i>)-4-(2-Oxo-1-tosylindolin-3-ylidene)-4-phenyl-1-(1,3,3-trimethyl-indolin-2-	
ylidene)but-2-en-2-yl)benzonitrile (10d)S34	Ļ
5.5. (Z)-3-((2Z,4E)-3-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-4-(1,3,3-trimethyl-indolin-2-	
ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10e)S36	;
5.6. (Z)-3-((2Z,4E)-1,3-Bis(4-chlorophenyl)-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-	
ylidene)-1-tosylindolin-2-one (10f)S38	;
5.7. 4-((1 <i>Z</i> ,2 <i>Z</i> ,4 <i>E</i>)-4-(4-Chlorophenyl)-4-(2-oxo-1-tosylindolin-3-ylidene)-1-(1,3,3-tri-	
methylindolin-2-ylidene)but-2-en-2-yl)benzonitrile (10g))
5.8. (Z)-3-((2Z,4Z)-3-(4-Chlorophenyl)-4-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-1-	
phenylbut-2-en-1-ylidene)-1-methylindolin-2-one (10h)) -
6. Computational data of structures 2 <i>E</i> ,4 <i>Z</i> ,6 <i>E</i> -10a, 2 <i>E</i> ,4 <i>Z</i> ,6 <i>Z</i> -10a, 2 <i>E</i> ,4 <i>Z</i> ,6 <i>Z</i> -10h, 2 <i>E</i> ,4 <i>Z</i> ,6 <i>E</i> -	
10h	ŀ
6.1. Structure 2Z,4Z-8a	,
6.2. Structure 2Z,4E-8a	,
6.3. Structure 2 <i>E</i> ,4 <i>Z</i> ,6 <i>E</i> -10a)
6.4. Structure 2 <i>E</i> ,4 <i>Z</i> ,6 <i>Z</i> -10a	
6.5. Structure 2 <i>E</i> ,4 <i>Z</i> ,6 <i>Z</i> -10h	;
6.6. Structure 2 <i>E</i> ,4 <i>Z</i> ,6 <i>E</i> -10h	,
6.7. Structure of the <i>N</i> -methyl allenyl enolate 16a S57	,
6.8. Structure of the <i>N</i> -tosyl allenyl enolate 16b)
6.9. HOMO and LUMO of 2 <i>Z</i> ,4 <i>Z</i> - 8a S61	
6.10. TD-DFT calculation of 2 <i>E</i> ,4 <i>Z</i> ,6 <i>Z</i> -10a	

1. General considerations

All reactions involving palladium–copper catalysis were performed in degassed oxygen-free solvents under a nitrogen atmosphere using Schlenk and syringe techniques. PdCl₂(PPh₃)₂, Cul, Fischer's base (**7**) and 2,3-dimethylbenzothiazolium iodide (**9**) were purchased from Acros and Aldrich (reagent grade) and used without further purification. Diisopropylethylamine was dried and distilled according to standard procedures.¹ Detailed preparative procedures including full analytics and ¹H, ¹³C and 135-DEPT NMR spectra of the *o*-iodophenylanilides **5** have been previously reported.² Column chromatography was performed using silica gel 60 mesh 230–400 (Macherey-Nagel, Düren). TLC analysis was performed using silica gel plates (60 F254 Merck, Darmstadt), eluent hexane/EtOAc.

¹H NMR spectra were recorded on Bruker DRX 500 (500 MHz) and Bruker DRX 300 spectrometers (300 MHz), ¹³C NMR spectra on Bruker DRX 500, Bruker DRX 300, and Bruker AC 300 spectrometers. The solvent used for all NMR spectra was CDCl₃ with Me₄Si as a internal standard. The assignments of quaternary carbon nuclei, CH, CH₂ and CH₃ groups were made by using 135-DEPT spectra. Mass spectra were recorded on Jeol JMS-700 and Finnigan TSQ 700 spectrometers. IR spectra were recorded on a Bruker Vector 22 FT-IR spectrometer as KBr discs. UV–vis spectra were recorded on a Hewlett Packard HP8452 A Diode Array spectrophotometer in CH₂Cl₂ solution. Fluorescence spectra were recorded on a Perkin Elmer LS-55 spectrometer. Elemental analyses were carried out in the microanalytical laboratories of the Institute of Pharmacy, Heinrich-Heine-Universität Düsseldorf. Melting points were determined on a Büchi Melting Point B-540 apparatus and are uncorrected.

For the measurements of the optical properties compounds **8** and **10** were dissolved in CH_2CI_2 for the preparation of films on glass by slow evaporation. For the UV–vis measurements a thin film was dropcasted onto one side of the inner surface of a common glass cuvette. For the fluorescence measurements a thin film was dropcasted onto an object slide. The slide was placed into the cavity in a perpendicular orientation and with a 45° angle with respect to the optical pathway of a fluorescence spectrometer. The excitation wavelength was chosen in accordance to the longest absorption wavelength maximum as determined from the film UV–vis spectra.

S4

2. General Procedure for the synthesis of 1-styryleth-2-enylideneindolones 8

In a flame-dried and argon-flushed Schlenk tube the iodo phenylanilide **5a** (361 mg, 1.00 mmol), alkyne **6** (1.10 mmol), and dry, degassed THF (5 mL) were placed (for experimental details see Table 1). After the addition of $PdCl_2(PPh_3)_2$ (35 mg, 0.05 mmol), and Cul (10 mg, 0.05 mmol), diisopropylethylamine (1.7 mL, 10 mmol) was added and the reaction mixture was stirred at rt for 16 h. Then, Fischer's base (**7**, 346 mg, 2.00 mmol), and EtOH (2 mL) were added. The sealed reaction vessel was placed in a thermostatted oil bath at 80 °C and stirred for 48 h. After cooling to rt the solvents were removed in vacuo and the residue was chromatographed on silica gel (hexane/EtOAc) to give the 1-styryleth-2-enylideneindolones **8** as violet solids.

Table S1: Experimental details of the three-component synthesis of the 1-styryleth-2enylideneindolones **8**.

Entry	Alkyne 6	1-Styryleth-2-
		enylideneindolones 8
		(isolated yield)
1	112 mg (1.10 mmol) of phenylacetylene (6a)	473 mg (93%) of 8a
2	145 mg (1.10 mmol) of 4-methoxyphenylacetylene (6b)	510 mg (81%) of 8b
3	150 mg (1.10 mmol) of 4-chlorophenylacetylene (6c)	441 mg (82%) of 8c
4	140 mg (1.10 mmol) of 4-cyanophenylacetylene (6d)	464 mg (87%) of 8d
5	162 mg (1.10 mmol) of 4-nitrophenylacetylene (6e)	504 mg (91%) of 8e

2.1. 3-(1,3-Diphenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-1-

methylindolin-2-one (8a)

After chromatography on silica gel (hexane/ethylacetate 9:1) compound **8a** was obtained as a violet solid (473 mg, 0.93 mmol, 93%), dr = 56:44, Mp 181 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.61-1.74 (m, 6 H), 3.19-3.47 (m, 6 H), 4.97 (s, 0.56 H), 5.71 (s, 0.56 H), 5.82 (d, *J* = 7.7 Hz, 0.56 H), 6.39-7.43 (m, 16 H), 7.58 (d, *J* = 6.3 Hz, 0.56 H); additional signals for the minor diastereomer: δ 4.68 (s, 0.44 H), 5.42 (s, 0.44 H), 6.26 (d, *J* = 7.2 Hz, 0.44 H), 7.66-7.72 (m, 0.44 H). ¹³C NMR (125 MHz, CDCl₃): δ 25.4 (CH₃), 36.3 (CH₃), 37.4 (CH₃), 49.1 (C_{quat}), 106.9 (CH), 107.4 (CH), 114.7 (CH₂), 120.1 (C_{quat}), 120.4 (CH), 120.7 (CH), 121.6 (CH), 122.1 (CH), 123.9 (C_{quat}), 124.9 (C_{quat}), 126.9 (CH), 127.3 (CH), 127.5 (CH), 127.7 (CH), 128.1 (CH), 128.8

(CH), 131.2 (CH), 132.5 (CH), 140.6 (C_{quat}), 140.7 (C_{quat}), 141.1 (C_{quat}), 141.3 (C_{quat}), 141.6 (C_{quat}), 145.2 (C_{quat}), 145.3 (C_{quat}), 154.4 (C_{quat}), 165.3 (C_{quat}); additional signals for the minor diastereomer: δ 26.2 (CH₃), 49.4 (C_{quat}), 107.1 (CH), 107.9 (CH), 119.7 (CH₂), 121.1 (CH), 121.7 (CH), 122.4 (CH), 124.5 (C_{quat}), 125.6 (C_{quat}), 126.1 (CH), 127.0 (CH), 127.4 (CH), 127.6 (CH), 127.9 (CH), 128.2 (CH), 129.9 (CH), 131.5 (CH), 145.5 (C_{quat}), 154.8 (C_{quat}), 167.6 (C_{quat}). EI MS (70 eV, *m/z* (%)): 508 ([M]⁺, 100), 493 ([M – CH₃]⁺, 31), 349 ([C₂₅H₁₉NO]⁺, 16), 158 (32). IR (KBr): \tilde{v} = 2981, 2993, 2873, 1676, 1604, 1560, 1506, 1496, 1417, 1373, 1364, 1305, 1261, 1234, 1089, 1074, 1049, 1018, 1012, 1001, 918, 873, 743, 731, 698, 673, 648 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 290 nm (33200), 330 (20100), 510 (23600). Anal. calcd. for C₃₆H₃₂N₂O · 0.02 CHCl₃ (508.7 + 2.4): C 83.29, H 6.22, N 5.38; Found: C 83.20, H 6.37, N 5.35.

2.2. 3-(3-(4-Methoxyphenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-

en-1-ylidene)-1-methylindolin-2-one (8b)

After chromatography on silica gel (hexane/ethylacetate 9:1) compound 8b was obtained as a violet solid (510 mg, 0.81 mmol, 81%), dr = 62:38, Mp 226 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.56-1-69 (m, 6 H), 3.14-3.28 (m, 6 H), 3.70-3.74 (m, 3 H), 4.86 (s, 0.62 H), 5.58 (s, 0.62 H), 5.81 (d, J = 7.7 Hz, 0.62 H), 6.25-7.69 (m, 16.38 H); additional signals for the minor diastereomer: δ 4.59 (s, 0.38 H), 5.32 (s, 0.38 H), 6.25 (m, 0.38 H). ¹³C NMR (125 MHz, CDCl₃): δ 24.6 (CH₃), 26.0 (CH₃), 36.3 (CH₃), 49.1 (C_{quat}), 55.4 (CH₃), 106.2 (C_{quat}), 106.9 (CH), 113.2 (CH), 115.9 (CH₂), 120.0 (C_{quat}), 120.4 (CH), 121.6 (CH), 123.0 (CH), 124.5 (C_{quat}), 126.1 (CH), 127.4 (CH), 127.9 (CH), 128.2 (CH), 128.7 (CH), 129.2 (CH), 129.7 (CH), 130.0 (CH), 132.4 (C_{quat}), 134.6 (C_{quat}), 135.7 (C_{quat}), 137.2 (C_{quat}), 140.6 (C_{quat}), 141.1 (C_{quat}), 143.5 (C_{quat}), 145.6 (C_{quat}), 159.1 (C_{quat}), 165.4 (C_{quat}); signals for the minor diastereomer: δ 25.3 (CH₃), 26.2 (CH₃), 37.4 (CH₃), 55.6 (CH₃), 49.4 (C_{quat}), 107.2 (C_{quat}), 107.8 (CH), 114.6 (CH), 118.1 (CH₂), 121.1 (CH), 122.1 (CH), 122.5 (CH), 123.5 (C_{quat}), 123.6 (CH), 125.0 (C_{quat}), 127.6 (CH), 128.1 (CH), 128.6 (CH), 128.8 (CH), 129.4 (CH), 129.8 (CH), 131.1 (CH), 132.6 (C_{auat}), 134.5 (C_{guat}), 137.0 (C_{guat}), 137.4 (C_{quat}), 140.8 (C_{quat}), 141.3 (C_{quat}), 144.6 (C_{quat}), 154.7 (C_{quat}), 161.1 (C_{quat}), 167.3 (C_{quat}). EI MS: (70 eV, *m/z* (%)): 538 ([M]⁺, 26), 463 ([C₃₁H₃₁N₂O₂]⁺, 25), 365

([C₂₅H₁₉NO₂]⁺, 100), 297 ([C₂₂H₁₇O]⁺, 46). IR (KBr): $\tilde{v} = 3051$, 3005, 2953, 2929, 2860, 1654, 1602, 1506, 1469, 1454, 1438, 1409, 1375, 1352, 1336, 1288, 1261, 1238, 1205, 1180, 1138, 1122, 1089, 1076, 1053, 1024, 958, 925, 898, 839, 815, 802, 746, 732, 725, 702, 663, 652 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 267 nm (56300), 327 (25800), 513 (24200). HRMS (EI) calcd. for (C₃₇H₃₄N₂O₂): 538.2620; Found: 538.2616.

2.3. 3-(3-(4-Chlorophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-

1-ylidene)-1-methylindolin-2-one (8c)

After chromatography on silica gel (hexane/ethylacetate 9:1) compound 8c was obtained as a violet solid (441 mg, 0.82 mmol, 82%), dr = 56:44, Mp 228 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.46-1.58 (m, 6 H), 2.75-3.29 (m, 6 H), 4.92 (0.56 H), 5.61 (s, 0.56 H), 5.78 (s, 0.56 H), 6.25 (d, J = 7.8 Hz, 0.56 H), 6.40-6.56 (m, 2 H), 6.60-6.67 (m, 1 H), 6.80-7.29 (m, 11 H), 7.32 (d, J = 7.4 Hz, 0.56 H); additional signals for the minor diastereomer: δ 4.61 (s, 0.44 H), 5.33 (s, 0.44 H), 6.73 (d, J = 7.5 Hz, 0.88 H), 7.49 (d, J = 7.1 Hz, 0.44 H). ¹³C NMR (75 MHz, CDCl₃): δ 25.2 (CH₃), 26.2 (CH₃), 36.2 (CH₃), 49.4 (C_{auat}), 106.8 (C_{auat}), 107.1 (CH), 107.9 (CH), 115.0 (CH₂), 120.4 (CH), 121.3 (CH), 122.2 (CH), 124.3 (C_{quat}), 124.8 (C_{quat}), 126.4 (CH), 127.4 (CH), 127.8 (CH), 128.0 (CH), 128.9 (CH), 129.5 (CH), 130.0 (CH), 131.2 (CH), 132.9 (C_{quat}), 133.2 (C_{quat}), 140.2 (C_{quat}), 140.4 (C_{quat}), 140.5 (C_{quat}), 141.4 (C_{guat}), 144.4 (C_{guat}), 145.5 (C_{guat}), 153.9 (C_{guat}), 165.4 (C_{guat}); additional signals for the minor diastereomer: δ26.3 (CH₃), 37.4 (CH₃), 50.1 (C_{quat}), 107.2 (C_{quat}), 107.2 (CH), 120.1 (CH₂), 120.8 (CH), 121.6 (CH), 122.5 (CH), 126.5 (CH), 127.5 (CH), 128.2 (CH), 128.3 (CH), 128.4 (CH), 128.6 (CH), 129.0 (CH), 129.5 (CH), 132.5 (CH), 154.4 (C_{guat}), 167.5 (C_{guat}). EI MS: (70 eV, *m/z* (%)): 544 ([³⁷CI-M]⁺, 23), 542 $([^{35}CI-M]^+, 100), 382 ([C_{25}H_{18}^{35}CINO]^+, 22), 158 ([C_{11}H_{12}N]^+, 38).$ IR (KBr): $\tilde{v} = 3080,$ 3053, 2968, 2924, 2862, 1654, 1598, 1541, 1471, 1456, 1438, 1413, 1373, 1352, 1336, 1288, 1263, 1236, 1203, 1138, 1122, 1085, 1074, 1024, 1009, 958, 925, 893, 846, 825, 799, 732, 711, 693, 650, 619 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 259 nm (40200), 513 (17900). HRMS: calcd. for $C_{36}H_{31}^{35}CIN_2O$: 542.2125; Found: 542.2119. Anal. calcd. for C₃₆H₃₁ClN₂O (543.1): C 79.61, H 5.75, N 5.16; Found: C 79.80, H 6.02, N 5.16.

