Supporting Information File 1

For

A novel family of (1-aminoalkyl)(trifluoromethyl)- and (difluoromethyl)phosphinic acids - analogues of $\boldsymbol{\alpha}$-amino acids

Natalia V. Pavlenko ${ }^{1}$, Tatiana I. Oos ${ }^{1}$, Yurii L. Yagupolskii* ${ }^{1}$, Igor I. Gerus ${ }^{2}$, Uwe Doeller ${ }^{3}$ and Lothar Willms ${ }^{3}$

Address: ${ }^{1}$ Institute of Organic Chemistry National Academy of Sciences of Ukraine, Murmanskaya str. 5, 02660 Kiev-94, Ukraine, ${ }^{2}$ Institute of Bioorganic Chemistry and Petrochemistry National Academy of Sciences of Ukraine, Murmanskaya str. 1, 02660 Kiev-94, Ukraine and ${ }^{3}$ Bayer CropScience Aktiengesellschaft BCS AG-R-WC-WCC-C2 Weed Control Chemistry 2, Frankfurt, G836, 101, Germany

Email: Yurii L. Yagupolskii - Yagupolskii@ioch.kiev.ua
*Corresponding author

Experimental procedures, elemental analysis and NMR data.

[(Dibenzylamino)(phenyl)methyl](trifluoromethyl)phosphinic acid (13b).
Following the general procedure (I) using benzaldehyde ($2.12 \mathrm{~g}, 20 \mathrm{mmol}$) 13b was obtained as a white solid ($2.35 \mathrm{~g}, 28 \%$); mp $280^{\circ} \mathrm{C}$; [Found: C, $62.88 ; \mathrm{H}, 5.21$; N. 3.50. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires C, 63.00; H, 5.05; N, 3.34\%]; NMR (DMSO- d_{6}) $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 4.02\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 12.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.07\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 11.1, \mathrm{PC} H\right), 4.14$
$\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 12.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.37-7.39\left(15 \mathrm{H}, \mathrm{m}, H_{\text {arom. }}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 6.4\left(\mathrm{qd},{ }^{2} \mathrm{~J}_{\mathrm{PF}}\right.$ $79,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 11$); $\delta_{\mathrm{F}}(188 \mathrm{MHz})-74.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 79\right)$.
[1-(Dibenzylamino)ethyl](trifluoromethyl)phosphinic acid (13c). 13c was synthesized according to the general procedure (I) and was characterized in a mixture with $\mathrm{Bn}_{2} \mathrm{NH} \mathrm{HCl}(\sim 1: 7)$ by NMR spectroscopy. NMR (DMSO-d d_{6} : δ_{H} $(300 \mathrm{MHz}) 1.44\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 13.9, \mathrm{~J}_{\mathrm{HH}} 7.9, \mathrm{CH}_{3}\right), 3.08(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 4.28(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}_{\mathrm{AB}} 13.5, \mathrm{CH}_{2} \mathrm{Ph}$), $4.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 13.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.38-7.63$ (m, $H_{\text {arom }}$), 9.81 (br s, $\mathrm{NH}) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 5.9\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 80\right)$.
Ammonium [hydroxy(phenyl)methyl](trifluoromethyl)phosphinate (15). The filtrate after separating of $\mathbf{1 3 b}$ was evaporated to the dryness. The addition to the residue of an excess of ethanolic ammonia solution gave the precipitate, which was filtered, crystallized and dried to give 15 as a white solid ($3.1 \mathrm{~g}, 60 \%$); $\mathrm{mp} 210^{\circ} \mathrm{C}$ (dec.)(from EtOH); [Found: C, $37.55 ; \mathrm{H}, 3.72 ; \mathrm{N}, 5.42 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{P}$ requires C , $37.66 ; \mathrm{H}, 3.56 ; \mathrm{N}, 5.49 \%]$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 4.88\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 6.9\right.$, $\mathrm{PCH}), 7.22-7.31\left(5 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 6.8\left(\mathrm{qd},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 76,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 7\right) ; \delta_{\mathrm{F}}(188$ MHz) -74.2 (d, ${ }^{2} \mathrm{~J}_{\mathrm{FP}} 76$).
[Amino(phenyl)methyl](trifluoromethyl)phosphinic acid (14b). Following the general procedure (II) $\mathbf{1 4 b}$ was obtained as a white powder ($1.08 \mathrm{~g}, 90 \%$); mp $263^{\circ} \mathrm{C}$ (dec.); [Found: C, 39.96; H, 3.60; N. 5.69. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires C , 40.18; $\mathrm{H}, 3.79$; N, $5.86 \%]$; NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 4.57\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 9.3, \mathrm{PCH}\right), 7.2-$ $7.25\left(5 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 11.5\left(\mathrm{qd},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 82,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 9\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-75.5(\mathrm{~d}$, ${ }^{2} \mathrm{~J}_{\mathrm{FP}} 82$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}) 51.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 102.5, \mathrm{PCH}\right), 122,5\left(\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 316.8,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 176.2\right.$, $\left.C \mathrm{~F}_{3}\right), 128.4,128.5,129.4,129.7,130.0,130.1$.
[(Benzylamino)methyl](trifluoromethyl)phosphinic acid (17a) (Table 1, entry 1). Following the general procedure (III) a crude solid, obtained from 1 (1.28 g , $9.6 \mathrm{mmol})$ and $\mathbf{1 6 a}(1.14 \mathrm{~g}, 3.2 \mathrm{mmol})$ was purified by recrystallization to give $\mathbf{1 7 a}$ as a white solid ($2.0 \mathrm{~g}, 83 \%$); $\mathrm{mp} 282^{\circ} \mathrm{C}$ (from water); [Found: C, 42.93 ; H, 4.51; N. 5.66. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires C, 42.70; $\left.\mathrm{H}, 4.38 ; \mathrm{N}, 5.53 \%\right]$; NMR (DMSO- d_{6}): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 2.85\left(2 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 9.6, \mathrm{PCH}_{2}\right), 4.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.42(3 \mathrm{H}, \mathrm{m}$,
$\left.H_{\text {arom }}\right), 7.50\left(2 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right), 9.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 4.6\left(\mathrm{qt},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 85,{ }^{2} \mathrm{~J}_{\mathrm{PH}}\right.$ 10); $\delta_{\mathrm{F}}(188 \mathrm{MHz})-74.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 85\right)$.