2.4. 4-(4-(1-Methyl-2-oxoindolin-3-ylidene)-4-phenyl-3-(1,3,3-trimethylindolin-2-

ylidene)but-1-en-2-yl)benzonitrile (8d)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound 8d was obtained as a violet solid (464 mg, 0.87 mmol, 87%), dr = 52:48, Mp 240 °C. ¹H NMR (500 MHz, CDCl₃): δ1.52-1.63 (m, 6 H), 3.12-3.36 (m, 6 H), 5.14 (s, 0.52 H), 5.79 (s, 0.52 H), 5.86 (d, J = 7.7 Hz, 0.52 H), 6.43-7.49 (m, 15 H), 7.54 (d, J = 7.4 Hz, 0.52 H); additional signals for the minor diastereomer: δ 4.77 (s, 0.48 H), 5.47 (s, 0.48 H), 6.24 (d, J = 7.4 Hz, 0.48 H), 7.60 (d, J = 7.4 Hz, 0.48 H). ¹³C NMR (125 MHz, CDCl₃): δ 25.1 (CH₃), 26.4 (CH₃), 36.2 (CH₃), 37.4 (CH₃), 49.5 (C_{quat}), 107.2 (CH), 107.4 (CH), 108.8 (C_{quat}), 116.7 (CH₂), 119.5 (C_{quat}), 120.6 (CH), 121.5 (CH), 121.8 (CH), 122.0 (CH), 123.6 (C_{quat}), 124.6 (C_{quat}), 125.4 (C_{quat}), 126.5 (CH), 128.1 (CH), 128.5 (CH), 129.3 (CH), 131.1 (CH), 131.8 (CH), 132.4 (CH), 140.2 (C_{quat}), 141.0 (C_{quat}), 144.4 (C_{quat}), 145.3 (C_{quat}), 146.1 (C_{quat}), 147.4 (C_{quat}), 148.8 (C_{quat}) , 153.6 (C_{quat}) , 165.4 (C_{quat}) ; additional signals for the minor diastereomer: δ26.2 (CH₃), 29.4 (CH₃), 36.3 (CH₃), 50.3 (C_{quat}), 107.3 (CH), 108.0 (CH), 110.2 (C_{quat}), 120.5 (C_{quat}), 121.0 (CH), 121.7 (CH), 122.1 (CH), 122.4 (CH₂), 124.2 (C_{quat}), 126.7 (CH), 127.6 (CH), 127.9 (CH), 128.7 (CH), 130.2 (CH), 131.9 (CH), 140.3 (C_{quat}) , 147.5 (C_{quat}) . EI MS: (70 eV, m/z (%)): 533 $([M]^+$, 100), 518 $([M - CH_3]^+$, 24), 374 ($[C_{26}H_{18}N_2O]^+$, 18), 158 (30). IR (KBr): $\tilde{\nu}$ = 3053, 2968, 2924, 2862, 2225, 1658, 1598, 1544, 1471, 1456, 1438, 1415, 1371, 1352, 1336, 1307, 1286, 1263, 1236, 1203, 1159, 1138, 1122, 1091, 1074, 1014, 956, 914, 893, 860, 848, 748, 736, 694, 653 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 265 nm (51300), 298 (39700), 517 (21500). Anal. calcd. for C₃₇H₃₁N₃O (533.7): C 83.27, H 5.86, N 7.87; Found: C 83.10, H 5.95, N 7.73.

2.5. 1-Methyl-3-(3-(4-nitrophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-

ylidene)but-3-en-1-ylidene)indolin-2-one (8e)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound **8e** was obtained as a violet solid (504 mg, 0.91 mmol, 91%), dr = 52:48, Mp 223 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.59-1.59 (m, 6 H), 2.77 (s, 1.56 H), 3.11 (s, 1.56 H), 5.14 (s, 0.52 H), 5.79 (s, 0.52 H), 5.81 (d, *J* = 7.6 Hz, 0.52 H), 6.41-6.47 (m, 1 H),

6.57 (d, J = 7.7 Hz, 0.52 H), 6.62-6.69 (m, 2 H), 6.76 (d, J = 7.7 Hz, 0.52 H), 6.89-7.30 (m, 8 H), 7.45 (d, J = 8.5 Hz, 1.04 H), 7.92 (d, J = 8.7 Hz, 1.04 H); additional signals for the minor diastereomer: δ 3.21 (s, 1.44 H), 3.27 (s, 1.44 H), 4.76 (s, 0.48 H), 5.47 (s, 0.48 H), 6.20 (d, J = 7.3 Hz, 0.48 H), 6.53 (d, J = 7.4 Hz, 0.48 H), 6.90 (m, 0.48 H), 7.83 (d, J = 8.6 Hz, 0.96 H). ¹³C NMR (125 MHz, CDCl₃): δ 26.5 (CH₃), 26.6 (CH₃), 36.5 (CH₃), 37.6 (CH₃), 49.7 (C_{auat}), 107.4 (CH), 107.6 (CH), 108.2 (C_{quat}), 117.5 (CH₂), 120.8 (CH), 121.7 (CH), 122.0 (CH), 122.4 (CH), 123.6 (CH), 124.3 (C_{auat}), 127.0 (CH), 128.1 (CH), 128.7 (CH), 128.9 (CH), 129.5 (CH), 132.2 (CH), 140.4 (C_{auat}), 140.5 (C_{auat}), 141.2 (C_{auat}), 144.4 (C_{auat}), 145.5 (C_{auat}), 147.0 (C_{quat}), 147.2 (C_{quat}), 148.3 (C_{quat}), 148.7 (C_{quat}), 149.7 (C_{quat}), 168.1 (C_{quat}); additional signals for the minor diastereomer: δ 50.5 (C_{quat}), 109.4 (C_{quat}), 124.7 (C_{quat}), 107.5 (CH), 117.1 (CH), 121.2 (CH), 121.9 (CH), 122.2 (CH), 122.7 (CH), 123.5 (CH₂), 126.8 (CH), 127.9 (CH), 128.5 (CH), 129.0 (CH), 130.4 (CH), 131.2 (CH), 132.6 (CH). EI MS: (70 eV, m/z (%)): 553 ([M]⁺, 100), 538 ([C₃₅H₂₈N₃O₃]⁺, 22), 173 $([C_{10}H_7NO_2]^+, 10), 158 ([C_{10}H_8NO]^+, 41), 160 ([C_9H_6NO_2]^+, 12).$ IR (KBr): $\tilde{v} = 3082,$ 3055, 2976, 2926, 2862, 1656, 1598, 1544, 1512, 1471, 1458, 1438, 1438, 1415, 1373, 1336, 1309, 1286, 1263, 1236, 1203, 1159, 1138, 1122, 1091, 1074, 1053, 1024, 958, 916, 893, 871, 858, 827, 767, 734, 711, 700, 678, 650, 617 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 317 nm (29300), 522 (14900). Anal. calcd. for C₃₆H₃₁N₃O₃ (553.7): C 78.10, H 5.64, N 7.59; Found: C 77.87, H 5.89, N 7.31.

3. General Procedure for the synthesis of 4-(1,3,3-trimethylindolin-2-

ylidene)but-2-en-1-ylideneindolones 10

In a flame-dried and argon-flushed Schlenk tube iodo phenylanilide **5** (1.00 mmol), alkyne **6** (1.10 mmol), and dry, degassed THF (5 mL) were placed (for experimental details see Table 2). After the addition of PdCl₂(PPh₃)₂ (35 mg, 0.05 mmol) and Cul (10 mg, 0.05 mmol), diisopropylethylamine (1.7 mL, 10 mmol) was added and the reaction mixture was stirred at rt for 16 h. Then, the enamine **7** (2.00 mmol) or the benzothiazolium salt **9** (2.00 mmol and 1.1 mmol of diisopropylethylamine), and EtOH (2 mL) were added. The sealed reaction vessel was placed in a thermostatted oil bath at 80 °C and stirred for 48 h. After cooling to rt the solvents were removed in vacuo and the residue was chromatographed on silica gel (hexane/EtOAc) to give the 4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylideneindolones **10** as bluish-black or darkgreen solids.

Entry	iodo phenylanilide 5	Alkyne 6	Enamine 7 or	4-(1,3,3-
			benzothiazolium salt 9	Trimethylindolin-
				2-ylidene)but-2-
				en-1-ylidene-
				indolones 10
				(isolated yield)
1	501 mg (1.00 mmol) of	112 mg (1.10 mmol) of	346 mg (2.00 mmol) of	636 mg (98%)
	5b	6a	7	of 10a
2	501 mg (1.00 mmol) of	162 mg (1.10 mmol) of	346 mg (2.00 mmol) of	597 mg (90%)
	5b	6e	7	of 10b
3	501 mg (1.00 mmol) of	150 mg (1.10 mmol) of	346 mg (2.00 mmol) of	532 mg (78%)
	5b	6c	7	of 10c
4	501 mg (1.00 mmol) of	140 mg (1.10 mmol) of	346 mg (2.00 mmol) of	553 mg (82%)
	5b	6d	7	of 10d
5	536 mg (1.00 mmol) of	174 mg (1.10 mmol) of	346 mg (2.00 mmol) of	606 mg (82%)
	5c	4- <i>t-</i> butyl	7	of 10e
		phenylacetylene (6f)		
6	536 mg (1.00 mmol) of	150 mg (1.10 mmol) of	346 mg (2.00 mmol) of	660 mg (92%)
	5c	6c	7	of 10f
7	536 mg (1.00 mmol) of	140 mg (1.10 mmol) of	346 mg (2.00 mmol) of	637 mg (90%)
	5c	6d	7	of 10g
8	501 mg (1.00 mmol) of	150 mg (1.10 mmol) of	582 mg (2.00 mmol) of	448 mg (84%)
	5a	6c	9 °	of 10h

Table S2: Experimental details of the three-component synthesis of the 4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylideneindolones **10**.

^cDiisopropylamine was added for in situ generation of the *S*,*N*-ketene acetal.

3.1. (Z)-3-((2Z,4E)-1,3-Diphenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-

ylidene)-1-tosylindolin-2-one (10a)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound **10a** was obtained as a bluish-black solid (636 mg, 0.98 mmol, 98%), Mp 141 °C. ¹H NMR (300 MHz, CDCl₃): δ 0.85 (s, 6 H), 2.30 (s, 3 H), 2.31 (s, 3 H), 4.68 (d, *J* = 1.4 Hz, 1 H), 5.70 (d, *J* = 7.3 Hz, 1 H), 6.27 (d, *J* = 7.8 Hz, 1 H), 6.56 (t, *J* = 7.8 Hz, 1 H), 6.74 (dt, *J* = 7.3, 0.7 Hz, 1 H), 6.90-7.22 (m, 12 H), 7.32 (dd, *J* = 7.7, 1.8 Hz, 2 H), 7.66 (d,

 $J = 1.4 \text{ Hz}, 1 \text{ H}), 7.80 \text{ (dd, } J = 8.2, 2.2 \text{ Hz}, 1 \text{ H}), 7.86 \text{ (d, } J = 7.8 \text{ Hz}, 1 \text{ H}), 7.92 \text{ (d, } J = 8.4 \text{ Hz}, 2 \text{ H}). ¹³C NMR (75 MHz, CDCl₃): <math>\delta$ 21.9 (CH₃), 29.4 (CH₃), 34.4 (CH₃), 46.7 (C_{quat}), 94.3 (CH), 107.4 (CH), 113.0 (CH), 118.2 (C_{quat}), 120.8 (CH), 121.8 (CH), 122.7 (CH), 123.4 (CH), 124.6 (CH), 125.4 (C_{quat}), 127.3 (CH), 127.8 (CH), 127.9 (CH), 128.1 (CH), 128.7 (CH), 128.9 (CH), 129.1 (CH), 129.3 (CH), 129.5 (CH), 129.8 (CH), 136.4 (C_{quat}), 137.1 (C_{quat}), 138.2 (C_{quat}), 140.7 (C_{quat}), 144.4 (C_{quat}), 145.1 (C_{quat}), 146.4 (C_{quat}), 153.9 (C_{quat}), 155.9 (C_{quat}), 161.8 (C_{quat}), 165.9 (C_{quat}). EI MS: (70 eV, *m/z* (%)): 648 ([M]⁺, 4), 493 ([C₃₅H₂₉N₂O]⁺, 6), 334 (31), 321 (11), 306 (11), 291 (12), 222 (11), 218 (37), 144 (33), 142 (47), 132 (27), 127 (22), 117 (16), 105 (53), 91 (100). IR (KBr): $\tilde{v} = 3051$, 2964, 2924, 2862, 1691, 1577, 1504, 1485, 1465, 1454, 1442, 1400, 1367, 1334, 1315, 1290, 1246, 1217, 1176, 1161, 1130, 1116, 1085, 1076, 1060, 1018, 1001, 960, 943, 925, 873, 854, 815, 773, 742, 725, 686, 663, 651, 611 cm⁻¹. UV/Vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 290 \text{ nm}$ (20400), 587 (33600). Anal. calcd. for C₄₂H₃₆N₂O₃S (648.8): C 77.75, H 5.59, N 4.32; Found: C 77.58, H 5.41, N 4.29.

3.2. (Z)-3-((2Z,4E)-3-(4-Aminophenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-

ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10b)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound **10b** was obtained as a bluish black solid (597 mg, 0.90 mmol, 90%), Mp 175 °C. ¹H NMR (500 MHz, CDCl₃): δ 0.86 (s, 6 H), 2.33 (s, 3 H), 2.43 (s, 3 H), 3.77 (s, 2 H), 4.66 (s, 1 H), 5.63 (d, J = 7.7 Hz, 1 H), 6.33 (d, J = 7.8 Hz, 1 H), 6.51 (d, J = 8.5 Hz, 2 H), 6.57 (t, J = 8.2 Hz, 1), 6.77 (t, J = 7.4 Hz, 1 H), 6.95 (d, J = 7.4 Hz, 1 H), 6.99 (t, J = 8.4 Hz, 2 H), 7.03 (dt, J = 7.8, 1.0 Hz, 2 H), 7.17 (d, J = 8.5 Hz, 2 H), 7.19 (s, 1 H), 7.20-7.24 (m, 4 H), 7.69 (d, J = 1.2 Hz, 1 H), 7.88 (d, J = 8.1 Hz, 1 H), 7.95 (d, J = 8.3 Hz, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 22.1 (CH₃), 29.6 (CH₃), 34.6 (CH₃), 46.9 (C_{quat}), 95.0 (CH), 107.5 (CH), 113.1 (CH), 115.3 (CH), 116.8 (C_{quat}), 120.9 (CH), 122.0 (CH), 122.6 (CH), 122.9 (CH), 123.5 (CH), 126.1 (C_{quat}), 126.9 (CH), 128.0 (CH), 136.8 (C_{quat}), 136.9 (C_{quat}), 138.5 (C_{quat}), 141.2 (C_{quat}), 145.2 (C_{quat}), 146.7 (C_{quat}), 148.1 (C_{quat}), 155.1 (C_{quat}), 156.9 (C_{quat}), 162.2 (C_{quat}), 166.1 (C_{quat}). El MS: (70 eV, m/z (%)): 663 ([M]⁺, 21), 376 (17), 361 (55), 349 (21), 287

(16), 180 (21), 173 (43), 158 (100). IR (KBr): $\tilde{v} = 3375$, 2960, 2920, 2362, 1631, 1602, 1573, 1467, 1438, 1419, 1367, 1332, 1317, 1292, 1269, 1246, 1159, 1122, 1074, 1056, 1020, 981, 960, 943, 923, 885, 862, 812, 771, 740, 702, 688, 659, 640, 612 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 276 nm (51400), 592 (57500). Anal. calcd. for C₄₂H₃₇N₃O₃S (663.8): C 75.99, H 5.62, N 6.33; Found: C 75.97, H 5.58, N 6.19.