[(Benzylamino)(phenyl)methyl](trifluoromethyl)phosphinic acid (17b) (Table 1, entry 2). Following the general procedure (III) a crude solid, obtained from $\mathbf{1}$ $(0.13 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathbf{1 6 b}(0.20 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by recrystallization to give $\mathbf{1 7 b}$ as a white solid ($0.29 \mathrm{~g}, 87 \%$); mp $293^{\circ} \mathrm{C}$ (from $\mathrm{EtOH} /$ water); [Found: C, 54.80; $\mathrm{H}, 4.62$; N. 4.17. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 54.72 ; \mathrm{H}, 4.59 ; \mathrm{N}, 4.25 \%$]; NMR (DMSO- d_{6}): $\delta \mathrm{H}(300 \mathrm{MHz}) 3.95\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 12.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.05\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}\right.$ $10.0, \mathrm{PC} H), 4.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 12.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.33-7.42\left(10 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right) ; \delta_{\mathrm{P}}(121$ $\mathrm{MHz}) 7.9\left(\mathrm{qd},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 79,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 10\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-74.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 79\right)$.
[1-(Benzylamino)ethyl](trifluoromethyl)phosphinic acid (17c) (Table 1, entry 3). Following the general procedure (III) a crude solid, obtained from $\mathbf{1}$ ($0.5 \mathrm{~g}, 3.7$ $\mathrm{mmol})$ and the freshly prepared $\mathbf{1 6 c}(0.99 \mathrm{~g}, 7.4 \mathrm{mmol})$ was dissolved in acetone. Upon standing at $5{ }^{\circ} \mathrm{C}$ overnight $\mathbf{1 7 c}$ crystallized, the crystals were filtered, dissolved in water and passed down an ion-exchange column to give after the evaporation of water $\mathbf{1 7 c}$ as a white solid $(0.58 \mathrm{~g}, 59 \%) ; \mathrm{mp} 212^{\circ} \mathrm{C}$; [Found: C, 45.09; H, 5.01; N, 5.08. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 44.95 ; \mathrm{H}, 4.90 ; \mathrm{N}, 5.24 \%\right]$; NMR (DMSO- d_{6}): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.33\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 13.5,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.5, \mathrm{CH}_{3}\right), 2.86-2.94$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{PC} H), 4.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 13.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 13.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.38-$ $7.46\left(3 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right), 7.50-7.54\left(2 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right), 8.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 4.6$ (qm, $\left.{ }^{2} \mathrm{~J}_{\mathrm{PF}} 79\right) . \delta_{\mathrm{F}}(188 \mathrm{MHz})-72.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 79\right)$.
[1-(Benzylamino)-2-methylpropyl](trifluoromethyl)phosphinic acid
(Table 1, entry 4). Following the general procedure (III) a crude solid, obtained from $1(0.20 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathbf{1 6 d}(0.24 \mathrm{~g}, 1.5 \mathrm{mmol})$ was triturated with acetone to afford $\mathbf{1 7 d}$ of a sufficient purity as a white solid $(0.40 \mathrm{~g}, 92 \%), \mathrm{mp} 207^{\circ} \mathrm{C}$; [Found: C, 48.77; H, 5.79; N, 4.78. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 48.82 ; \mathrm{H}, 5.80 ; \mathrm{N}$, $4.74 \%]$; NMR (DMSO-d ${ }_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.03\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.6, \mathrm{CH}_{3}\right), 1.09(3 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.6, \mathrm{CH}_{3}\right), 2.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.81(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 3.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H)$, $4.24\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 13.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.37\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 13.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.34-7.46(3 \mathrm{H}, \mathrm{m}$,
$\left.H_{\text {arom }}\right), 7.51-7.55\left(2 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right), 8.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 6.2\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}}\right.$ 79); $\delta_{\mathrm{F}}(188 \mathrm{MHz})-74.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 79\right)$.

Pyrrolidin-2-yl-(trifluoromethyl)phosphinic acid (14e) (Table 1, entry 5). Following the general procedure (III) a crude product, obtained from 1 ($1.0 \mathrm{~g}, 7.5$ $\mathrm{mmol})$ and $\mathbf{1 6 e}(0.52 \mathrm{~g}, 2.5 \mathrm{mmol})$ was dissolved in ethanolic ammonia solution until $\mathrm{pH} 8-9$ and this solution was evaporated to the dryness. The residue was triturated with acetone affording a solid, which was dissolved in water and passed down an ion-exchange column to give after the evaporation of water $\mathbf{1 4 e}$ as a white solid ($1.0 \mathrm{~g}, 66 \%$); mp 293 ${ }^{\circ} \mathrm{C}$; [Found: C, 29.40; H, 4.52; N, 6.89. $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires C, 29.52; H, 4.47; N, 6.89\%]; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.9-2.3(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}-\mathrm{CH}_{2}$), $3.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{P}) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 12.1\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}}\right.$ 94); $\delta_{\mathrm{F}}(188 \mathrm{MHz})-76.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 94\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 23.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 8, C-3\right), 24.9(C-$ 4), $47.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5, C-5\right), 53.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 107.2, C-2\right), 122.2\left(\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 316.2,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 177.3\right.$, CF ${ }_{3}$)
[(Benzylamino)methyl](difluoromethyl)phosphinic acid (19a) (Table 2, entry 1). Following the general procedure (III) a mixture of $5(0.56 \mathrm{~g}, 3.9 \mathrm{mmol})$ and $16 \mathbf{a}(0.46 \mathrm{~g}, 1.3 \mathrm{mmol})$ in DME (10 mL) was heated at $50^{\circ} \mathrm{C}$ for 24 h to give a complex mixture with a major product ethyl [(benzylamino)methyl](difluoromethyl)phosphinate (18a) according to ${ }^{31} \mathrm{P}$ NMR: $\delta \mathrm{P}$ (121 MHz , DME) 33.7 ($\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 73$). This mixture was chromatographed on SiO_{2} with eluent ethylacetate-methanol (1:3) to afford 19a as a white solid ($0.62 \mathrm{~g}, 68 \%$); mp $226^{\circ} \mathrm{C}$; [Found: C, 46.13 ; H, 5.33; N. 5.79. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires C, 45.94; H , 5.14; N, 5.96\%]; NMR (DMSO- d_{6}): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 2.75\left(2 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 7.2, \mathrm{PCH}_{2}\right)$, $4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.88\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.7,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 21.5, \mathrm{CHF}_{2}\right), 7.37-7.41(3 \mathrm{H}, \mathrm{m}$, $\left.H_{\text {arom }}\right), 7.51-7.55\left(2 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right), 9.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 11.8\left(\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}}\right.$ $70) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-135.8\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 70,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49\right)$.