3.3. (Z)-3-((2Z,4E)-3-(4-Chlorphenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-

yliden)but-2-en-1-yliden)-1-tosylindolin-2-on (10c)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound 10c was obtained as a bluish black solid (532 mg, 0.78 mmol, 78%), Mp 143 °C. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta 0.91 \text{ (s, 6 H)}, 2.39 \text{ (s, 3 H)}, 2.44 \text{ (s, 3 H)}, 4.71 \text{ (d, } J = 1.5 \text{ Hz}, 1 \text{ (d, }$ H), 5.78 (d, J = 7.4 Hz, 1 H), 6.39 (d, J = 7.8 Hz, 1 H), 6.65 (t, J = 7.8 Hz, 1 H), 6.83 (dt, J = 7.4, 0.7 Hz, 1 H), 7.00 (d, J = 7.4 Hz, 1 H), 7.08 (t, J = 7.7 Hz, 2 H), 7.22-7.36 (m, 11 H), 7.71 (d, J = 1.5 Hz, 1 H), 7.93 (d, J = 8.0 Hz, 1 H), 8.00 (d, J = 8.4 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 21.9 (CH₃), 29.4 (CH₃), 34.6 (CH₃), 46.8 (C_{quat}), 93.7 (CH), 107.5 (CH), 113.1 (CH), 118.8 (C_{quat}), 121.0 (CH), 121.8 (CH), 122.9 (CH), 123.5 (CH), 124.8 (CH), 125.2 (C_{quat}), 127.7 (CH), 127.9 (CH), 128.1 (CH), 128.9 (CH), 129.0 (CH), 129.3 (CH), 129.6 (CH), 129.9 (CH), 130.1 (CH), 134.9 (C_{auat}), 136.4 (C_{auat}), 137.3 (C_{auat}), 138.2 (C_{auat}), 140.5 (C_{auat}), 142.9 (C_{auat}), 145.2 (C_{quat}), 146.3 (C_{quat}), 152.0 (C_{quat}), 155.5 (C_{quat}), 161.9 (C_{quat}), 165.9 (C_{quat}). EI MS: $(70 \text{ eV}, m/z \text{ (\%)}): 684 ([^{37}\text{CI-M}]^+, 9), 682 ([^{35}\text{CI-M}]^+, 37), 527 ([C_{35}\text{H}_{28}\text{CIN}_2\text{O}]^+, 5), 380 ($ $[C_{25}H_{12}CINO]^+$, 100). IR (KBr): $\tilde{v} = 2960$, 2926, 2868, 1703, 1581, 1514, 1487, 1463, 1454, 1442, 1377, 1336, 1317, 1292, 1247, 1176, 1159, 1116, 1085, 1076, 1056, 1018, 1012, 958, 939, 925, 871, 777, 815, 744, 732, 721, 704, 683, 657, 632, 611 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 257 nm (66400), 557 (30200). HRMS calcd. for C₄₂H₃₅³⁵CIN₂O₃S: 682.2057; Found: 682.2051. Anal. calcd. for C₄₂H₃₅CIN₂O₃S (683.3): C 73.83, H 5.16, N 4.10; Found: C 73.63, H 5.45, N 3.87.

3.4. 4-((1Z,2Z,4E)-4-(2-Oxo-1-tosylindolin-3-ylidene)-4-phenyl-1-(1,3,3-trimethyl-

indolin-2-ylidene)but-2-en-2-yl)benzonitrile (10d)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound 10d was obtained as a bluish black solid (553 mg, 0.82 mmol, 82%), Mp 233 °C. ¹H NMR (300 MHz, CDCl₃): δ0.91 (s, 6 H), 2.39 (s, 3 H), 2.41 (s, 3 H), 4.71 (s, 1 H), 5.78 (d, J = 7.8 Hz, 1 H), 6.39 (d, J = 7.8 Hz, 1 H), 6.64 (t, J = 7.7 Hz, 1 H), 6.83 (t, J = 7.4 Hz, 1 H), 7.00 (d, J = 7.2 Hz, 1 H), 7.08 (t, J = 7.7 Hz, 2 H), 7.2-7.4 (m, 11 H), 7.70 (s, 1 H), 7.93 (d, J = 8.2 Hz, 1 H), 8.00 (d, J = 8.00 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 21.9 (CH₃), 29.4 (CH₃), 34.7 (CH₃), 46.8 (C_{quat}), 92.8 (CH), 107.7 (CH), 112.1 (C_{quat}), 113.2 (CH), 119.0 (C_{quat}), 120.1 (C_{quat}), 121.2 (CH), 121.8 (CH), 123.2 (CH), 123.7 (CH), 124.8 (C_{quat}), 126.3 (CH), 128.0 (CH), 128.1 (CH), 128.2 (CH), 129.2 (CH), 129.3 (CH), 129.6 (CH), 129.7 (CH), 129.9 (CH), 132.5 (CH), 136.2 (C_{quat}), 137.6 (C_{quat}), 139.9 (C_{quat}), 140.1 (C_{quat}), 145.3 (C_{quat}), 146.2 (C_{quat}), 149.1 (C_{auat}), 150.3 (C_{auat}), 154.6 (C_{auat}), 162.0 (C_{auat}), 166.0 (C_{auat}). EI MS: (70 eV, m/z (%)): 673 ([M]⁺, 45), 518 ([C₃₆H₂₈N₃O]⁺, 16), 371 (15), 172 (20), 159 (100). IR (KBr): *v* = 2980, 2972, 2887, 2225, 1714, 1624, 1591, 1539, 1523, 1498, 1463, 1456, 1442, 1425, 1379, 1363, 1340, 1290, 1244, 1213, 1176, 1159, 1126, 1114, 1083, 1072, 1054, 1020, 1006, 968, 954, 939, 927, 858, 900, 840, 815, 779, 752, 706, 684, 657, 644, 617 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 269 nm (36100), 375 (15200), 592 (34000). Anal. calcd. for C₄₃H₃₅N₃O₃S (673.8): C 76.65, H 5.24, N 6.24; Found: C 76.43, H 5.37, N 6.08.

3.5. (Z)-3-((2Z,4E)-3-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-4-(1,3,3-trimethyl-

indolin-2-ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10e)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound **10e** was obtained as a bluish black solid (606 mg, 0.82 mmol, 82%), Mp 174 °C. ¹H NMR (300 MHz, CDCl₃): δ 0.98 (s, 6 H), 1.30 (s, 9 H), 2.39 (s, 3 H), 2.42 (s, 3 H), 4.67 (d, J = 1.3 Hz, 1 H), 5.91 (d, J = 7.4 Hz, 1 H), 6.39 (d, J = 7.8 Hz, 1 H), 6.70 (dt, 8.0, 1.0 Hz, 1 H), 6.85 (dt, J = 7.4, 0.7 Hz, 1 H), 7.03 (dd, 7.4, 0.7 Hz, 1 H), 7.06-7.13 (m, 2 H), 7.25-7.35 (m, 10 H), 7.71 (d, J = 1.3 Hz, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.99 (d,

3.6. (Z)-3-((2Z,4E)-1,3-Bis(4-chlorophenyl)-4-(1,3,3-trimethylindolin-2-

ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10f)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound **10**f was obtained as a bluish black solid (660 mg, 0.92 mmol, 92%), Mp 139 °C. ¹H NMR (500 MHz, CDCl₃): δ 0.98 (s, 6 H), 2.39 (s, 3 H), 2.44 (s, 3 H), 4.64 (s, 1 H), 5.94 (d, *J* = 7.7 Hz, 1 H), 6.41 (d, *J* = 7.7 Hz, 1 H), 6.71 (t, *J* = 7.3 Hz, 1 H), 6.83 (d, *J* = 7.8 Hz, 1 H), 6.86 (t, *J* = 7.2 Hz, 1 H), 7.04-7.05 (m, 2 H), 7.08-7.13 (m, 3 H), 7.19 (d, *J* = 6.6 Hz, 1 H), 7.24-7.32 (m, 6 H), 7.67 (s, 1 H), 7.95 (d, *J* = 8.1 Hz, 1 H), 7.99 (d, *J* = 8.3 Hz, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 21.9 (CH₃), 29.2 (CH₃), 34.7 (CH₃), 46.9 (C_{quat}), 93.6 (CH), 107.7 (CH), 108.2 (CH), 113.2 (CH), 118.7 (C_{quat}), 121.2 (CH), 121.9 (CH), 122.5 (CH), 122.7 (CH), 122.8 (CH), 123.7 (CH), 124.4 (CH), 124.9 (C_{quat}), 136.3 (C_{quat}), 137.4 (C_{quat}), 138.1 (C_{quat}), 138.7 (C_{quat}), 135.0 (C_{quat}), 145.3 (C_{quat}), 146.2 (C_{quat}), 152.1 (C_{quat}), 153.7 (C_{quat}), 162.4 (C_{quat}), 165.8 (C_{quat}). EI MS: (70 eV, *m*/*z* (%)): 716 ([³⁵Cl³⁵Cl-M]⁺, 2), 429 ([C₂₇H₂₁³⁵Cl₂N]⁺, 25), 287 ([C₂₁H₂₁N]⁺, 19), 200 ([C₁₄H₁₈N]⁺, 14), 186 ([C₁₃H₁₆N, 25), 173 (C₁₂H₁₅N,

25), 160 (100), 146 (35), 132 (37). IR (KBr): \tilde{v} = 3053, 2962, 2926, 2860, 1707, 1695, 1577, 1483, 1465, 1454, 1379, 1334, 1290, 1315, 1244, 1176, 1159, 1126, 1118, 1085, 1074, 1056, 1010, 939, 923, 869, 827, 815, 777, 744, 705, 678, 655 cm⁻¹. UV/Vis (CH₂Cl₂): λ_{max} (ε) = 591 nm (28700). Anal. calcd. for C₄₂H₃₄Cl₂N₂O₃S (717.7): C 70.29, H 4.77, N 3.90; Found: C 70.02, H 5.00, N 3.82.

3.7. 4-((1Z,2Z,4E)-4-(4-Chlorophenyl)-4-(2-oxo-1-tosylindolin-3-ylidene)-1-(1,3,3-

tri-methylindolin-2-ylidene)but-2-en-2-yl)benzonitrile (10g)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound 10g was obtained as a bluish black solid (637 mg, 0.90 mmol, 90%), Mp 191 °C. ¹H NMR (300 MHz, CDCl₃): δ 0.99 (s, 6 H), 2.39 (s, 3 H), 2.42 (s, 3 H), 4.63 (d, J = 1.5 Hz, 1 H), 5.99 (d, J = 7.3 Hz, 1 H), 6.40 (d, J = 7.7 Hz, 1 H), 6.73 (dt, J = 8.0, 1.1 Hz, 1 H), 6.88 (dt, J = 7.4, 1.0 Hz, 1 H), 7.04 (dd, J = 7.4, 0.8 Hz, 1 H), 7.08-7.13 (m, 6 H), 7.25-7.36 (m, 6 H), 7.70 (d, J = 1.5 Hz, 1 H), 7.95 (d, J = 8.5 Hz, 1 H), 7.99 (d, J = 8.4 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 21.9 (CH₃), 29.2 (CH₃), 34.7 (CH₃), 46.9 (C_{quat}), 92.7 (CH), 107.8 (CH), 112.2 (C_{quat}), 113.3 (CH), 119.0 (C_{quat}), 120.1 (C_{quat}), 121.5 (CH), 121.9 (CH), 123.0 (CH), 123.8 (CH), 124.6 (C_{quat}), 125.9 (CH), 128.0 (CH), 128.1 (CH), 128.5 (CH), 129.3 (CH), 129.9 (CH), 130.0 (CH), 130.8 (CH), 132.5 (CH), 135.5 (C_{auat}), 136.1 (C_{auat}), 137.7 (C_{auat}), 137.9 (C_{auat}), 138.3 (C_{quat}), 145.4 (C_{quat}), 146.0 (C_{quat}), 148.9 (C_{quat}), 150.4 (C_{quat}), 152.8 (C_{quat}), 162.4 (C_{quat}) , 165.8 (C_{quat}) . EI MS: (70 eV, m/z (%)): 532 $([M-C_{12}H_{14}N]^+, 5)$, 370 (21), 269 (15), 248 (13), 126 (15), 163 (14), 148 (100), 128 (40). IR (KBr): $\tilde{v} = 3012, 2960,$ 2918, 2856, 2227, 1732, 1708, 1587, 1532, 1517, 1487, 1469, 1454, 1392, 1363, 1334, 1288, 1244, 1172, 1165, 1132, 1116, 1085, 1062, 1047, 1018, 977, 958, 941, 921, 896, 856, 827, 817, 781, 738, 723, 704, 684, 657, 649 cm⁻¹. UV/Vis (CH₂Cl₂): $\lambda_{max}(\varepsilon) = 276 \text{ nm} (40700), 376 (20400), 597 (39400).$ Anal. calcd. for C₄₃H₃₄ClN₃O₃S (708.3): C 72.95, H 4.84, N 5.93; Found: C 72.66, H 5.09, N 5.75.

3.8. (Z)-3-((2Z,4Z)-3-(4-Chlorophenyl)-4-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-

1-phenylbut-2-en-1-ylidene)-1-methylindolin-2-one (10h)

After chromatography on silica gel (hexane/ethylacetate 4:1) compound 10h was obtained as a darkgreen solid (448 mg, 0.84 mmol, 84%), Mp 244 °C. ¹H NMR (300 MHz, CDCl₃): δ2.41 (s, 3 H), 3.05 (s, 3 H), 4.83 (s, 1 H), 5.59 (s, 1 H), 6.25 (t, J = 7.7 Hz, 1 H), 6.33 (t, J = 7.7 Hz, 1 H), 6.47-6.94 (m, 11 H), 7.13 (d, J = 8.4 Hz, 2 H), 7.18 (d, J = 8.4 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 25.9 (CH₃), 31.3 (CH₃), 93.7 (CH), 120.0 (C_{quat}), 121.0 (CH), 121.3 (CH), 122.1 (CH), 122.5 (CH), 124.3 (C_{quat}), 125.7 (C_{quat}), 126.1 (CH), 126.9 (CH), 128.1 (CH), 128.2 (CH), 128.3 (CH), 129.0 (CH), 129.1 (CH), 129.5 (CH), 131.1 (CH), 131.8 (CH), 134.7 (C_{quat}), 140.6 (C_{quat}), 141.8 (C_{quat}), 141.9 (C_{quat}), 142.0 (C_{quat}), 149.5 (C_{quat}), 150.9 (C_{quat}), 152.4 (C_{quat}), 168.2 (C_{quat}). EI MS: (70 eV, *m/z* (%)): 535 ([³⁷CI-M]⁺, 1) 533 ([³⁵CI-M]⁺, 3), 420 (11), 405 (18), 256 (12), 171 (35), 159 (100), 132 (21). IR (KBr): $\tilde{v} = 3055$, 2981, 2881, 1658, 1544, 1494, 1469, 1456, 1431, 1354, 1340, 1325, 1288, 1240, 1186, 1166, 1155, 1120, 1093, 1074, 1041, 1016, 997, 873, 852, 831, 812, 786, 775, 759, 744, 731, 700, 667, 628, 615 cm⁻¹. UV/Vis (CH₂Cl₂): $\lambda_{max}(\varepsilon) = 345$ nm (24500), 563 (68900). Anal. calcd. for C₃₃H₂₅ClN₂OS (553.1): C 74.35, H 4.73, N 5.25; Found: C 74.16, H 4.88, N 5.25.

4. ¹H and ¹³C NMR Spectra of the Compounds 8

4.1. 3-(1,3-Diphenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)-1-

methylindolin-2-one (8a)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

¹³C NMR (125 MHz, CDCl₃, T = 298 K)

4.2. 3-(3-(4-Methoxyphenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1ylidene)-1-methylindolin-2-one (8b)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

¹³C NMR (125 MHz, CDCl₃, T = 298 K)

4.3. 3-(3-(4-Chlorophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1ylidene)-1-methylindolin-2-one (8c)

¹H NMR (300 MHz, CDCl₃, T = 298 K)

4.4. 4-(4-(1-Methyl-2-oxoindolin-3-ylidene)-4-phenyl-3-(1,3,3-trimethylindolin-2-ylidene)but-1-en-2-yl)benzonitrile (8d)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

¹³C NMR (125 MHz, CDCl₃, T = 298 K)

4.5. 1-Methyl-3-(3-(4-nitrophenyl)-1-phenyl-2-(1,3,3-trimethylindolin-2-ylidene)but-3-en-1-ylidene)indolin-2-one (8e)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

¹³C NMR (125 MHz, CDCl₃, T = 298 K)

5.1. (Z)-3-((2Z,4E)-1,3-Diphenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-

ylidene)-1-tosylindolin-2-one (10a)

¹H NMR (300 MHz, CDCl₃, T = 298 K)

5.2. (*Z*)-3-((2*Z*,4*E*)-3-(4-Aminophenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-ylidene)but-2en-1-ylidene)-1-tosylindolin-2-one (10b)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

¹³C NMR (125 MHz, CDCl₃, T = 298 K)

I

5.3. (*Z*)-3-((2*Z*,4*E*)-3-(4-Chlorphenyl)-1-phenyl-4-(1,3,3-trimethylindolin-2-yliden)but-2en-1-yliden)-1-tosylindolin-2-on (10c)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

¹³C NMR (75 MHz, CDCl₃, T = 298 K)

5.4. 4-((1*Z*,2*Z*,4*E*)-4-(2-Oxo-1-tosylindolin-3-ylidene)-4-phenyl-1-(1,3,3-trimethyl-indolin-2-ylidene)but-2-en-2-yl)benzonitrile (10d)

¹H NMR (300 MHz, CDCl₃, T = 298 K)

5.5. (*Z*)-3-((2*Z*,4*E*)-3-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-4-(1,3,3-trimethyl-indolin-2-ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10e)

¹H NMR (300 MHz, CDCl₃, T = 298 K)

5.6. (*Z*)-3-((2*Z*,4*E*)-1,3-Bis(4-chlorophenyl)-4-(1,3,3-trimethylindolin-2-ylidene)but-2-en-1-ylidene)-1-tosylindolin-2-one (10f)

¹H NMR (500 MHz, CDCl₃, T = 298 K)

5.7. 4-((1*Z*,2*Z*,4*E*)-4-(4-Chlorophenyl)-4-(2-oxo-1-tosylindolin-3-ylidene)-1-(1,3,3-trimethylindolin-2-ylidene)but-2-en-2-yl)benzonitrile (10g)

¹H NMR (300 MHz, CDCl₃, T = 298 K)

5.8. (*Z*)-3-((2*Z*,4*Z*)-3-(4-Chlorophenyl)-4-(3-methylbenzo[*d*]thiazol-2(3*H*)-ylidene)-1-phenylbut-2-en-1-ylidene)-1-methylindolin-2-one (10h)

¹H NMR (300 MHz, CDCl₃, T = 298 K)

6. Computational data of Structures 2*E*,4*Z*,6*E*-10a, 2*E*,4*Z*,6*Z*-10a, 2*E*,4*Z*,6*Z*-10h,

2*E*,4*Z*,6*E*-10h

Programs used for the computations:

1) DFT-Computations at the B3LYP 6-31G* level of theory: SPARTAN '08, Wavefunction Inc. Irvine CA, **2008**.

Wavefunction Developers: B. J. Deppmeier, A. J. Driessen, T. S. Hehre, W. J. Hehre, J. A. Johnson, P. E. Klunzinger, J. M. Leonard, I. N. Pham, W. J. Pietro, J. Yu

Q-Chem Developers: Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M., Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Phys. Chem. Chem. Phys., (2006) **8**, 3172 - 3191.

2) TD-DFT-computations at the B3LYP 6-311G(d,p) level of theory:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *GAUSSIAN 09 (Revision A.02)* Gaussian, Inc., Wallingford CT, **2009**.

6.1. Structure 2Z,4Z-8a

Cartesian Coordinates (Angstroms)

Atom	Х	Y	Z
1 C C3	-1.2002130	2.7889854	-0.8203241
2 C C4	-2.7173379	5.0836081	-0.2092585
3 C C5	-1.8929048	3.4855890	-1.8257576
4 C C6	-1.2780404	3.2660505	0.4987773
5 C C7	-2.0252711	4.4047759	0.7963856
6 C C8	-2 6472088	4 6198589	-1 5239225
7 H H1	-1 8528651	3 1199287	-2 8484612
8 H H6	-0 7236759	2 7493956	1 2736502
он н5	-2 0654390	4 7649816	1 8215421
10 H H7	-3 1856033	5 1356165	-2 3151811
11 C C11	0.0511170	-1 7/0/8/5	-0 72/0/13
12 C C12	0.0652709	1.7434043	1 71/6960
	1 6452160	-4.3007427	-1.7 140009
	1.0402109	-2.7710749	-0.0304073
	0.2003371	-2.0013030	-1.9000700
	0.2808781	-3.3848592	-2.4018029
	1.6462312	-4.0768700	-0.5350628
17 H H9	2.1815987	-2.5311250	0.8626660
18 H H10	-0.2638916	-1.3023888	-2.4455053
19 H H11	-0.2450657	-3.6169053	-3.3241928
20 H H13	2.1768788	-4.8532826	0.0098275
21 H H14	0.9680264	-5.4070491	-2.0942771
22 C C17	3.4993913	-0.0473437	-0.0444348
23 C C19	6.2937122	0.0613430	-0.2871233
24 C C20	4.1577305	-0.9109771	-0.9242057
25 C C21	4.2732819	0.8932328	0.6797093
26 C C22	5.6580312	0.9576472	0.5797086
27 C C23	5.5508566	-0.8545900	-1.0367361
28 H H12	3.5996383	-1.6276081	-1.5160849
29 H H16	6.2296904	1.6857806	1.1472062
30 H H19	6.0580879	-1.5336745	-1.7163220
31 H H20	7.3758786	0.0879490	-0.3817558
32 N N1	3.4280557	1.7065309	1.4361448
33 C C43	-2.9860329	-0.1881623	-0.3165209
34 C C28	-3.5307289	-1.4652842	0.3191573
35 C C29	-4.1073901	-3.7051418	1.8668944
36 C C30	-2.5965308	-1.9664222	1.2310249
37 C C31	-4.7639588	-2.0838080	0.1839128
38 C C32	-5.0480868	-3.2204099	0.9572438
39 C C33	-2.8623812	-3.0825761	2.0211219
40 H H24	-5.5057606	-1.6987080	-0.5121067
41 H H25	-6.0047307	-3.7230851	0.8471304
42 H H26	-2.1294108	-3.4729968	2.7202003
43 H H27	-4.3367981	-4.5847133	2.4626685
44 C C27	-0.4903261	-1.1737948	2.3003589
45 H H4	0.0028963	-0.2004799	2.3423069
46 H H15	0.2643019	-1.9623523	2.2032568
47 H H22	-1.0420695	-1.3352892	3.2340627
48 C C26	-3.0880428	-0.2246907	-1.8506711
49 H H23	-2.6401214	0.6646027	-2.2997992
50 H H28	-4.1405279	-0.2618067	-2.1539679
51 H H29	-2.5875279	-1.1090049	-2.2550698
52 C C44	-3.8162408	0.9945497	0.2517763
53 H H30	-4.8774102	0.8114538	0.0473623

54 H	H31	-3.5362568	1.9442736	-0.2027065
55 H	H33	-3.6917466	1.0751693	1.3363441
56 H	H8	-3.3067635	5.9652491	0.0293588
57 C	C2	-0.3699647	0.3720960	-0.3095539
58 C	C34	3.8464365	2.7360429	2.3603523
59 H	H2	4.4119372	3.5213189	1.8441799
60 H	H3	4.4717034	2.3180794	3.1590255
61 H	H21	2.9428805	3.1659069	2.7957138
62 N	N2	-1.4407394	-1.1767136	1.1977178
63 C	C1	-1.5128980	-0.2255295	0.1817195
64 C	C9	0.9284323	-0.3556348	-0.1962428
65 C	C24	-0.3612069	1.6009951	-1.1643933
66 C	C10	2.0888800	0.2346614	0.2501182
67 C	C18	2.0960676	1.3715696	1.2182026
68 O	01	1.1589434	1.8794680	1.8341902
69 C	C25	0.4383653	1.6743742	-2.2497416
70 H	H17	0.5106022	2.5875431	-2.8320401
71 H	H35	1.0707511	0.8480412	-2.5580770

Convergence after 18 cycles

Heat of Formation:

-1575.813533 a.u.

Solvation Energy SM5.4/P:

-1575.81585 a.u.

6.2. Structure 2Z,4*E*-8a

Cartesian Coordinates (Angstroms)

Atom	XÌ	Ý	Z
1 C C3	-1.4805687	2.1581656	-1.2721120
2 C C4	-3.5050045	4.0978752	-0.9352383
3 C C5	-2.0292109	2.8366906	-2.3759398
4 C C6	-1.9810929	2.4635949	0.0034843
5 C C7	-2.9786130	3.4237593	0.1681105
6 C C8	-3.0240796	3.7995289	-2.2115471
7 H H1	-1.6846274	2.5885411	-3.3761908
8 H H6	-1.5525648	1.9689164	0.8650405
9 H H5	-3.3422267	3.6482896	1.1676842
10 H H7	-3.4305249	4.3076220	-3.0827400
11 C C11	1.5404400	-1.8349808	-0.7576890
12 C C12	2.2198963	-4.4328032	-1.6164874
13 C C13	2.3490862	-2.6710181	0.0358727
14 C C14	1 0704465	-2 3369357	-1 9845530
15 C C15	1 4181876	-3 6163210	-2 4157423
16 C C16	2 6800249	-3 9567395	-0.3853354
17 H H9	2 7050821	-2 3066473	0 9946959
18 H H10	0 4386743	-1 7089950	-2 6048708
19 H H11	1 0572805	-3 9782641	-3 3749202
20 H H13	3 2931207	-4 5904890	0.2500032
2011 1113 21 H H14	2 4796544	-5 4351384	-1 9463156
22 C C17	3 5616601	0.3701024	0 1614474
23 C C19	6 2852005	1 0509358	0.2648966
24 C C 20	4 5014034	-0.301/680	-0 5303045
24 C C20	4.0014004	1 5023880	0.880040
25 C C22	5 36/31/7	1.3023009	0.0000499
20 C C22	5 8566234	-0.0501508	-0.4804277
27 0 023	1 101 1762	1 2496676	1 12/0022
	4.1914/02 5.6902277	-1.2400070	-1.1249933
29 11 110	6 5912720	2.7201079	1.0137007
21 L L20	7 2422006	1 2020460	-1.0217910
31 H H20 32 N N1	2 0331612	2 1767685	1 /326015
33 C C/3	-1 /615138	-1 65501/5	1 118/313
34 C C 29	2 0594507	1 5425145	1.1104313
35 C C 20	-2.9304397	-1.3423110	1.4039202
35 C C29	2 5016100	-1.3100931	0.2005222
$30 \ C \ C30$	-3.3910190	1 0079765	0.2900002
37 C C 31	-3.7130373	-1.99/0/00	2.4709094
	-0.1137007	-1.0700002	2.4214000
	-4.9769904	-0.0000109	0.2074672
	-3.2400993	-2.4404404	3.3391300
	-5.7155445	-2.2003749	3.2010930
	-0.4090310	-0.4271340	
43 H H27	-6.8137163	-1.2293789	1.2675681
44 C C27	-2.992/4/5	-0.3978319	-2.0443303
45 H H4	-2.0888057	-0.3523738	-2.6502767
46 H H15	-3.5533907	0.5303120	-2.1893379
47 H H22	-3.6079233	-1.2430864	-2.3812775
48 C C26	-0.5941909	-1.2100801	2.3053326
49 H H23	0.4618//2	-1.4331040	2.1306163
50 H H28	-0.8977896	-1.7504048	3.2094065
51 H H29	-0.6837761	-0.1363913	2.48/4460
52 C C44	-1.1953830	-3.1502745	0.7791430
53 H H30	-1.4834311	-3.7694020	1.6361968

54 H	H31	-0.1438016	-3.3341768	0.5572444
55 H	H33	-1.7940471	-3.4677248	-0.0810060
56 H	H8	-4.2849255	4.8434345	-0.8030864
57 C	C2	-0.2456329	-0.0390841	-0.5825321
58 C	C34	3.0023131	3.3618967	2.2566415
59 H	H2	3.4780760	4.1887444	1.7153366
60 H	H3	3.5681853	3.1699195	3.1764986
61 H	H21	1.9776912	3.6374080	2.5122503
62 N	N2	-2.6294112	-0.5978807	-0.6517280
63 C	C1	-1.3402840	-0.7454853	-0.1337550
64 C	C9	1.1529035	-0.4752755	-0.2972778
65 C	C24	-0.3725557	1.1685554	-1.4688684
66 C	C10	2.0930617	0.3685568	0.2451566
67 C	C18	1.7341089	1.5666328	1.0728342
68 O	01	0.6377256	1.9463055	1.4692160
69 C	C25	0.5498477	1.4136377	-2.4248241
70 H	H17	0.5375184	2.3350883	-2.9977280
71 H	H35	1.3717833	0.7334892	-2.6215778

Convergence after 28 cycles

Heat of Formation:

-1575.811048 a.u.

Solvation Energy SM5.4/P:

-1575.81350 a.u.

6.3. Structure 2*E*,4*Z*,6*E*-10a

Cartesian Coordinates (Angstroms)				
Atom	X	Ý	Z	
1 C C1	-0.4268355	0.5299964	-0.5455501	
2 H H2	-0.1269517	-0.4054743	-1.0009095	
3 C C2	-1.7218070	0.5395670	-0.0571182	
4 C C3	-2.2554780	1.6413415	0.8051860	
5 C C4	-3.1890657	3.6654454	2.5219628	
6 C C5	-2.7833804	2.8303927	0.2869618	
7 C C6	-2.1956479	1.4844385	2.1989813	
8 C C7	-2.6537548	2.4892082	3.0510272	
9 C C8	-3.2511921	3.8327802	1.1379822	
10 H H1	-2.8091417	2.9778663	-0.7876432	
11 H H6	-1.7832173	0.5671547	2.6102951	
12 H H5	-2.5956472	2.3513073	4.1276970	
13 H H7	-3.6528787	4.7501166	0.7163355	
14 C C9	0.6379956	1.4964899	-0.5008751	
15 C C10	1.9460163	1.1111832	-0.7705711	
16 C C11	0.3692915	2.9479659	-0.2474029	
17 C C12	-0.0277624	5.6958944	0.1667861	
18 C C13	0.6172718	3.5201820	1.0068307	
19 C C14	-0.0722758	3.7688605	-1.2945308	
20 C C15	-0.2646574	5.1353791	-1.0899048	
21 C C16	0.4097938	4.8838010	1.2153535	
22 H H9	0.9749162	2.8923019	1.8176967	
23 H H10	-0.2500080	3.3324976	-2.2738689	
24 H H11	-0.5969477	5.7628295	-1.9130884	
25 H H13	0.5974900	5.3128468	2.1959564	
26 H H14	-0.1791355	6.7601554	0.3269082	
27 C C18	2.3670192	-0.3075483	-0.9293645	
28 C C17	3.1586434	1.9168852	-0.9466573	
29 C C19	5.7423967	2.8977502	-1.4359023	
30 C C20	3.4045173	3.2975733	-0.9306903	
31 C C21	4.2465000	1.0479288	-1.2180131	
32 C C22	5.5312283	1.5160/19	-1.4696396	
33 C C23	4.6923337	3.7777374	-1.1709415	
34 H H12	2.6061382	3.9990749	-0.7332420	
35 H H16	6.3373843	0.8320130	-1.6923605	
36 H H19	4.8719554	4.8491424	-1.1543813	
37 H H20	6.7404503	3.2824785	-1.6269720	
38 N N1	3.7590702	-0.2871968	-1.2063358	
39 0 01	1.7298897	-1.3472065	-0.8200217	
	-2.4521633	-0.6967598	-0.2605338	
	-1.7826880	-1.4836373	-0.5958647	
42 0 025	-3.7613492	-1.1084300	-0.1699400	
43 C C43	-5.1107497	-0.3018537	-0.0313883	
44 N NZ	-4.0530851	-2.4013989	-0.3488637	
	-0.1120000	-1.4091002	-0.2400000	
46 C C29	-7.3000113	-3.6324014	-0.0000371	
47 C C30	-0.4290203	-2.0900940	-0.4309703	
40 0 031	-1.400010 _8.2021210	-1.404/030	-0.2091143	
	-0.2021210	-2.00/4204	-0.4307049	
50 C C 35 51 H H 21	-0.1090090	-0.0910077	-0.0040007	
52 H H25	-0.0000077	-0.0002010	-0.1192904	
53 H H26	-5 5873841	-4 8275611	-0 8335771	
00111120	0.0070071		0.0000771	

54 H	H27	-8.0586283	-4.7725575	-0.8651436
55 C	C27	-3.0535868	-3.5033326	-0.4679990
56 H	H4	-2.2892385	-3.3790728	0.3056561
57 H	H15	-2.5605204	-3.4905222	-1.4491621
58 H	H22	-3.5290913	-4.4749648	-0.3279300
59 S	S1	4.6455227	-1.7574866	-1.4059410
60 C	C36	4.5200348	-2.5490018	0.1923443
61 C	C37	4.3767084	-3.8045180	2.6821321
62 C	C38	3.5001538	-3.4700392	0.4336889
63 C	C39	5.4731834	-2.2461056	1.1682470
64 C	C40	5.3901007	-2.8738563	2.4077360
65 C	C41	3.4395204	-4.0900858	1.6800960
66 H	H32	2.7704192	-3.6786857	-0.3383735
67 H	H35	6.2688568	-1.5415862	0.9512104
68 H	H36	6.1268811	-2.6434846	3.1733194
69 H	H37	2.6481303	-4.8084267	1.8787821
70 C	C42	4.3194309	-4.5062969	4.0180460
71 H	H38	4.9864610	-5.3784735	4.0307822
72 H	H39	3.3090811	-4.8638765	4.2406301
73 H	H40	4.6349892	-3.8454934	4.8324356
74 O	O2	3.9530885	-2.5637171	-2.4018036
75 O	O3	6.0372477	-1.3497099	-1.5994328
76 C	C26	-5.2673767	0.7000814	-1.1426657
77 H	H23	-4.5443678	1.5082655	-1.0202514
78 H	H28	-6.2728197	1.1344365	-1.1017296
79 H	H29	-5.1294624	0.2545252	-2.1329119
80 C	C44	-5.3464431	0.2614586	1.3638598
81 H	H30	-6.3843036	0.6066480	1.4314276
82 H	H31	-4.6921767	1.1123367	1.5476251
83 H	H33	-5.1878384	-0.4790406	2.1546544
84 H	H8	-3.5497650	4.4483417	3.1838887
Convergence after 26 cycles				

Heat of Formation:

Solvation Energy SM5.4/P:

-2355.438705 a.u.