Ethyl [1-(benzylamino)ethyl](difluoromethyl)phosphinate (18c) (Table 2, entry 3). Following the general procedure (III) a crude product from 5 ($0.30 \mathrm{~g}, 2.1$ $\mathrm{mmol})$ and $\mathbf{1 6 c}(0.28 \mathrm{~g}, 2.1 \mathrm{mmol})$ was worked up as described above for $\mathbf{1 8 b}$ to afford 18c as a yellowish semisolid $(0.27 \mathrm{~g}, 46 \%)$, as a mixture of two
diastereoisomers in an approximately $3: 2$ ratio due to NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}}(300$ $\mathrm{MHz})$ 1.24-1.38 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{PCHCH}_{3}\right), 2.95-3.15(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH})$, 3.64$4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15-4.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 6.14\left(0.6 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49.5,{ }^{2} \mathrm{~J}_{\mathrm{HP}}\right.$ 25.4, CHF_{2}, major isomer), $6.22\left(0.4 \mathrm{H}, \mathrm{td}^{2} \mathrm{~J}_{\mathrm{HF}} 49.3,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 26.0, \mathrm{CHF}_{2}\right.$, minor isomer), 7.18-7.32 ($5 \mathrm{H}, \mathrm{m}, H_{\text {arom }}$); $\delta_{\mathrm{P}}(81 \mathrm{MHz}) 35.7(\mathrm{~m}) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-130 \div-142$ (complex multiplet). From the residue after extraction of 18c [1-(benzylamino)ethyl](difluoro-methyl)phosphinic acid (19c) was obtained by the analogy with 19b as a white solid ($0.22 \mathrm{~g}, 42 \%$); mp $216^{\circ} \mathrm{C}$; [Found: C, 47.96; $\mathrm{H}, 5.72 ; \mathrm{N}, 5.68 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 48.12 ; \mathrm{H}, 5.66 ; \mathrm{N}, 5.62 \%\right]$; NMR (DMSO-d d_{6}): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.35\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 12.9,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.4, \mathrm{CH}_{3}\right), 2.98(1 \mathrm{H}, \mathrm{dq}$, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HP}} 15.0,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.4, \mathrm{PC} H\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 9.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.32\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 9.1\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.91\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49.2,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 20.4, \mathrm{CHF}_{2}\right), 7.39-7.45\left(3 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right), 7.52-$ $7.59\left(2 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 16.6\left(\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 75\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-134.5(1 \mathrm{~F}, \mathrm{ddd}$, $\mathrm{J}_{\mathrm{AB}} 349,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 75,{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49$), -136.5 (1 F , ddd, $\mathrm{J}_{\mathrm{AB}} 349,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 75,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49$). By hydrolysis of $\mathbf{1 8 c}(0.27 \mathrm{~g}, 0.98 \mathrm{mmol})$ the additional quantity of $\mathbf{1 9 c}(0.20 \mathrm{~g}, 83 \%)$ was obtained. The overall yield of $\mathbf{1 9 c}$ is $0.42 \mathrm{~g}(80 \%)$.
Ethyl [1-(benzylamino)-2-methylpropyl)(difluoromethyl)phosphinate (18d) (Table 2, entry 4). Following the general procedure (III) a crude solid, obtained from $5(0.29 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{1 6 d}(0.32 \mathrm{~g}, 2.0 \mathrm{mmol})$ was worked up as described above for $\mathbf{1 8 b}$ to afford $\mathbf{1 8 d}$ as a yellowish semisolid $(0.22 \mathrm{~g}, 36 \%)$ as a mixture of two diastereoisomers in an approximately $3: 2$ ratio due to NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.05\left(6 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} 2)$, $2.86\left(0.6 \mathrm{H}, \mathrm{ddm},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 12.9,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 5.2\right.$, PCH, major isomer $), 2.96\left(0.4 \mathrm{H}, \mathrm{ddm},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 11.6\right.$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}} 4.8, \mathrm{PCH}$, minor isomer), 3.72-3.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.02-4.30 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$, $6.08\left(0.4 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49.6,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 24.8, \mathrm{CHF}_{2}\right.$, minor isomer), $6.18\left(0.6 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49.6\right.$, ${ }^{2} \mathrm{~J}_{\mathrm{HP}} 25.2, \mathrm{CHF}_{2}$, major isomer), 7.18-7.32 ($\left.5 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right)$; $\delta_{\mathrm{P}}(81 \mathrm{MHz}) 35.4(0.4 \mathrm{P}, \mathrm{m}$, minor isomer), 36.8 ($0.6 \mathrm{P}, \mathrm{m}$, major isomer); $\delta_{\mathrm{F}}(188 \mathrm{MHz})-132 \div-140.5$ (complex multiplet). From the residue after extraction of 18d [1-(benzylamino)-2-methyl-propyl]-(difluoromethyl)phosphinic acid (19d) was obtained by analogy with 19b as a white solid ($0.27 \mathrm{~g}, 48 \%$); mp $242^{\circ} \mathrm{C}$; [Found: C, 52.16 ; H, 6.69; N, 4.89.