-2355.45511 a.u.

6.4. Structure 2*E*,4*Z*,6*Z*-10a

Cartesian Coordinates (Angstroms)

Atom	X	Ŷ	Z
1 C C1	-0.2969000	-0.5596789	-0.1265974
2 H H2	0.0574556	0.4639654	-0.1450964
3 C C2	-1.6744918	-0.6840883	-0.0940386
4 C C3	-2.4044050	-1.9511667	0.1776618
5 C C4	-3 8642082	-4 2983878	0 7209463
60.05	-2 0597943	-2 7783898	1 2589615
	-3 4976033	-2 3226453	-0 6238697
8 C C7	-1 2155811	-3 /875720	-0.3608966
	-9.7842071	-3.0381136	1 5207610
	-2.7042371	-3.9301130	1.0257019
	2 7771642	1 6006014	1.9023000
	-3.7771043	-1.0900914	-1.4015292
	-0.0010742	-3.7620221	-0.9997912
	-2.3003733	-4.3004609	2.3703220
14 H H8	-4.4273814	-5.2036416	0.9322031
150 09	0.7609376	-1.5386343	-0.1725655
16 C C10	2.06/1//2	-1.1631528	0.1212278
17 C C11	0.4905107	-2.9279458	-0.6474895
18 C C12	0.0160701	-5.544/464	-1.5595308
19 C C13	-0.0950890	-3.1524167	-1.9013231
20 C C14	0.8325598	-4.0354074	0.1441668
21 C C15	0.5921414	-5.3321839	-0.3043399
22 C C16	-0.3225628	-4.4509908	-2.3576078
23 H H9	-0.3648400	-2.3024163	-2.5213974
24 H H10	1.2934242	-3.8709341	1.1140801
25 H H11	0.8559210	-6.1776811	0.3256160
26 H H13	-0.7673027	-4.6073838	-3.3369301
27 H H14	-0.1677227	-6.5561645	-1.9120012
28 C C18	2.3941742	0.1030341	0.8233118
29 C C17	3.3470418	-1.8171207	-0.1615789
30 C C19	6.0415490	-2.5299438	-0.4677712
31 C C20	3.6932861	-2.9709879	-0.8784883
32 C C21	4.3922158	-1.0136083	0.3620721
33 C C22	5.7329380	-1.3603981	0.2332069
34 C C23	5.0353818	-3.3199954	-1.0274631
35 H H12	2.9265984	-3.5929465	-1.3209383
36 H H16	6.5091746	-0.7403118	0.6582403
37 H H19	5.2946704	-4.2173642	-1.5824371
38 H H20	7.0835532	-2.8171700	-0.5791825
39 N N1	3.8077576	0.1274818	0.9757037
40 O O1	1.6631022	0.9963237	1.2282758
41 C C24	-2.4292076	0.5202342	-0.4100463
42 H H3	-1.8734913	1.2261362	-1.0226635
43 C C25	-3.6952501	0.9558588	-0.1254548
44 N N2	-4.6218860	0.4876051	0.7900282
45 C C34	-4.3105921	2.1727861	-0.8576914
46 C C28	-5.8393001	1.1785000	0.6662710
47 C C29	-8.0038431	2.8216305	0.1277399
48 C C30	-5.7221245	2.1876098	-0.2970320
49 C C31	-7.0245611	0.9675194	1.3678206
50 C C32	-8.1074129	1.8083906	1.0819518
51 C C33	-6.8002851	3.0161158	-0.5671401
52 H H24	-7.1191872	0.1744864	2.1026568
53 H H25	-9.0441111	1.6618479	1.6130358

54 H	H26	-6.7188936	3.8102926	-1.3056579
55 H	H27	-8.8571848	3.4606306	-0.0797172
56 C	C27	-4.3025818	1.9732432	-2.3871357
57 H	H4	-3.2777798	1.8908216	-2.7643578
58 H	H15	-4.7804431	2.8252352	-2.8842890
59 H	H22	-4.8454001	1.0658761	-2.6709784
60 S	S1	4.5977542	1.4847489	1.6962384
61 C	C36	4.2065999	2.8359291	0.5906444
62 C	C37	3.6373218	4.9602354	-1.1316303
63 C	C38	3.0866173	3.6302295	0.8347537
64 C	C39	5.0517557	3.0845154	-0.4942419
65 C	C40	4.7576142	4.1430141	-1.3483573
66 C	C41	2.8135730	4.6875912	-0.0317692
67 H	H32	2.4422615	3.4105459	1.6767066
68 H	H35	5.9269567	2.4638855	-0.6539989
69 H	H36	5.4110742	4.3406880	-2.1948107
70 H	H37	1.9411795	5.3103854	0.1509881
71 C	C42	3.3444755	6.1201738	-2.0531061
72 H	H38	4.0201865	6.9621728	-1.8539104
73 H	H39	2.3198942	6.4828992	-1.9261006
74 H	H40	3.4790498	5.8406783	-3.1040575
75 O	02	3.9768126	1.7243377	2.9914958
76 O	O3	6.0303557	1.2077498	1.5849846
77 C	C35	-3.5579664	3.4728259	-0.4865764
78 H	H17	-2.5227379	3.4400285	-0.8437288
79 H	H18	-3.5419771	3.6245714	0.5971142
80 H	H21	-4.0506899	4.3376287	-0.9457408
81 C	C26	-4.3371239	-0.3322440	1.9573076
82 H	H23	-4.6329335	-1.3761276	1.8157476
83 H	H28	-4.8772413	0.0825356	2.8151091
84 H	H29	-3.2679387	-0.2953834	2.1666740

Convergence after 23 cycles

Heat of Formation:

Solvation Energy SM5.4/P:

-2355.445364 a.u.

-2355.46137 a.u.

6.5. Structure 2*E*,4*Z*,6*Z*-10h

Cartesian Coordinates (Angstroms)

Atom	X	Ý	Z
1 C C1	0.7211120	-1.0899984	-0.3601998
2 H H2	0.7550255	-2.1726716	-0.4139756
3 C C2	-0.5423787	-0.5378334	-0.3047850
4 C C3	-0.8020935	0.8945179	0.0425877
5 C C4	-1.3241305	3.5425298	0.7672405
6 C C5	-1.1183079	1.8533128	-0.9295838
7 C C6	-0.7578880	1.2925513	1.3870224
8 C C7	-1.0201425	2.6105787	1.7572915
9 C C8	-1.3729344	3.1776565	-0.5770151
10 H H1	-1.1575586	1.5632301	-1.9749671
11 H H6	-0.5152716	0.5592541	2.1507648
12 H H5	-0.9859641	2.9122724	2.7987244
13 H H7	-1.6075711	3.9175552	-1.3349180
14 C C9	2.0208196	-0.4652671	-0.3155752
15 C C10	3.1511522	-1.2022124	-0.0104821
16 C C11	2 1819215	0.9690595	-0 7156471
17 C C12	2.5489733	3.6363238	-1.5194563
18 C C13	2 4656985	1 9651977	0 2280390
19 C C14	2 0858116	1 3264354	-2 0683268
20 C C15	2 2768118	2 6493604	-2 4685288
21 C C16	2 6388806	3 2909487	-0 1692878
22 H H9	2 5502605	1 6950397	1 2765228
23 H H10	1 8708270	0 5584895	-2 8067232
23 H H11	2 2114410	2 9093440	-3 5221136
25 H H13	2.2114410	1 0536230	0.5756706
26 H H14	2.0493091	4.6530233	-1 8207111
2011 1114	2.0300170	-2 6130773	0.4041555
28 C C17	1 5718111	-0.8/03172	-0.07580/0
20 C C10	7 3823515		0.0730043
30 C C 20	5 2825280	0.2858606	-0.505/10/
31 C C21	5 3116508	-1 9610030	0.3825548
32 C C22	6 6006/85	-1.3010033	0.3023340
33 C C 23	6 6810288	0.2864062	-0 1517809
37 H H12	1 7658238	1 1502787	-0.4317003
35 H H16	7 230/005	-2 8/22870	0.80315033
36 H H10	7.2034000	1 1663288	-0 7848432
37 11 11 20	8 /682671	-0.8040551	0.7040432
37 11 1120 38 NL N1	1 1252280	-0.0049001	0.0003030
	2 1558612	-2.3030720	0.7213717
	-1 6570055	-3.3371019	-0.4856866
40 C C24	-1.3678300	-1.4320722	-0.4030000
4111113	2 0067076	1 210020	0.7200007
42 0 025	2 9290021	-1.2100034	-0.3010049
43 3 32 44 N N2	-3.0209931	0.2900000	0.0000701
44 IN INZ	-3.9002741	-2.2201207	-0.0007000
45 C C20	-5.4050005	-0.4903000	0.0232343
40 C C29	-7.0710001 E 2000007	-2.07 19410	-0.1000/17
47 0 030	-0.2009087	-1.0409207	-0.33/9133
40 0 031	-0.0404102	0.0744996	0.201410/
	-1.1004105	-0.12400/0	0.1019317
	-0.425/919	-2.04/204/	-0.4290003
	-0.1232341	1.1221317	0.00/1400
	-0.7003059	-0.2952810	0.3815503
53 H H26	-0.3030334	-3.0978995	-0.0913610

54 H H27	-8.5612511	-2.6909257	-0.2392004
55 C C27	-3.5512194	-3.5574539	-0.9671460
56 H H4	-4.4349384	-4.1549775	-1.1840105
57 H H15	-2.9754678	-4.0498494	-0.1744439
58 H H22	-2.9365638	-3.5113065	-1.8724216
59 CI CI1	-1.6510149	5.2124430	1.2239936
60 C C26	4.8122817	-4.2917678	1.2208063
61 H H8	5.4503633	-4.8205169	0.5017391
62 H H17	3.8915125	-4.8572399	1.3740705
63 H H18	5.3510297	-4.2074333	2.1727639

Convergence after 32 cycles

Heat of Formation:

-2315.682533 a.u.

Solvation Energy SM5.4/P:

-2315.69065 a.u.

6.6. Structure 2*E*,4*Z*,6*E*-10h

Cartesian Coordinates (Angstroms)

Atom	X	Ý	Z
1 C C1	0.8179305	-1.0546110	0.4227618
2 H H2	0.9159462	-2.1283762	0.5386253
3 C C2	-0.4786729	-0.5841472	0.3858487
4 C C3	-0.8439753	0.7838332	-0.0705558
5 C C4	-1.6131383	3.3164715	-0.9944967
6 C C5	-0.2730061	1.3354697	-1.2294100
7 C C6	-1.8108388	1.5405072	0.6124231
8007	-2.1955358	2.8015940	0.1636144
9008	-0.6504583	2.5925378	-1.6961999
10 H H1	0.4585072	0.7583317	-1.7867391
	-2.2630207	1.1353408	1.5121708
	-2.9309995	3.3802710	0.7042595
	-0.2003703	3.0049162	-2.39/03/3
14 C C9	2.0191020	-0.3424945	0.3003039
	3.2239230	-0.9962109	-0.0300007
	2.1020420	1.0090990	1 9665601
19 C C12	2.2042102	1 2672264	2 1509120
	7018322	2 0026088	2.1000120
19 C C14	2.7010322	2.0920900	0.0903302
20 C C15	1 7370574	2 6682540	2 6/81531
210 010	1 222/27/	0.575101/	2.0401331
22 H H10	3 080/808	1 8663120	-0.8062366
2011 H10 24 H H11	3 1700231	1.0005120	-0.0302300
25 H H13	1 3656722	2 8852634	3 6450046
26 H H14	2 3350376	4 70332034	2 2496795
27 C C18	2.000070	-2 3168943	-0 7612648
28 C C17	4 6468495	-0 6549762	0.0715247
29 C C19	7 4570023	-0.6561320	0.0212329
30 C C20	5 3598601	0.3734947	0.6965264
31 C C21	5 3829518	-1 6982680	-0 5484068
32 C C22	6.7721177	-1.7118017	-0.5912772
33 C C23	6.7584423	0.3683659	0.6644205
34 H H12	4.8401883	1.1750325	1.2061199
35 H H16	7.3110932	-2.5203927	-1.0758692
36 H H19	7.3046505	1.1735062	1.1478818
37 H H20	8.5434668	-0.6423999	0.0008636
38 N N1	4.5044526	-2.6576001	-1.0468455
39 O O1	2.2185878	-3.0046653	-1.0857534
40 C C24	-1.5228375	-1.4784890	0.8622871
41 H H3	-1.1878910	-2.2171914	1.5866238
42 C C25	-2.8679441	-1.5299340	0.6065632
43 N N2	-3.6170659	-0.9732729	-0.4190511
44 S S2	-3.9488028	-2.4335101	1.7171625
45 C C28	-5.0006835	-1.1303454	-0.2882026
46 C C29	-7.6849533	-1.6957086	0.2092375
47 C C30	-5.3737496	-1.9229896	0.8106899
48 C C31	-5.9771670	-0.6118951	-1.1415182
49 C C32	-7.3190720	-0.9030817	-0.8808933
50 C C33	-6.7086528	-2.2154336	1.0657077
51 H H24	-5.7022447	0.0159284	-1.9826677
52 H H25	-8.0846229	-0.4997854	-1.5373030
53 H H26	-6.9863955	-2.8342773	1.9136429

54 H F	127	-8.7323250	-1.9105576	0.3986601
55 C C	226	-3.0467250	-0.6312456	-1.7207501
56 H F	123	-2.9946951	0.4503365	-1.8720262
57 H F	128	-3.6683903	-1.0794045	-2.5027611
58 H F	129	-2.0420560	-1.0483917	-1.7863226
59 CI C	CI1 -:	2.1057068	4.9010634	-1.5837501
60 C C	C27	4.8774719	-3.8736869	-1.7320926
61 H F	-14	3.9541603	-4.4028472	-1.9750685
62 H F	-18	5.5043676	-4.5096598	-1.0946498
63 H F	115	5.4248996	-3.6534020	-2.6567149

Convergence after 18 cycles

Heat of Formation:

-2315.675481 a.u.

Solvation Energy SM5.4/P:

-2315.68401 a.u.

6.7. Structure of the *N*-methyl allenyl enolate 16a

Atom X Y Z 1 C C3 0.8627880 2.4687206 1.8917776 2 C C4 1.3536535 4.2849486 4.0013787 3 C C5 0.9281275 2.0314970 3.2267335 4 C C6 1.0566365 3.8394701 1.6399382 5 C C7 1.2954121 4.7362178 2.6821460 6 C C8 1.1671006 2.9264500 4.2679606 7 H H1 0.797252 0.9739837 3.4323680 8 H H6 0.9759937 4.2200829 0.6249048 9 H H5 1.4231193 5.7929590 2.4611084 10 H H7 1.2125087 2.5604670 5.2906779 11 C C11 -1.262225 -1.6016771 1.379065 12 C C12 -1.0006553 4.0675511 2.7130732 13 C C13 -0.8742007 -1.6519576 2.7268077 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3997967 -4.0300250 1.3739480 16 C C16 -0.74	Cartesian Coordinates (Angstroms)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom	Х	Y	Z	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
1 0 000 0.0021000 2.1031200 1.0031787 3 C C5 0.9281275 2.0314970 3.2267335 4 C C6 1.0566365 3.8394701 1.6399382 5 C C7 1.2954121 4.7362178 2.6821460 6 C C8 1.1671006 2.9264500 4.2679606 7 H H1 0.7947252 0.9739837 3.4323680 8 H H6 0.9759937 4.2200829 0.6249048 9 H H5 1.4231193 5.7929590 2.4611084 10 H H7 1.2125087 2.5604670 5.2906779 11 C C11 -1.2622225 -1.6016771 1.379065 12 C C12 -1.0006553 -4.0675511 2.7130732 13 C C13 -0.8742007 -1.6519576 2.7268607 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.030250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.280578 17 H H9 -0.7086380 -0.7189565 3.2570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 <td>1 C C3</td> <td>0 8627880</td> <td>2 4687206</td> <td>1 8917776</td>	1 C C3	0 8627880	2 4687206	1 8917776	
2 C C41.350334.20194073.22673354 C C61.05663653.83947011.63993825 C C71.29541214.73621782.68214606 C C81.16710062.92645004.26796067 H H10.79472520.97398373.43236808 H H60.97599374.22008290.62490489 H H51.42311935.79295902.461108410 H H71.21250872.56046705.290677911 C C11-1.2622225-1.60167711.37900512 C C12-1.0006553-4.06755112.713073213 C C13-0.8742007-1.65195762.726860714 C C14-1.5315676-2.80985960.714308215 C C15-1.3987967-4.03002501.373948016 C C16-0.7422704-2.87329653.388057817 H H9-0.7086380-0.71895653.257023018 H H10-1.8481632-2.7746498-0.323182119 H H11-1.6085138-4.95487240.842203520 H H13-0.4495167-2.89146204.435144621 H H14-0.9023902-5.01971483.228295722 C C17-3.7955609-0.1867410.675788725 C C21-4.4200062-0.0160944-1.445927126 C C22-5.7638151-0.2394363-1.72269327 C C23-5.934559-1.40915030.403559728 H H12-4.1469300-1.53710871.604511529 H H16-6.21737360.1281622-2.639284630 H H19<	2 C C 4	1 3536535	1 28/0/86	1.0017787	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2004	0.0281275	2 031/070	3 2267335	
1000000000000000000000000000000000000		1 0566265	2.0314370	1 6200202	
S C C/ 1.2934121 4.7302176 2.0621400 6 C C8 1.1671006 2.9264500 4.2679606 7 H H1 0.7947252 0.9739837 3.4323680 8 H H6 0.9759937 4.2200829 0.6249048 9 H H5 1.4231193 5.7929590 2.4611084 10 H H7 1.2125087 2.5604670 5.2906779 11 C C11 -1.2622255 -1.6016771 1.3790065 12 C C12 -1.0006553 -4.0675511 2.7268607 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.0300250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.3880578 17 H H9 -0.7086380 -0.7149556 3.2570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 21 C C17 -3.7955609 -0.4887031 -0.2552599 22 C C17 -3.7955609 -0.4887031 -0.2552599		1.0000000	3.0394701	1.0399302	
6 C C6 1.167/1006 2.9204300 4.20793063 7 H H1 0.7947252 0.9739837 3.4323680 8 H H6 0.9759937 4.2200829 0.6249048 9 H H5 1.4231193 5.7929590 2.4611084 10 H H7 1.2125087 2.5604670 5.2906779 11 C C11 -1.2622225 -1.6016771 1.3790065 12 C C12 -1.0006553 -4.0675511 2.7268607 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.0300250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.28570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 20 H H13 -0.4495167 -2.8914620 4.4351446 21 H H14 -0.9023902 -5.0197148 3.2282957 22 C C17 -3.7955609 -1.4806741 0.6757887 22 C C2 -4.4200062 -0.0160944 -1.4459271 26 C C22 -5.7638151 -0.2394363 -1.7223693		1.2904121	4.7302170	2.0021400	
7 H H1 0.7947232 0.9739837 3.4323600 8 H H6 0.9759937 4.2200829 0.6249048 9 H H5 1.4231193 5.7929590 2.4611084 10 H H7 1.2125087 2.5604670 5.2906779 11 C C11 -1.2622225 -1.6016771 1.3790065 12 C C12 -1.0006553 -4.0675511 2.7130732 13 C C13 -0.8742007 -1.6519576 2.7268607 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.0300250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.3880578 17 H H9 -0.7086380 -0.7189565 3.2570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 20 H H13 -0.4495167 -2.8914620 4.4351446 21 H H14 -0.9023902 -5.0197148 3.2282957 22 C C17 -3.7955609 -1.4887031 -0.25525599		0.7047050	2.9204000	4.2079000	
8 H H6 0.973937 4.220829 0.6249048 9 H H5 1.4231193 5.7929590 2.4611084 10 H H7 1.2125087 2.5604670 5.2906779 11 C C11 -1.2622225 -1.6016771 1.3790065 12 C C12 -1.0006553 -4.0675511 2.7130732 13 C C13 -0.8742007 -1.6519576 2.7268607 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.0300250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.280578 17 H H9 -0.7086380 -0.7189565 3.2570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 20 H H13 -0.4495167 -2.8914620 4.4351446 21 H H14 -0.9023902 -5.0197148 3.2282957 22 C C17 -3.7955609 -0.4887031 -0.255599 23 C C19 -6.5208579 -0.9501512 -0.7819640 24 C C20 -4.5825509 -1.1806741 0.6757887 <tr< td=""><td></td><td>0.7947252</td><td>0.9739837</td><td>3.4323680</td></tr<>		0.7947252	0.9739837	3.4323680	
9 H H51.42311935.79295902.461108410 H H71.21250872.56046705.290677911 C C11-1.262225-1.60167711.379006512 C C12-1.0006553-4.06755112.713073213 C C13-0.8742007-1.65195762.726860714 C C14-1.5315676-2.80985960.714308215 C C15-1.3987967-4.03002501.373948016 C C16-0.7422704-2.87329653.287023017 H H9-0.7086380-0.71895653.257023018 H H10-1.8481632-2.7746498-0.323182119 H H11-1.6085138-4.95487240.842203520 H H13-0.4495167-2.89146204.435144621 H H14-0.9023902-5.01971483.228295722 C C17-3.7955609-0.4887031-0.255259923 C C19-6.5208579-0.9501512-0.781964024 C C20-4.5825509-1.18067410.675788725 C C21-4.4200062-0.0160944-1.445927126 C C22-5.7638151-0.2394363-1.722369327 C C23-5.9343559-1.40915030.403559728 H H12-4.1469300-1.53710871.604511529 H H16-6.21737360.1281622-2.639284630 H H19-6.5391800-1.9502181.127285431 H H20-7.5735907-1.1393590-0.975690832 N N1-3.47174130.6675739-2.196195033 C C432.2457629-0.4270943-1.9020376 <td></td> <td>0.9759937</td> <td>4.2200829</td> <td>0.6249048</td>		0.9759937	4.2200829	0.6249048	
10 H1.21250872.56046705.290677911 CC11-1.262225-1.60167711.379006512 CC12-1.0006553-4.06755112.713073213 CC13-0.8742007-1.65195762.726860714 CC14-1.5315676-2.80985960.714308215 CC15-1.3987967-4.03002501.373948016 CC16-0.7422704-2.87329653.287023018 HH10-1.8481632-2.7746498-0.323182119 HH11-1.6085138-4.95487240.842203520 HH13-0.4495167-2.89146204.435144621 HH14-0.9023902-5.01971483.228295722 CC17-3.7955609-0.4887031-0.255259923 CC19-6.5208579-0.9501512-0.781964024 CC20-4.5825509-1.18067410.675788725 CC21-4.420062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.53710871.604511529 HH16-6.21737360.1281622-2.639284631 HH20-7.5735907-1.1393590-0.975690832 N N1-3.47174130.6675739-2.196	9 H H5	1.4231193	5.7929590	2.4611084	
11 C -1.2622225 $-1.60167/1$ 1.3790065 12 CC12 -1.0006553 -4.0675511 2.7130732 13 CC13 -0.8742007 -1.6519576 2.7268607 14 CC14 -1.5315676 -2.8098596 0.7143082 15 CC15 -1.3987967 -4.0300250 1.3739480 16 CC16 -0.7422704 -2.8732965 3.3880578 17 HH9 -0.7086380 -0.7189565 3.2570230 18 HH10 -1.8481632 -2.7746498 -0.3231821 19 HH11 -1.6085138 -4.9548724 0.8422035 20 HH13 -0.4495167 -2.8914620 4.4351446 21 HH14 -0.9023902 -5.0197148 3.2282957 22 CC17 -3.7955609 -0.4887031 -0.2552599 23 CC19 -6.5208579 -0.9501512 -0.7819640 24 CC20 -4.5825509 -1.1806741 0.6757887 25 CC21 -4.4200062 -0.0160944 -1.4459271 26 CC22 -5.7638151 -0.2394363 -1.7223693 27 CC23 -5.9343559 -1.4091503 0.4035597 28 HH12 -4.1469300 -1.5371087 1.6045115 29 HH16 -6.2173736 0.1281622 -2.6392846 30 HH19 -5.539180 -1.9909766 -1.377501 33 CC43 2.2457629 -0.4270943 -1.9020376 34 CC28<	10 H H/	1.2125087	2.5604670	5.2906779	
12 CC12-1.0006553-4.06755112.713073213 CC13-0.8742007-1.65195762.726860714 CC14-1.5315676-2.80985960.714308215 CC15-1.3987967-4.03002501.373948016 CC16-0.7422704-2.87329653.388057817 HH9-0.7086380-0.71895653.257023018 HH10-1.8481632-2.7746498-0.323182119 HH11-1.6085138-4.95487240.842203520 HH13-0.4495167-2.89146204.435144621 HH4-0.9023902-5.01971483.228295722 CC17-3.7955609-0.4887031-0.255259923 CC19-6.5208579-0.9501512-0.781964024 CC20-4.5825509-1.18067410.675788725 CC21-4.4200062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393508-0.9075690832 N N1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC296.1567406-1.9909766	11 C C11	-1.2622225	-1.6016771	1.3790065	
13 C C13 -0.8742007 -1.6519576 2.7268607 14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.0300250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.2870230 17 H H9 -0.7086380 -0.71895655 3.2570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 20 H H13 -0.4495167 -2.8914620 4.4351446 21 H H14 -0.9023902 -5.0197148 3.2282957 22 C C17 -3.7955609 -0.4887031 -0.2552599 23 C C19 -6.5208579 -0.9501512 -0.7819640 24 C C20 -4.5825509 -1.1806741 0.675787 25 C C21 -4.4200062 -0.160944 -1.4459271 26 C C22 -5.7638151 -0.2394363 -1.7223693 27 C C23 -5.9343559 -1.4091503 0.4035597 28 H H12 -4.1469300 -1.5371087 1.6045115 29 H H16 -6.2173736 0.1281622 -2.6392846 30 H H19 -6.5391800 -1.9502018 1.1272654 31 H H20 -7.5735907 -1.1393590 -0.9756908 32 N N1 -3.4717413 0.6675739 -2.1961950 33 C C43 2.2457629 -0.4270943 -1.9020376 34 C C28 3.5882710 -1.1232450 -1.7933452 35 C C29 6.1567406 -1.9909766 -1.1377501 36	12 C C12	-1.0006553	-4.0675511	2.7130732	
14 C C14 -1.5315676 -2.8098596 0.7143082 15 C C15 -1.3987967 -4.0300250 1.3739480 16 C C16 -0.7422704 -2.8732965 3.3880578 17 H H9 -0.7086380 -0.7189565 3.2570230 18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 20 H H13 -0.4495167 -2.8914620 4.4351446 21 H H14 -0.9023902 -5.0197148 3.2282957 22 C C17 -3.7955609 -0.4887031 -0.2552599 23 C C19 -6.5208579 -0.9501512 -0.7819640 24 C C20 -4.5825509 -1.1806741 0.6757887 25 C C21 -4.4200062 -0.0160944 -1.44592711 26 C C22 -5.7638151 -0.2394363 -1.7223693 27 C C23 -5.9343559 -1.4091503 0.4035597 28 H H12 -4.1469300 -1.5371087 1.6045115 29 H H16 -6.2173736 0.1281622 -2.6392846 30 H H19 -6.5391800 -1.9502018 1.1272654 31 H H20 -7.5735907 -1.1393590 -0.9756908 32 N N1 -3.4717413 0.6675739 -2.1961950 33 C C43 2.2457629 -0.4270943 -1.9020376 34 C C28 3.5882710 -1.1232450 -1.7933452 35 C C29 6.1567406 -1.9909766 -1.1377501 36 C C30 4.3459948 -0.4893508 -0.8058743	13 C C13	-0.8742007	-1.6519576	2.7268607	
15 CC C15-1.3987967-4.03002501.373948016 CC16-0.7422704-2.87329653.388057817 HH9-0.7086380-0.71895653.257023018 HH10-1.8481632-2.7746498-0.323182119 HH11-1.6085138-4.95487240.842203520 HH13-0.4495167-2.89146204.435144621 HH14-0.9023902-5.01971483.228295722 CC17-3.7955609-0.4887031-0.255259923 CC19-6.5208579-0.9501512-0.781964024 CC20-4.5825509-1.18067410.675788725 CC21-4.4200062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393590-0.975690832 N N1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC283.5882710-1.1232450-1.793345235 CC296.1567406-1.9909766-1.137750136 CC304.3459948-0.4893508-0.805874337 CC314.1249803-2.21504	14 C C14	-1.5315676	-2.8098596	0.7143082	
16 C $C.16$ -0.7422704 -2.8732965 3.3880578 17 HH9 -0.7086380 -0.71895655 3.2570230 18 HH10 -1.8481632 -2.7746498 -0.3231821 19 HH11 -1.6085138 -4.9548724 0.8422035 20 HH13 -0.4495167 -2.8914620 4.4351446 21 HH14 -0.9023902 -5.0197148 3.2282957 22 CC17 -3.7955609 -0.4887031 -0.2552599 23 CC19 -6.5208579 -0.9501512 -0.7819640 24 CC20 -4.5825509 -1.1806741 0.6757887 25 CC21 -4.4200062 -0.0160944 -1.4459271 26 CC22 -5.7638151 -0.2394363 -1.7223693 27 CC23 -5.9343559 -1.4091503 0.4035597 28 HH12 -4.1469300 -1.5371087 1.6045115 29 HH16 -6.2173736 0.1281622 -2.6392846 30 HH19 -6.5391800 -1.9502018 1.1272854 31 HH20 -7.5735907 -1.1393590 -0.9756908 32 NN1 -3.4717413 0.6675739 -2.1961950 33 CC43 2.2457629 -0.4270943 -1.9020376 34 CC28 3.5882710 -1.1232450 -1.7933452 35 CC29 6.1567406 -1.9909766 -1.137501 36 CC30 4.345948 -0.4893508 -0.8058743 37 C <td>15 C C15</td> <td>-1.3987967</td> <td>-4.0300250</td> <td>1.3739480</td>	15 C C15	-1.3987967	-4.0300250	1.3739480	
17 HH9 -0.7086380 -0.7189565 3.2570230 18 HH10 -1.8481632 -2.7746498 -0.3231821 19 HH11 -1.6085138 -4.9548724 0.8422035 20 HH13 -0.4495167 -2.8914620 4.4351446 21 HH14 -0.9023902 -5.0197148 3.2282957 22 CC17 -3.7955609 -0.4887031 -0.2552599 23 CC19 -6.5208579 -0.9501512 -0.7819640 24 CC20 -4.5825509 -1.1806741 0.6757887 25 CC21 -4.4200062 -0.0160944 -1.4459271 26 CC22 -5.7638151 -0.2394363 -1.7223693 27 CC23 -5.9343559 -1.4091503 0.4035597 28 HH12 -4.1469300 -1.5371087 1.6045115 29 HH16 -6.5173736 0.1281622 -2.6392846 30 HH19 -6.5391800 -1.9502018 1.1272854 31 HH20 -7.5735907 -1.1393590 -0.9756908 32 N N1 -3.4717413 0.6675739 -2.1961950 33 CC43 2.2457629 -0.4270943 -1.9020376 34 CC28 3.5882710 -1.1232450 -1.7933452 35 CC29 6.1567406 -1.9909766 -1.1377501 36 CS3 5.6285091 -0.4893508 -0.8058743 37 CS1 4.1249803 -2.7526407 -3.2309986 41 H H25 5	16 C C16	-0.7422704	-2.8732965	3.3880578	
18 H H10 -1.8481632 -2.7746498 -0.3231821 19 H H11 -1.6085138 -4.9548724 0.8422035 20 H H13 -0.4495167 -2.8914620 4.4351446 21 H H14 -0.9023902 -5.0197148 3.2282957 22 C C17 -3.7955609 -0.4887031 -0.2552599 23 C C19 -6.5208579 -0.9501512 -0.7819640 24 C C20 -4.5825509 -1.1806741 0.6757887 25 C C21 -4.4200062 -0.0160944 -1.4459271 26 C C22 -5.7638151 -0.2394363 -1.7223693 27 C C23 -5.9343559 -1.4091503 0.4035597 28 H H12 -4.1469300 -1.5371087 1.6045115 29 H H16 -6.2173736 0.1281622 -2.6392846 30 H H19 -6.5391800 -1.9502018 1.1272854 31 H H20 -7.5735907 -1.1393590 -0.9756908 32 N N1 -3.4717413 0.6675739 -2.1961950	17 H H9	-0.7086380	-0.7189565	3.2570230	
19 HH11-1.6085138-4.95487240.842203520 HH13-0.4495167-2.89146204.435144621 HH14-0.9023902-5.01971483.228295722 CC17-3.7955609-0.4887031-0.255259923 CC19-6.5208579-0.9501512-0.781964024 CC20-4.5825509-1.18067410.675788725 CC21-4.4200062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393590-0.975690832 NN1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC283.5882710-1.1232450-1.793345235 CC296.1567406-1.9909766-1.137750136 CG304.3459948-0.4893508-0.805874337 CG314.1249803-2.2150478-2.462340438 CG325.4170827-2.6434614-2.129145139 CG335.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.	18 H H10	-1.8481632	-2.7746498	-0.3231821	