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires C, $51.99 ; \mathrm{H}, 6.54 ; \mathrm{N}, 5.05 \%$]; NMR (DMSO-d d_{6}): $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 0.98\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{3}\right), 1.06\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{3}\right), 2.10-2.30(1 \mathrm{H}, \mathrm{m}$, CHMe 2), 2.68-2.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$), $4.20\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 13.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}}\right.$ 13.1, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.72\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49.5,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 19.4, \mathrm{CHF}_{2}\right), 7.36-7.44\left(3 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right)$, 7.48-7.56 ($2 \mathrm{H}, \mathrm{m}, H_{\text {arom }}$); $\delta_{\mathrm{P}}(81 \mathrm{MHz}) 12.3\left(\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 81\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-132.8(1 \mathrm{~F}$, ddd, $\mathrm{J}_{\mathrm{AB}} 348,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 81,{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49$), -134.1 (1 F , ddd, $\mathrm{J}_{\mathrm{AB}} 348,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 81,{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49$). By hydrolysis of $\mathbf{1 8 d}(0.22 \mathrm{~g}, 0.72 \mathrm{mmol})$ the additional quantity of $\mathbf{1 9 d}(0.19 \mathrm{~g}, 95 \%)$ was obtained. The overall yield of $\mathbf{1 9 d}$ is $0.46 \mathrm{~g}(82 \%)$.
(Difluoromethyl)pyrrolidin-2-ylphosphinic acid (20e) (Table 2, entry 5). Following the general procedure (III) a crude product, obtained from $5(0.54 \mathrm{~g}, 3.8$ $\mathrm{mmol})$ and $\mathbf{1 6 e}(0.26 \mathrm{~g}, 1.25 \mathrm{mmol})$ was worked up as described for $\mathbf{1 4 e}$ to afford 20e as a white solid ($0.54 \mathrm{~g}, 79 \%$); mp $246^{\circ} \mathrm{C}$; [Found: C, 32.30 ; H, 5.52; N, 7.68. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 32.44 ; \mathrm{H}, 5.45 ; \mathrm{N}, 7.57 \%\right]$; NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}}(500 \mathrm{MHz})$ 1.90-2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.04-2.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.20-2.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.33 $\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.5, \mathrm{CH}_{2} \mathrm{~N}\right), 3.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CHP}), 5.95\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.5,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 21.0\right.$, $\left.\mathrm{CHF}_{2}\right) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 17.6\left(\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 78\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-139.2\left(1 \mathrm{~F}, \mathrm{ddd}, \mathrm{J}_{\mathrm{AB}} 351,{ }^{2} \mathrm{~J}_{\mathrm{FP}}\right.$ $\left.78,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49\right),-137.3\left(1 \mathrm{~F}, \mathrm{ddd}, \mathrm{J}_{\mathrm{AB}} 351,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 78,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 24.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}\right.$ 8, C-3), $24.9(C-4), 47.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5, C-5\right), 53.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 107.2, C-2\right), 122,2\left(\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}}\right.$ $\left.316.2,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 177.3, C \mathrm{~F}_{3}\right)$
(1-Aminoethyl)(trifluoromethyl)phosphinic acid (14c) (Table 1, entry 3). Following the general procedure (II) $\mathbf{1 4 c}$ was obtained as a white powder, mp $255^{\circ} \mathrm{C}$ (dec.); [Found: C, 20.28; H, 3.89; N. 7.79. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires C , 20.35; $\mathrm{H}, 3.98 ; \mathrm{N}, 7.91 \%] ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.30\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 14.7,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.5\right.$, CH_{3}), $3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 15.2\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 91\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})-73.8(\mathrm{~d}$, $\left.{ }^{2} \mathbf{J}_{\mathrm{FP}} 91\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 31.8\left(\mathrm{CH}_{3}\right) ; 44.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 105.5, \mathrm{PCH}\right), 122,1\left(\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}}\right.$ $316.9,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 179.8, \mathrm{CF}_{3}$).
(1-Amino-2-methylpropyl)(trifluoromethyl)phosphinic acid (14d) (Table 1, entry 4). Following the general procedure (II) 14d was obtained as a white powder, mp $225^{\circ} \mathrm{C}$ (dec.); [Found: C, 29.22; H, 5.31; N. 6.78. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{P}$ requires C, 29.28; H, 5.41; N, 6.83\%]; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right)$: $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.06(3 \mathrm{H}, \mathrm{d}$,
$\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7, \mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7, \mathrm{CH}_{3}\right), 2.37(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} 2), 3.43\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HP}}\right.$ $\left.8.1,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 4.5, \mathrm{PCH}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 14.8\left(\mathrm{qt},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 93,{ }^{2} \mathrm{~J}_{\mathrm{PH}}={ }^{3} \mathrm{~J}_{\mathrm{PH}}=8\right) ; \delta_{\mathrm{F}}(188 \mathrm{MHz})$ $-75.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 93\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 17.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 4, C \mathrm{H}_{3}\right), 19.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 8.5, C \mathrm{H}_{3}\right), 27.1$ $\left(C \mathrm{HMe}_{2}\right), 52.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 105.0, \mathrm{PCH}\right), 122,2\left(\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 317.5,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 173.5, C \mathrm{~F}_{3}\right)$.
(Aminomethyl)(difluoromethyl)phosphinic acid (20a) (Table 2, entry 1). Following the general procedure (II) 20a was obtained as a white powder, mp $242^{\circ} \mathrm{C}$; [Found: C, 16.62; H, 4.29; N 9.59. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 16.56 ; \mathrm{H}, 4.17$; N 9.66\%]; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 3.03\left(2 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 10.4, \mathrm{CH}_{2}\right), 5.77(1 \mathrm{H}$, td, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HF}} 49.2,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 22.2, \mathrm{CHF}_{2}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 16.1\left(\mathrm{tdt},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 78,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 22\right.$ and 10$) ; \delta_{\mathrm{F}}$ (188 MHz) -136.7 (dd, ${ }^{2} \mathbf{J}_{\mathrm{FP}} 78,{ }^{2} \mathbf{J}_{\mathrm{FH}} 49$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}) 35.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 103.2, C \mathrm{H}_{2}\right)$, $114.5\left(\mathrm{td},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 246.8,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 129.3, \mathrm{CHF}_{2}\right)$.
[Amino(phenyl)methyl](difluoromethyl)phosphinic acid (20b) (Table 2, entry 2). Following the general procedure (II) $\mathbf{2 0 b}$ was obtained as a white powder, mp $256^{\circ} \mathrm{C}$; [Found: C, 43.59; H, 4.68; N. 6.29. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 43.45 ; \mathrm{H}$, 4.56; N, 6.33\%]; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 4.48\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 9.6, \mathrm{PCH}\right), 5.78$ $\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.9,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 22.5, \mathrm{CHF}_{2}\right), 7.27-7.30\left(5 \mathrm{H}, \mathrm{m}, H_{\text {arom }}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 15.9$ (tdd, ${ }^{2} \mathrm{~J}_{\mathrm{PF}} 88,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 22$ and 10); $\delta_{\mathrm{F}}(376 \mathrm{MHz})-135.8$ (symm. complex multiplet); δ_{C} $(125 \mathrm{MHz}) 51.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 94.2, \mathrm{PCH}\right), 114.8\left(\mathrm{td},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 257.8,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 138.3, C \mathrm{~F}_{3}\right), 128.1$, 129.3, 129.4, 130.5.
(1-Aminoethyl)(difluoromethyl)phosphinic acid (20c) (Table 2, entry 3). Following the general procedure (II) 20c was obtained as a white powder, mp $255^{\circ} \mathrm{C}$; [Found: C, 22,48; H, 4.96; N. 8.92. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 22.65$; H , $5.07 ; \mathrm{N}, 8.81 \%] ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.41\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 13.5,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.5\right.$, $\left.\mathrm{CH}_{3}\right), 3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 5.97\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.5,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 22.5, \mathrm{CHF}_{2}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz})$ $18.6\left(\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 75\right) ; \delta_{\mathrm{F}}(376 \mathrm{MHz})-136.6\left(1 \mathrm{~F}\right.$, ddd, $\left.\mathrm{J}_{\mathrm{AB}} 348.8,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 74.9,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 48.5\right)$, $134.9\left(1 \mathrm{~F}\right.$, ddd, $\left.\mathrm{J}_{\mathrm{AB}} 348.8,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 74.9,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 48.5\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 12.1\left(\mathrm{CH}_{3}\right) ; 43.3(\mathrm{~d}$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}} 100, \mathrm{PCH}\right), 114.5\left(\mathrm{td},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 248.2,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 136.3, C \mathrm{HF}_{2}\right)$.
(1-Amino-2-methylpropyl)(difluoromethyl)phosphinic acid (20d) (Table 2, entry 4). Following the general procedure (II) 20d was obtained as a white powder, mp $232^{\circ} \mathrm{C}$; [Found: $\mathrm{C}, 32.12 ; \mathrm{H}, 6.37 ; \mathrm{N} .7 .61 . \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{P}$ requires C ,
32.09; H, 6.46; N, 7.49\%]; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.89\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.9\right.$, $\left.\mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.9, \mathrm{CH}_{3}\right), 2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{C}_{2}\right), 3.18(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 5.75$ $\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.9,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 22.5, \mathrm{CHF}_{2}\right) ; \delta_{\mathrm{P}}(81 \mathrm{MHz}) 19.2\left(\mathrm{tm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 77\right) ; \delta_{\mathrm{F}}(377 \mathrm{MHz})-$ 135.3 (symm. complex multiplet, $\left.\mathrm{J}_{\mathrm{AB}} 346\right)$; $\delta_{\mathrm{C}}(125 \mathrm{MHz}) 23.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 6.9, \mathrm{CH}_{3}\right)$, $24.8\left(\mathrm{CH}_{3}\right), 47.7\left(\mathrm{CHMe}_{2}\right), 53.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 99.3, \mathrm{PCH}\right), 114.9\left(\mathrm{td},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 257.8,{ }^{1} \mathrm{~J}_{\mathrm{CP}}\right.$ 139.6, CHF_{2}).

The reaction of the acid $\mathbf{1}$ with the imine 21. A mixture of $\mathbf{1}(0.10 \mathrm{~g}, 0.75$ mmol) and 21 [1] ($0.15 \mathrm{~g}, 0.75 \mathrm{mmol})$ in DME (5 mL) was heated at $50^{\circ} \mathrm{C}$ under stirring for 48 h . After cooling to room temperature the formed precipitate was filtered, washed with acetone and dried to give $\mathbf{1 4 b}(0.06 \mathrm{~g}, 32 \%)$.
The reactions of the acids 1 and 6 with the imines 22 and 27 (general procedure IV). An equimolar mixture of $\mathbf{1}$ or $\mathbf{6}$ and $\mathbf{2 2}$ or $\mathbf{2 7}$ in DME (5 mL per 1 mmol) was stirred at $50{ }^{\circ} \mathrm{C}$ under monitoring with ${ }^{31} \mathrm{P}$ NMR until the signals of $\mathbf{1}$ or 6 disappeared. After cooling to room temperature the formed precipitate was filtered, thoroughly washed with acetone and dried in vacuo.
(1-Amino-2-ethoxy-2-oxoethyl)(trifluoromethyl)phosphinic acid
(23).