20 HH13-0.4495167-2.89146204.435144621 HH14-0.9023902-5.01971483.228295722 CC17-3.7955609-0.4887031-0.255259923 CC19-6.5208579-0.9501512-0.781964024 CC20-4.5825509-1.18067410.675788725 CC21-4.4200062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393590-0.975690832 NN1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC283.5882710-1.1232450-1.793345235 CC296.1567406-1.9909766-1.137750136 CG304.3459948-0.4893508-0.805874337 CG314.1249803-2.2150478-2.462340438 CG325.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3	19 H H11	-1.6085138	-4.9548724	0.8422035	
21 HH14-0.9023902-5.01971483.228295722 CC17-3.7955609-0.4887031-0.255259923 CC19-6.5208579-0.9501512-0.781964024 CC20-4.5825509-1.18067410.675788725 CC21-4.4200062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393590-0.975690832 NN1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC283.5882710-1.1232450-1.793345235 CC296.1567406-1.9909766-1.137750136 CC304.3459948-0.4893508-0.805874337 CC314.1249803-2.2150478-2.462340438 CC325.4170827-2.6434614-2.129145139 CC335.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3	20 H H13	-0.4495167	-2.8914620	4.4351446	
$22 \ C \ C17$ -3.7955609 -0.4887031 -0.2552599 $23 \ C \ C19$ -6.5208579 -0.9501512 -0.7819640 $24 \ C \ C20$ -4.5825509 -1.1806741 0.6757887 $25 \ C \ C21$ -4.4200062 -0.0160944 -1.4459271 $26 \ C \ C22$ -5.7638151 -0.2394363 -1.7223693 $27 \ C \ C23$ -5.9343559 -1.4091503 0.4035597 $28 \ H \ H12$ -4.1469300 -1.5371087 1.6045115 $29 \ H \ H16$ -6.2173736 0.1281622 -2.6392846 $30 \ H \ H19$ -6.5391800 -1.9502018 1.1272854 $31 \ H \ H20$ -7.5735907 -1.1393590 -0.9756908 $32 \ N \ N1$ -3.4717413 0.6675739 -2.1961950 $33 \ C \ C43$ 2.2457629 -0.4270943 -1.9020376 $34 \ C \ C28$ 3.5882710 -1.1232450 -1.7933452 $35 \ C \ C29$ 6.1567406 -1.9909766 -1.1377501 $36 \ C \ C30$ 4.3459948 -0.4893508 -0.8058743 $37 \ C \ C31$ 4.1249803 -2.2150478 -2.4623404 $38 \ C \ C32$ 5.4170827 -2.6434614 -2.1291451 $39 \ C \ C33$ 5.6285091 -0.8925001 -0.4517835 $40 \ H \ H24$ 3.5575813 -2.7326407 -3.2309986 $41 \ H \ H25$ 5.8493340 -3.4946098 -2.6469508 $42 \ H \ H26$ 6.2014354 -0.3870548 0.3189567 $43 \ H \ H27$ 7.1557090 -2.33962	21 H H14	-0.9023902	-5.0197148	3.2282957	
23 C C19-6.5208579-0.9501512-0.781964024 C C20-4.5825509-1.18067410.675788725 C C21-4.4200062-0.0160944-1.445927126 C C22-5.7638151-0.2394363-1.722369327 C C23-5.9343559-1.40915030.403559728 H H12-4.1469300-1.53710871.604511529 H H16-6.21737360.1281622-2.639284630 H H19-6.5391800-1.95020181.127285431 H H20-7.5735907-1.1393590-0.975690832 N N1-3.47174130.6675739-2.196195033 C C432.2457629-0.4270943-1.902037634 C C283.5882710-1.1232450-1.793345235 C C296.1567406-1.9909766-1.137750136 C C304.3459948-0.4893508-0.805874337 C C314.1249803-2.2150478-2.462340438 C C325.4170827-2.6434614-2.129145139 C C335.6285091-0.8925001-0.451783540 H H243.5575813-2.7326407-3.230998641 H H255.8493340-3.4946098-2.646950842 H H266.2014354-0.38705480.318956743 H H277.1557090-2.3396267-0.893132344 C C274.11063281.44501460.781301345 H H43.34696602.14465571.114647346 H H154.98211901.99116550.405158647 H H224.41566570.82727571.6309642	22 C C17	-3.7955609	-0.4887031	-0.2552599	
24 CC20-4.5825509-1.18067410.675788725 CC21-4.4200062-0.0160944-1.445927126 CC22-5.7638151-0.2394363-1.722369327 CC23-5.9343559-1.40915030.403559728 HH12-4.1469300-1.53710871.604511529 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393590-0.975690832 NN1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC283.5882710-1.1232450-1.793345235 CC296.1567406-1.9909766-1.137750136 CC304.3459948-0.4893508-0.805874337 CC314.1249803-2.2150478-2.462340438 CC325.4170827-2.6434614-2.129145139 CC335.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.9911655 </td <td>23 C C19</td> <td>-6.5208579</td> <td>-0.9501512</td> <td>-0.7819640</td>	23 C C19	-6.5208579	-0.9501512	-0.7819640	
25 CC21 -4.4200062 -0.0160944 -1.4459271 26 CC22 -5.7638151 -0.2394363 -1.7223693 27 CC23 -5.9343559 -1.4091503 0.4035597 28 HH12 -4.1469300 -1.5371087 1.6045115 29 HH16 -6.2173736 0.1281622 -2.6392846 30 HH19 -6.5391800 -1.9502018 1.1272854 31 HH20 -7.5735907 -1.1393590 -0.9756908 32 NN1 -3.4717413 0.6675739 -2.1961950 33 CC43 2.2457629 -0.4270943 -1.9020376 34 CC28 3.5882710 -1.1232450 -1.7933452 35 CC29 6.1567406 -1.9909766 -1.1377501 36 CC30 4.3459948 -0.4893508 -0.8058743 37 CC31 4.1249803 -2.2150478 -2.4623404 38 CC32 5.4170827 -2.6434614 -2.1291451 39 CC33 5.6285091 -0.8925001 -0.4517835 40 HH24 3.5575813 -2.7326407 -3.2309986 41 HH25 5.8493340 -3.4946098 -2.6469508 42 HH26 6.2014354 -0.3870548 0.3189567 43 HH27 7.1557090 -2.3396267 -0.8931323 44 CC27 4.1106328 1.4450146 0.7813013 45 HH4 3.3469660 2.1446557 1.1146473 46 HH15<	24 C C20	-4.5825509	-1.1806741	0.6757887	
$26 \ C \ C22$ -5.7638151-0.2394363-1.7223693 $27 \ C \ C23$ -5.9343559-1.40915030.4035597 $28 \ H \ H12$ -4.1469300-1.53710871.6045115 $29 \ H \ H16$ -6.21737360.1281622-2.6392846 $30 \ H \ H19$ -6.5391800-1.95020181.1272854 $31 \ H \ H20$ -7.5735907-1.1393590-0.9756908 $32 \ N \ N1$ -3.47174130.6675739-2.1961950 $33 \ C \ C43$ 2.2457629-0.4270943-1.9020376 $34 \ C \ C28$ 3.5882710-1.1232450-1.7933452 $35 \ C \ C29$ 6.1567406-1.9909766-1.1377501 $36 \ C \ C30$ 4.3459948-0.4893508-0.8058743 $37 \ C \ C31$ 4.1249803-2.2150478-2.4623404 $38 \ C \ C32$ 5.4170827-2.6434614-2.1291451 $39 \ C \ C33$ 5.6285091-0.8925001-0.4517835 $40 \ H \ H24$ 3.5575813-2.7326407-3.2309986 $41 \ H \ H25$ 5.8493340-3.4946098-2.6469508 $42 \ H \ H26$ 6.2014354-0.38705480.3189567 $43 \ H \ H27$ 7.1557090-2.3396267-0.8931323 $44 \ C \ C27$ 4.11063281.44501460.7813013 $45 \ H \ H4$ 3.34696602.14465571.1146473 $46 \ H \ H15$ 4.98211901.99116550.4051586 $47 \ H \ H22$ 4.41566570.82727571.6309642 $48 \ C \ C26$ 2.00897480.2027342-3.3013926 $49 \ H \ H23$ <	25 C C21	-4.4200062	-0.0160944	-1.4459271	
27 CC23 -5.9343559 -1.4091503 0.4035597 28 HH12 -4.1469300 -1.5371087 1.6045115 29 HH16 -6.2173736 0.1281622 -2.6392846 30 HH19 -6.5391800 -1.9502018 1.1272854 31 HH20 -7.5735907 -1.1393590 -0.9756908 32 NN1 -3.4717413 0.6675739 -2.1961950 33 CC43 2.2457629 -0.4270943 -1.9020376 34 CC28 3.5882710 -1.1232450 -1.7933452 35 CC29 6.1567406 -1.9909766 -1.1377501 36 CC30 4.3459948 -0.4893508 -0.8058743 37 CC31 4.1249803 -2.2150478 -2.4623404 38 CC32 5.4170827 -2.6434614 -2.1291451 39 CC33 5.6285091 -0.8925001 -0.4517835 40 HH24 3.5575813 -2.7326407 -3.2309986 41 HH25 5.8493340 -3.4946098 -2.6469508 42 HH26 6.2014354 -0.3870548 0.3189567 43 HH27 7.1557090 -2.3396267 -0.8931323 44 CC27 4.1106328 1.4450146 0.7813013 45 HH4 3.3469660 2.1446557 1.6309642 48 CC26 2.0089748 0.2027342 -3.3013926 49 HH23 1.0272745 0.6843726 -3.3293967 50 HH28	26 C C22	-5.7638151	-0.2394363	-1.7223693	
28 HH12-4.1469300-1.53710871.6045115 $29 H$ H16-6.21737360.1281622-2.6392846 $30 H$ H19-6.5391800-1.95020181.1272854 $31 H$ H20-7.5735907-1.1393590-0.9756908 $32 N$ N1-3.47174130.6675739-2.1961950 $33 C$ C432.2457629-0.4270943-1.9020376 $34 C$ C283.5882710-1.1232450-1.7933452 $35 C$ C296.1567406-1.9909766-1.1377501 $36 C$ C304.3459948-0.4893508-0.8058743 $37 C$ C314.1249803-2.2150478-2.4623404 $38 C$ C325.4170827-2.6434614-2.1291451 $39 C$ C335.6285091-0.8925001-0.4517835 $40 H$ H243.5575813-2.7326407-3.2309986 $41 H$ H255.8493340-3.4946098-2.6469508 $42 H$ H266.2014354-0.38705480.3189567 $43 H$ H277.1557090-2.3396267-0.8931323 $44 C$ C274.11063281.44501460.7813013 $45 H$ H43.34696602.14465571.1146473 $46 H$ H154.98211901.99116550.4051586 $47 H$ H224.41566570.82727571.6309642 $48 C$ C262.00897480.2027342-3.3013926 $49 H$ H231.02727450.6843726-3.3293967 $50 H$ H2	27 C C23	-5.9343559	-1.4091503	0.4035597	
29 HH16-6.21737360.1281622-2.639284630 HH19-6.5391800-1.95020181.127285431 HH20-7.5735907-1.1393590-0.975690832 NN1-3.47174130.6675739-2.196195033 CC432.2457629-0.4270943-1.902037634 CC283.5882710-1.1232450-1.793345235 CC296.1567406-1.9909766-1.137750136 CC304.3459948-0.4893508-0.805874337 CC314.1249803-2.2150478-2.462340438 CC325.4170827-2.6434614-2.129145139 CC335.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-	28 H H12	-4.1469300	-1.5371087	1.6045115	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	29 H H16	-6.2173736	0.1281622	-2.6392846	
31 H 420 -7.5735907 -1.1393590 -0.9756908 $32 N$ $N1$ -3.4717413 0.6675739 -2.1961950 $33 C$ $C43$ 2.2457629 -0.4270943 -1.9020376 $34 C$ $C28$ 3.5882710 -1.1232450 -1.7933452 $35 C$ $C29$ 6.1567406 -1.9909766 -1.1377501 $36 C$ $C30$ 4.3459948 -0.4893508 -0.8058743 $37 C$ $C31$ 4.1249803 -2.2150478 -2.4623404 $38 C$ $C32$ 5.4170827 -2.6434614 -2.1291451 $39 C$ $C33$ 5.6285091 -0.8925001 -0.4517835 $40 H$ 4235575813 -2.7326407 -3.2309986 $41 H$ 425 5.8493340 -3.4946098 -2.6469508 $42 H$ $H26$ 6.2014354 -0.3870548 0.3189567 $43 H$ $H27$ 7.1557090 -2.3396267 -0.8931323 $44 C$ $C27$ 4.1106328 1.4450146 0.7813013 $45 H$ 4.9821190 1.9911655 0.4051586 $47 H$ 4.29821190 1.9911655 0.4051586 $47 H$ $H23$ 1.0272745 0.6843726 -3.3293967 $50 H$ $H28$ 2.0266771 -0.5907538 -4.0561846 $51 H$ $H29$ 2.7849709 0.9323165 -3.5568887 $52 C$ $C44$ 1.0631050 -1.3765769 -1.5772075 <td>30 H H19</td> <td>-6.5391800</td> <td>-1.9502018</td> <td>1.1272854</td>	30 H H19	-6.5391800	-1.9502018	1.1272854	
32 N N1 -3.4717413 0.6675739 -2.1961950 33 C C43 2.2457629 -0.4270943 -1.9020376 34 C C28 3.5882710 -1.1232450 -1.7933452 35 C C29 6.1567406 -1.9909766 -1.1377501 36 C C30 4.3459948 -0.4893508 -0.8058743 37 C C31 4.1249803 -2.2150478 -2.4623404 38 C C32 5.4170827 -2.6434614 -2.1291451 39 C C33 5.6285091 -0.8925001 -0.4517835 40 H H24 3.5575813 -2.7326407 -3.2309986 41 H H25 5.8493340 -3.4946098 -2.6469508 42 H H26 6.2014354 -0.3870548 0.3189567 43 H H27 7.1557090 -2.3396267 -0.8931323 44 C C27 4.1106328 1.4450146 0.7813013 45 H H4 3.3469660 2.1446557 1.1146473 46 H H15 4.9821190 1.9911655 0.4051586 47 H H22 4.4156657 0.8272757 1.6309642 48 C C26 2.0089748 0.2027342 -3.3013926 49 H H23 1.0272745 0.6843726 -3.3293967 50 H H28 2.0266771 -0.5907538 -4.0561846 51 H H29 2.7849709 0.9323165 -3.5568887 52 C C44 1.0631050 -1.3765769 -1.5772075	31 H H20	-7.5735907	-1.1393590	-0.9756908	
33 CC43 2.2457629 -0.4270943 -1.9020376 34 CC28 3.5882710 -1.1232450 -1.7933452 35 CC29 6.1567406 -1.9909766 -1.1377501 36 CC30 4.3459948 -0.4893508 -0.8058743 37 CC31 4.1249803 -2.2150478 -2.4623404 38 CC32 5.4170827 -2.6434614 -2.1291451 39 CC33 5.6285091 -0.8925001 -0.4517835 40 HH24 3.5575813 -2.7326407 -3.2309986 41 HH25 5.8493340 -3.4946098 -2.6469508 42 HH26 6.2014354 -0.3870548 0.3189567 43 HH27 7.1557090 -2.3396267 -0.8931323 44 CC27 4.1106328 1.4450146 0.7813013 45 HH4 3.3469660 2.1446557 1.1146473 46 HH15 4.9821190 1.9911655 0.4051586 47 HH22 4.4156657 0.8272757 1.6309642 48 CC26 2.0089748 0.2027342 -3.3013926 49 HH23 1.0272745 0.6843726 -3.3293967 50 HH28 2.0266771 -0.5907538 -4.0561846 51 HH29 2.7849709 0.9323165 -3.5568887 52 CC44 1.0631050 -1.3765769 -1.5772075	32 N N1	-3.4717413	0.6675739	-2.1961950	
$34 \ C \ C28$ 3.5882710 -1.1232450 -1.7933452 $35 \ C \ C29$ 6.1567406 -1.9909766 -1.1377501 $36 \ C \ C30$ 4.3459948 -0.4893508 -0.8058743 $37 \ C \ C31$ 4.1249803 -2.2150478 -2.4623404 $38 \ C \ C32$ 5.4170827 -2.6434614 -2.1291451 $39 \ C \ C33$ 5.6285091 -0.8925001 -0.4517835 $40 \ H \ H24$ 3.5575813 -2.7326407 -3.2309986 $41 \ H \ H25$ 5.8493340 -3.4946098 -2.6469508 $42 \ H \ H26$ 6.2014354 -0.3870548 0.3189567 $43 \ H \ H27$ 7.1557090 -2.3396267 -0.8931323 $44 \ C \ C27$ 4.1106328 1.4450146 0.7813013 $45 \ H \ H4$ 3.3469660 2.1446557 1.1146473 $46 \ H \ H15$ 4.9821190 1.9911655 0.4051586 $47 \ H \ H22$ 4.4156657 0.8272757 1.6309642 $48 \ C \ C26$ 2.0089748 0.2027342 -3.3013926 $49 \ H \ H23$ 1.0272745 0.6843726 -3.3293967 $50 \ H \ H28$ 2.0266771 -0.5907538 -4.0561846 $51 \ H \ H29$ 2.7849709 0.9323165 -3.5568887 $52 \ C \ C44$ 1.0631050 -1.3765769 -1.5772075	33 C C43	2.2457629	-0.4270943	-1.9020376	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	34 C C28	3.5882710	-1.1232450	-1.7933452	
36 CC304.3459948-0.4893508-0.805874337 CC314.1249803-2.2150478-2.462340438 CC325.4170827-2.6434614-2.129145139 CC335.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	35 C C29	6.1567406	-1.9909766	-1.1377501	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36 C C30	4.3459948	-0.4893508	-0.8058743	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	37 C C31	4.1249803	-2.2150478	-2.4623404	
39 CC335.6285091-0.8925001-0.451783540 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	38 C C32	5.4170827	-2.6434614	-2.1291451	
40 HH243.5575813-2.7326407-3.230998641 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	39 C C33	5.6285091	-0.8925001	-0.4517835	
41 HH255.8493340-3.4946098-2.646950842 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	40 H H24	3.5575813	-2.7326407	-3.2309986	
42 HH266.2014354-0.38705480.318956743 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	41 H H25	5.8493340	-3.4946098	-2.6469508	
43 HH277.1557090-2.3396267-0.893132344 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	42 H H26	6.2014354	-0.3870548	0.3189567	
44 CC274.11063281.44501460.781301345 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	43 H H27	7.1557090	-2.3396267	-0.8931323	
45 HH43.34696602.14465571.114647346 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	44 C C27	4 1106328	1 4450146	0 7813013	
46 HH154.98211901.99116550.405158647 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	45 H H4	3 3469660	2 1446557	1 1146473	
47 HH224.41566570.82727571.630964248 CC262.00897480.2027342-3.301392649 HH231.02727450.6843726-3.329396750 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	46 H H15	4,9821190	1.9911655	0.4051586	
48 C C26 2.0089748 0.2027342 -3.3013926 49 H H23 1.0272745 0.6843726 -3.3293967 50 H H28 2.0266771 -0.5907538 -4.0561846 51 H H29 2.7849709 0.9323165 -3.5568887 52 C C44 1.0631050 -1.3765769 -1.5772075	47 H H22	4,4156657	0.8272757	1.6309642	
49 H H23 1.0272745 0.6843726 -3.3293967 50 H H28 2.0266771 -0.5907538 -4.0561846 51 H H29 2.7849709 0.9323165 -3.5568887 52 C C44 1.0631050 -1.3765769 -1.5772075	48 C C 26	2,0089748	0.2027342	-3.3013926	
50 HH282.0266771-0.5907538-4.056184651 HH292.78497090.9323165-3.556888752 CC441.0631050-1.3765769-1.5772075	49 H H23	1 0272745	0 6843726	-3 3293967	
51 H H29 2.7849709 0.9323165 -3.5568887 52 C C44 1.0631050 -1.3765769 -1.5772075	50 H H28	2.0266771	-0.5907538	-4.0561846	
52 C C44 1.0631050 -1.3765769 -1.5772075	51 H H29	2,7849709	0.9323165	-3.5568887	
	52 C C44	1.0631050	-1.3765769	-1.5772075	