Following the general procedure (IV) using $\mathbf{1}(0.95 \mathrm{~g}, 7.1 \mathrm{mmol})$ and 22 [2] (11.42 g. 7.1 mmol) 23 was obtained as a white solid ($1.13 \mathrm{~g}, 68 \%$), mp $241^{\circ} \mathrm{C}$ (dec.). [Found: C, 25.48; H, 3.83; N. 5.96. $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}$ requires C, 25.54; H, 3.86; N, $5.96 \%]$; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.10\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.8, \mathrm{CH}_{3}\right), 3.92\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}\right.$ 11.7, PCH), $4.11\left(2 \mathrm{H}, \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.8, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 6.2\left(\mathrm{dq},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 86,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 12\right) ; \delta_{\mathrm{F}}$ (188 MHz) -72.2 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 86$).
Sodium salt of 23. NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.22\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0, \mathrm{CH}_{3}\right), 4.20$ $\left(2 \mathrm{H}, \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 13.3(\mathrm{CH} 3), 53.9(\mathrm{~m}, \mathrm{CH}), 63.0\left(\mathrm{CH}_{2}\right), 122,4$ ($\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 318,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 171, C \mathrm{~F}_{3}$), 171.3 ($\mathrm{O}=C$).
(1-Amino-2-ethoxy-2-oxoethyl)(difluoromethyl)phosphinic acid
Following the general procedure (IV) using $\mathbf{6}(0.83 \mathrm{~g}, 7.2 \mathrm{mmol})$ and 22 [2] (1.44 $\mathrm{g}, 7.2 \mathrm{mmol}) 24$ was obtained as a white solid $(0.95 \mathrm{~g}, 61 \%), \mathrm{mp} 223^{\circ} \mathrm{C}$ (dec.). [Found: C, 27.77; H, 4.74; N. 6.40. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{P}$ requires C, 27.66; H, 4.64; N, $6.45 \%] ; \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{3}\right), 4.08\left(2 \mathrm{H}, \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$
6.9, $\left.\mathrm{CH}_{2}\right), 4.31\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 14.1, \mathrm{PC} H\right), 5.9\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.5,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 25.8, \mathrm{C}^{2} \mathrm{~F}_{2}\right) ; \delta_{\mathrm{P}}$ (121 MHz) 12.1 (tdd, ${ }^{2} \mathrm{~J}_{\mathrm{PF}} 80,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 26$ and 14); $\delta_{\mathrm{F}}(282 \mathrm{MHz})-135.3\left(1 \mathrm{~F}\right.$, ddd, J_{AB} $347,{ }^{2} \mathbf{J}_{\mathrm{FP}} 80,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49$), -137.1 (1F, ddd, $\left.\mathrm{J}_{\mathrm{AB}} 347,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 80,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49\right)$; $\delta_{\mathrm{C}}(125 \mathrm{MHz})$ $13.2\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 78, C \mathrm{H}\right), 64.1\left(\mathrm{CH}_{2}\right), 114.0\left(\mathrm{td},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 259,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 148, \mathrm{CHF}_{2}\right)$, $166.4(\mathrm{O}=C)$.
Amino[(difluoromethyl)(hydroxy)phosphoryl]acetic acid (25). A mixture of 24 $(0.52 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiONa}(0.54 \mathrm{~g}, 4.8 \mathrm{mmol})$ in $\mathrm{DME}(10 \mathrm{~mL})$ was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature the formed precipitate was filtered, washed with acetone and dissolved in water. The resulting solution was discolored with charcoal and then passed down an ion-exchange column. Water was evaporated under reduced pressure, the residue was thoroughly dried in vacuo to afford 25 as a white powder ($0.16 \mathrm{~g}, 35 \%$), mp $265^{\circ} \mathrm{C}$ (dec.). [Found: C, 18.98; $\mathrm{H}, 3.25 ; \mathrm{N} .7 .38 . \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{P}$ requires $\left.\mathrm{C}, 19.06 ; \mathrm{H}, 3.20 ; \mathrm{N}, 7.41 \%\right] ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$: $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 3.48\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 12.5, \mathrm{PCH}\right), 5.9\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 50.7,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 25.2\right.$, CHF_{2}); $\delta_{\mathrm{P}}(121 \mathrm{MHz}) 18.2$ (tdd, ${ }^{2} \mathrm{~J}_{\mathrm{PF}} 78,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 25,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 12$); $\delta_{\mathrm{F}}(282 \mathrm{MHz})-133.1$ (1 F , ddd, $\mathrm{J}_{\mathrm{AB}} 338,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 78,{ }^{2} \mathbf{J}_{\mathrm{FH}} 51$), -135.0 (1 F , ddd, $\mathrm{J}_{\mathrm{AB}} 338,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 78,{ }^{2} \mathbf{J}_{\mathrm{FH}} 51$).
Methyl 2-[hydroxy(trifluoromethyl)phosphoryl]valinate (27). Following the general procedure (IV) using $1(1.0 \mathrm{~g}, 7.4 \mathrm{mmol})$ and 26 [3] ($0.96 \mathrm{~g}, 7.4 \mathrm{mmol}) 27$ was obtained as a white solid ($1.24 \mathrm{~g}, 63 \%$), mp $218^{\circ} \mathrm{C}$ (dec.). [Found: C, 31.99; $\mathrm{H}, 5.10$; N. 5.29. $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 31.95 ; \mathrm{H}, 4.98$; N, 5.32\%]; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.76\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0, \mathrm{CCH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0, \mathrm{CCH}_{3}\right)$, $2.69\left(1 \mathrm{H}\right.$, septet of doublets, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0,{ }^{3} \mathrm{~J}_{\mathrm{HP}} 5.9, \mathrm{CHMe} 2\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{P}}$ (121 MHz) 10.4 (dq, ${ }^{2} \mathrm{~J}_{\mathrm{PF}} 95,{ }^{3} \mathrm{~J}_{\mathrm{PH}} 6$); $\delta_{\mathrm{F}}(282 \mathrm{MHz})-72.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 95\right)$.
Methyl 2-[(difluoromethyl)(hydroxy)phosphoryl]valinate (28). Following the general procedure (IV) using $6(0.45 \mathrm{~g}, 3.9 \mathrm{mmol})$ and $26[3](0.50 \mathrm{~g}, 3.9 \mathrm{mmol})$ 28 was obtained as a white solid ($0.38 \mathrm{~g}, 40 \%$), mp $209^{\circ} \mathrm{C}$ (dec.). [Found: C, 34.30; H, 5.80; N. 5.80. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 34.29 ; \mathrm{H}, 5.76 ; \mathrm{N}, 5.71 \%$]; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.78\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.8, \mathrm{CCH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.8\right.$, $\left.\mathrm{CCH}_{3}\right), 2.70\left(1 \mathrm{H}\right.$, septet of doublets, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.8,{ }^{3} \mathrm{~J}_{\mathrm{HP}} 6.0, \mathrm{C} H \mathrm{Me}_{2}\right), 3.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.82\left(1 \mathrm{H}, \operatorname{td},{ }^{2} \mathrm{~J}_{\mathrm{HF}} 48.6,{ }^{2} \mathrm{~J}_{\mathrm{HP}} 25.2, \mathrm{CHF}_{2}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 14.7\left(\mathrm{tdd},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 76\right.$,
${ }^{2} \mathrm{~J}_{\mathrm{PH}} 25,{ }^{3} \mathrm{~J}_{\mathrm{PH}} 6$); $\delta_{\mathrm{F}}(282 \mathrm{MHz}):-133.2\left(1 \mathrm{~F}\right.$, ddd, $\left.\mathrm{J}_{\mathrm{AB}} 349,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 76,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49\right),-135.3$ (1 F , ddd, $\mathrm{J}_{\mathrm{AB}} 349,{ }^{2} \mathrm{~J}_{\mathrm{FP}} 76,{ }^{2} \mathrm{~J}_{\mathrm{FH}} 49$).
The reaction of the acid $\mathbf{1}$ with aminoacrylate 29. Following the general procedure (IV) using $\mathbf{1}(0.51 \mathrm{~g}, 3.8 \mathrm{mmol})$ and 29 [4] ($0.81 \mathrm{~g}, 3.8 \mathrm{mmol})$ ethyl 2[hydroxy(trifluoromethyl)phosphoryl]alaninate (31) was obtained as a white solid ($0.56 \mathrm{~g}, 59 \%$), mp $242^{\circ} \mathrm{C}$ (dec.). [Found: C, 28.79; H, 4.38; N. 5.66. $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}$ requires C, 28.93; H, 4.45; N, 5.62%]; NMR (DMSO-d ${ }_{6}$): $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.20\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 12.9, \mathrm{PCCH}_{3}\right), 4.13(2 \mathrm{H}, \mathrm{q}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 7.2\left(\mathrm{qq},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 84,{ }^{3} \mathrm{~J}_{\mathrm{PH}} 13\right) ; \delta_{\mathrm{F}}(282 \mathrm{MHz})-69.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}}\right.$ 84).

2-[Hydroxy(trifluoromethyl)phosphoryl]alanine (32). Hydrolysis of 31 (1.2 g , 4.8 mmol) with $5 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was performed at room temperature for 48 h under stirring. Resulting solution was evaporated to the dryness, the residue was dissolved in the ethanolic ammonia solution at $0^{\circ} \mathrm{C}$ until $\mathrm{pH} 7-8$. Ethanol was evaporated to the dryness and the residue was triturated with acetone to afford yellowish solid. This solid was dissolved in water; the resulting solution was discolored with charcoal and then passed down an ion-exchange column. After the evaporation of water the residue was thoroughly dried in vacuo to afford $\mathbf{3 2}$ as a white powder ($0.58 \mathrm{~g}, 54 \%$), mp $266^{\circ} \mathrm{C}$ (dec.). [Found: C, 21.56; H, 3.24; N. 6.32. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}$ requires C, 21.73; H, 3.19; N, 6.34%]; NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}}(500 \mathrm{MHz})$ $1.58\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 14.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 21.0\left(\mathrm{qq},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 82,{ }^{3} \mathrm{~J}_{\mathrm{PH}} 14\right) ; \delta_{\mathrm{F}}(282$ $\mathrm{MHz})$-70.3 (d, ${ }^{2} \mathrm{~J}_{\mathrm{FP}} 82$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}) 20.8(\mathrm{CH} 3), 75.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 115, \mathrm{PC}\right), 122.9$ (qd, ${ }^{1} \mathrm{~J}_{\mathrm{CF}} 318,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 166, C \mathrm{~F}_{3}$), $175.2(\mathrm{O}=C$).
The reaction of a mixture of the esters 3 and $\mathbf{4}$ with aminoacrylic acid 33. The freshly distilled mixture of $\mathbf{3}(3.69 \mathrm{~g}, 19.4 \mathrm{mmol})$ and $\mathbf{4}(2.10 \mathrm{~g}, 12.9 \mathrm{mmol})$ (bp $\left.65-75{ }^{\circ} \mathrm{C}, 70 \mathrm{~mm} \mathrm{Hg}\right)$ [5] and $33(1.66 \mathrm{~g}, 12.9 \mathrm{mmol})$ was stirred at $20^{\circ} \mathrm{C}$ for 72 h under the ${ }^{31} \mathrm{P}$ NMR control. The resulting viscous mixture was diluted with 25 ml ether and the formed precipitate was filtered, washed with acetone and dried in vacuo to afford [1-(acetylamino)ethyl](trifluoromethyl)phosphinic acid (37) as a white solid ($0.75 \mathrm{~g}, 18 \%$), mp 199${ }^{\circ} \mathrm{C}$ (dec.). [Found: C, 27.41; H, 4.14; N. 6.39.