53 H	H30	1.0552330	-2.1821521	-2.3193475
54 H	H31	0.1212522	-0.8290203	-1.6404602
55 H	H33	1.1541795	-1.8230311	-0.5836134
56 H	H8	1.5398297	4.9835682	4.8125552
57 C	C1	2.3877538	0.6714825	-0.8586131
58 C	C2	1.3762243	1.6922579	-0.5618523
59 H	H17	0.6140752	1.6990300	-1.3464166
60 H	H18	1.8614825	2.6715564	-0.5129426
61 C	C9	0.5693543	1.4982650	0.7959812
62 C	C24	-1.3556019	-0.3003791	0.6434883
63 C	C18	-2.4152593	-0.0654453	-0.3017667
64 C	C10	-2.2299994	0.6676446	-1.5367374
65 O	01	-1.2063210	1.1750357	-2.0560598
66 C	C25	-0.3952109	0.6156822	0.8601138
67 N	N2	3.5823683	0.5821613	-0.2706073
68 C	C34	-3.6787806	1.2608419	-3.4932703
69 H	H2	-4.4607466	2.0307052	-3.4594927
70 H	H3	-3.9661646	0.5074086	-4.2392642
71 H	H21	-2.7327289	1.7183282	-3.7898957
Convergence after 18 cycles				

Heat of Formation:

-1575.763902 a.u.

Solvation Energy SM5.4/P:

-1575.78503 a.u.

6.8. Structure of the *N*-tosyl allenyl enolate 16b

Cartesian Coordinates (Angstroms)				
Atom	Atom X Y			
1 C C3	-1 3586072	-1 3011617	2 8575581	
10.03	1 4574940	2 5646450	5 4291260	
	1 7975201	-2.5040450	2 0771957	
	-1.7075201	-0.0009112	2 0500047	
	1 0202656	-2.1323993	3.0390947 4.0006575	
	-1.0302030	-3.3101374	4.3200373	
	-1.0330027	-1.2320733	0.2447124	
	-2.0898199	0.3771141	3.8363519	
	-0.6088908	-3.3217731	2.2269734	
	-0.7187259	-4.3436343	4.45/688/	
10 H H/	-2.1698569	-0.6386854	6.0913581	
11 C C11	-1.0492507	2.8640283	1.0094010	
12 C C12	-2.6310327	5.1876511	1.2017562	
13 C C13	-1.81/11/4	3.1198812	2.1560817	
14 C C14	-1.0741130	3.8048528	-0.0345034	
15 C C15	-1.8599170	4.9521166	0.0606594	
16 C C16	-2.6032830	4.2678455	2.2515554	
17 H H9	-1.7687702	2.4201973	2.9849894	
18 H H10	-0.4714306	3.6246668	-0.9190269	
19 H H11	-1.8670315	5.6667810	-0.7586977	
20 H H13	-3.1843207	4.4500104	3.1522956	
21 H H14	-3.2382670	6.0861496	1.2760398	
22 C C17	2.0635226	2.5945342	0.2079052	
23 C C19	4.3831337	4.1306546	-0.1409974	
24 C C20	2.2207647	3.7974701	0.9124350	
25 C C21	3.1094562	2.1743862	-0.6591185	
26 C C22	4.2623048	2.9283544	-0.8474848	
27 C C23	3.3764125	4.5566287	0.7316542	
28 H H12	1.4476571	4.1309408	1.5977344	
29 H H16	5.0387070	2.5954219	-1.5221815	
30 H H19	3.4938717	5.4897839	1.2771986	
31 H H20	5.2769056	4.7341015	-0.2758299	
32 N N1	2.7102081	0.9277964	-1.2099260	
33 C C43	-2.8686202	-0.64/2536	-1.8828010	
34 C C28	-4.3558507	-0.4814557	-2.11/9153	
35 C C29	-7.1359230	-0.3498854	-1.9501451	
36 C C 30	-5.0408340	-0.8829078	-0.9701176	
37 C C31	-5.0762077	-0.0043420	-3.2052284	
38 C C32	-6.4/28534	0.0556973	-3.1131141	
39 C C33	-6.4239004	-0.8309872	-0.8464558	
40 H H24	-4.5705440	0.3184029	-4.1110445	
41 H H25	-7.0491589	0.4244187	-3.9565782	
42 H H26	-6.93/18//	-1.1424611	0.0574318	
43 H H27	-8.2189045	-0.2908182	-1.8986576	
44 C C27	-4.4902697	-1.8134164	1.3052923	
45 H H4	-3.6311234	-2.2114693	1.8405828	
46 H H15	-5.2473278	-2.5922344	1.1/93238	
47 H H22	-4.91314/2	-0.9853389	1.881/548	
48 5 51	3.5565389	-0.0595776	-2.3092784	
49 C C36	3.9014539	-1.5495095	-1.3/34559	
50 0 037	4.4784190	-3.8/23364	0.0728740	
51 C C38	3.03/4648	-2.6395029	-1.456/218	
52 C C39	5.0531615	-1.60001/4	-0.5839728	

53 C	C40	5.3299326	-2.7583808	0.1358431
54 C	C41	3.3366579	-3.7941304	-0.7340666
55 H	H32	2.1491415	-2.5700118	-2.0715228
56 H	H35	5.7219641	-0.7467591	-0.5463378
57 H	H36	6.2258264	-2.8011379	0.7510589
58 H	H37	2.6696494	-4.6508505	-0.7983231
59 C	C42	4.7990623	-5.1265555	0.8512497
60 H	H38	5.7417630	-5.5745719	0.5125928
61 H	H39	4.0127092	-5.8792467	0.7370301
62 H	H40	4.9107112	-4.9144763	1.9215994
63 O	O2	2.6715607	-0.3995770	-3.4201572
64 O	O3	4.8343770	0.6126877	-2.5592119
65 C	C26	-2.2040007	-1.6393660	-2.8735747
66 H	H23	-1.1343269	-1.7215869	-2.6621778
67 H	H28	-2.3174411	-1.2527955	-3.8914843
68 H	H29	-2.6663435	-2.6313891	-2.8304460
69 C	C44	-2.1161800	0.7104025	-1.9472032
70 H	H30	-2.2188803	1.1098439	-2.9614291
71 H	H31	-1.0563493	0.5584895	-1.7349735
72 H	H33	-2.5285105	1.4381604	-1.2441218
73 H	H8	-1.4942239	-3.0150856	6.4161703
74 C	C1	-2.8463884	-1.2216275	-0.4757807
75 C	C2	-1.6336067	-1.6274932	0.2610794
76 H	H17	-0.7683505	-1.5694202	-0.4032707
77 H	H18	-1.7663689	-2.6623482	0.5945802
78 C	C9	-1.2774064	-0.7441428	1.5149484
79 C	C24	-0.2589071	1.6002704	0.8691142
80 C	C18	1.0190763	1.5964928	0.1885352
81 C	C10	1.4285296	0.5363676	-0.6757714
82 O	01	0.8773121	-0.5300339	-1.0202842
83 C	C25	-0.7953102	0.4627372	1.3300352
84 N	N2	-4.0848147	-1.3276352	-0.0116613
-				

Convergence after 98 cycles

Heat of Formation:

Solvation Energy SM5.4/P:

-2355.382800 a.u.

-2355.41676 a.u.

6.9. HOMO and LUMO of 2Z,4Z-8a

LUMO -1.92911 eV

HOMO -4.66131 eV

6.10. TD-DFT calculation of 2E,4Z,6Z-10a

Computed xyz-Coordinates for 2E,4Z,6Z-10a

The ground state geometry of 2E,4Z,6Z-**10a** Trien EZZ was optimized in a DFT calculation with the B3LYP functional and the 6-311G(d,p) basis set in the program package Gaussian09. The minima structure was confirmed by analytical frequency analysis. Computational details of the calculated **2E,4Z,6Z-10a**:

XYZ-coordinates for 10a:

С	-0.336926	0.458955	0.154811
С	-1.723133	0.506568	0.071686
С	-2.479604	1.725742	-0.319862
С	-3.970849	3.975620	-1.104981
С	-2.127193	2.456868	-1.462959
С	-3.591423	2.146022	0.425500
С	-4.324846	3.264639	0.041957
С	-2.869984	3.566418	-1.856335
С	0.644841	1.497764	0.225216
С	1.987882	1.223881	-0.037129
С	0.272430	2.862011	0.705235
С	-0.349763	5.423529	1.665366
С	-0.305307	3.027881	1.969372
С	0.528792	3.997174	-0.074428
С	0.212309	5.266711	0.397664
С	-0.605012	4.300921	2.450557
С	2.424375	0.020386	-0.762848
С	3.198889	1.972473	0.296407
С	5.813413	2.900638	0.702578
С	3.429682	3.118276	1.068146
С	4.319583	1.290154	-0.236589
С	5.619735	1.743363	-0.054878
С	4.730939	3.574746	1.265923
Ν	3.843438	0.134541	-0.916968
0	1.788424	-0.927330	-1.194565
С	-2.433667	-0.695354	0.439634
С	-3.695626	-1.175726	0.181892
Ν	-4.593067	-0.828133	-0.796156
С	-4.318602	-2.304568	1.034761
С	-5.813333	-1.508193	-0.626908
С	-7.980932	-3.082597	0.051012
С	-5.713596	-2.397160	0.445644
С	-6.980650	-1.382917	-1.373360
C	-8.066842	-2.188097	-1.014776
С	-6.793806	-3.193129	0.787723

С	-4.354756	-1.925520	2.528695
S	4.761671	-1.114870	-1.653582
С	4.621768	-2.495646	-0.528984
С	4.434239	-4.649401	1.232145
С	3.606509	-3.433534	-0.705797
С	5.545290	-2.610910	0.510135
С	5.441940	-3.687625	1.382578
С	3.523441	-4.503519	0.178512
С	4.351863	-5.829877	2.165897
0	4.121699	-1.447673	-2.917254
0	6.144864	-0.647655	-1.646786
С	-3.550068	-3.631867	0.835375
С	-4.294946	-0.104714	-2.024487
Н	0.073137	-0.540875	0.205843
Н	-1.282178	2.132688	-2.058853
Н	-3.870786	1.598059	1.317567
Н	-5.173515	3.581745	0.637586
Н	-2.589434	4.111106	-2.750793
Н	-4.547571	4.841546	-1.409711
Н	-0.506184	2,155880	2.580720
H	0.975517	3.879444	-1.054888
Н	0.405906	6.134931	-0.222149
H	-1.040015	4.414365	3.437172
H	-0.588669	6.413774	2.036368
Н	2.604957	3.652076	1.516140
Н	6.456536	1.215392	-0.483305
Н	4.898276	4.463583	1.863395
Н	6.821766	3.268258	0.853838
Н	-1.869195	-1.342495	1.103269
Н	-7.059910	-0.684390	-2.196639
Н	-8.990606	-2.108058	-1.576301
Н	-6.728366	-3.893747	1.613095
Н	-8.836300	-3.694227	0.312540
Н	-3.343415	-1.808047	2.924488
Н	-4.855669	-2.709854	3.101903
Н	-4.895754	-0.989639	2.683736
Н	2.894795	-3.316026	-1.510077
Н	6.335213	-1.880519	0.626474
Н	6.157873	-3.783021	2.191327
Н	2.735124	-5.236319	0.046715
Н	4.955111	-6.661528	1.786390
Н	3.325572	-6.188339	2.264999
Н	4.729358	-5.578358	3.158871
Н	-2.528700	-3.551966	1.214845
Н	-3.506320	-3.906693	-0.220581
Н	-4.052844	-4.436005	1.378755
H	-4.610547	0.938409	-1.974378
H	-4.810777	-0.596325	-2.851338
Н	-3.223939	-0.142814	-2.209591

SCF Done: E(RB3LYP) = -2355.95986296	A.U. after	14 cycles
Sum of electronic and zero-point Energies=	-2355.2	88329
Sum of electronic and thermal Energies=	-2355.24	16284
Sum of electronic and thermal Enthalpies=	-2355.24	45340
Sum of electronic and thermal Free Energies=	-2355.	367249

Figure S1: Optimized geometry of **2***E***,4***Z***,6***Z***-10***a* **at the B3LYP 6-311G(d,p) level of theory.**

Computed UV-vis spectrum of calculated compound 10a by TD-DFT

The optimized structure was used in a TD-DFT calculation using the hybrid exchange-correlation functional CAM-B3LYP.

First four dominant transitions of the first excited state for **10a** regarding to the oscillatory strength:

- 1) 541 nm, oscillator strength: 1.4722, orbitals involved: HOMO \rightarrow LUMO
- 2) 345 nm, oscillator strength: 0.2141, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO+2
- 3) 286 nm, oscillator strength: 0.1454, orbitals involved: HOMO-11 \rightarrow LUMO, HOMO-2 \rightarrow LUMO, HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO+1, HOMO \rightarrow LUMO+2
- 4) 265 nm, oscillator strength: 0.0994, orbitals involved: HOMO-5 \rightarrow LUMO, HOMO-2 \rightarrow LUMO+6, , HOMO-1 \rightarrow LUMO+5, HOMO-1 \rightarrow LUMO+5, HOMO \rightarrow LUMO+6

¹ Organikum, 22nd ed.; Becker, H. G. O.; Beckert, R.; Domschke, G.; Fanghänel, E.; Habicher, W. D.; Metz, P.; Pavel, D.; Schwetlick, K. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, **2004**.

² D´Souza, D. M.; Kiel, A.; Herten, D. P.; Müller, T. J. J. *Chem. Eur. J.* **2008**, *14*, 529-547.