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{P}$ requires $\left.\mathrm{C}, 27.62 ; \mathrm{H}, 4.24 ; \mathrm{N}, 6.16 \%\right]$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $1.07\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 14.7,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.5, \mathrm{CHCH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CCH}_{3}\right), 4.07(1 \mathrm{H}, \mathrm{dq}$, $\left.{ }^{2} \mathbf{J}_{\mathrm{HP}} 10.3,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.5, \mathrm{PCH}\right) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 19.4$ (qqd, $\left.{ }^{2} \mathrm{~J}_{\mathrm{PF}} 85,{ }^{3} \mathrm{~J}_{\mathrm{PH}} 15,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 10\right) ; \delta_{\mathrm{F}}$ (282 MHz) -73.3 ($\mathrm{d},{ }^{2} \mathbf{J}_{\mathrm{FP}} 85$). All volatiles from the filtrate after the isolation of 37 were removed by heating to $50{ }^{\circ} \mathrm{C}$ at a pressure of 0.1 mm Hg . The residue was fractionated by the silica gel column chromatography (hexane/EtOAc 10:1 to EtOAc/EtOH 1:1, gradient).

Ethyl N-acetyl-2-[hydroxy(trifluoromethyl)phosphoryl)alaninate (35) was isolated with the eluent EtOAc/EtOH 2:1 as a white solid (0.26 g, 7\%), mp $203{ }^{\circ} \mathrm{C}$ (dec.). [Found: C, 33.22; H, 4.68; N. 4.70. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 33.00 ; \mathrm{H}$, 4.50; N, 4.81%]; NMR (DMSO- $\left.\mathrm{d}_{6}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.48\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HP}} 14.1, \mathrm{PCCH}_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CCH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 7.0, \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{P}}(121 \mathrm{MHz}) 19.2\left(\mathrm{qq},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 81,{ }^{3} \mathrm{~J}_{\mathrm{PH}} 14\right)$; $\delta_{\mathrm{F}}(282 \mathrm{MHz})-74.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 81\right)$.
Ethyl [1-(acetylamino)ethyl](trifluoromethyl)phosphinate (36) was isolated with the eluent hexane/ethyl acetate $2: 1$ as a yellowish viscous liquid ($1.28 \mathrm{~g}, 40 \%$) as a mixture of two diastereoisomers in an approximately 7:8 ratio due to NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.25-1.45\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.96(1.4 \mathrm{H}$, s, $\mathrm{O}=\mathrm{CCH}_{3}$, minor isomer $)$, $1.99\left(1.6 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CCH}_{3}\right.$, major isomer $), 4.15-4.42(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 4.68-4.84(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 7.55(0.45 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$, minor isomer $), 7.76(0.55 \mathrm{H}$, br s, NH , major isomer); $\delta_{\mathrm{P}}(121 \mathrm{MHz}) 27.6$ (qm , minor isomer), 28.4 (qm , major isomer); $\delta_{\mathrm{F}}(282 \mathrm{MHz})-72.1\left(1.6 \mathrm{~F}, \mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 87\right.$, major isomer), $-72.9\left(1.4 \mathrm{~F}, \mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 87\right.$, minor isomer). Hydrolysis of $36(1.28 \mathrm{~g}, 5.2 \mathrm{mmol})$ with $5 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ at room temperature for 24 h gave 37 ($1.07 \mathrm{~g}, 95 \%$). The overall yield of 37 from 33 was $1.82 \mathrm{~g}(65 \%)$. The N-deprotection of $37(1.5 \mathrm{~g}, 6.9 \mathrm{mmol})$ was performed with 5 N $\mathrm{HCl}(20 \mathrm{~mL})$ in an ampoule with Teflon stopcock at $130^{\circ} \mathrm{C}$ for 8 h to give $\mathbf{1 4 c}$ ($0.41 \mathrm{~g}, 34 \%$).

The reaction of the acid $\mathbf{1}$ with the malonate 38 . A mixture of $\mathbf{1}(1.05 \mathrm{~g}, 7.8$ mmol) and $38(1.79 \mathrm{~g}, 7.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was stirred at room temperature for a week under the ${ }^{31} \mathrm{P}$ NMR control and then cooled to $-20{ }^{\circ} \mathrm{C}$. The formed precipitate was filtered and recrystallized to give [1-(acetylamino)-3-
ethoxy-2-(ethoxycarbonyl)-3-oxopropyl](trifluoromethyl)phosphinic acid (39) as a white solid ($1.26 \mathrm{~g}, 44 \%$), mp $176^{\circ} \mathrm{C}$ (dec.) (from a wet dioxane). [Found: C, 36.24; H, 4.84; N. 3.90. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{P}$ requires $\mathrm{C}, 36.37$; $\mathrm{H}, 4.72$; N, 3.86%]; NMR (DMSO-d d_{6}) $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.16\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.6.9, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CCH}_{3}\right), 3.72\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}={ }^{3} \mathrm{~J}_{\mathrm{HP}}=8.0, \mathrm{PCHCH}\right), 4.07$ $\left(4 \mathrm{H}, \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.9, \mathrm{CH}_{2}\right), 4.87\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HP}} 17.1,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 8.0, \mathrm{PCH}\right), 7.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{N} H) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 12.5\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 87\right) ; \delta_{\mathrm{F}}(282 \mathrm{MHz})-73.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 87\right)$.
3-(Acetylamino)-3-[hydroxy(trifluoromethyl)phosphoryl]propanoic acid (40). A suspension of $\mathbf{3 9}(0.84 \mathrm{~g}, 2.3 \mathrm{mmol})$ in $5 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was heated to reflux for 12 h . The resulting solution was evaporated to the dryness, and the residue was triturated with acetone and dried in vacuo to afford 40 as a white solid $(0.50 \mathrm{~g}$, 82%), mp $178^{\circ} \mathrm{C}$ (dec.). [Found: C, 27.48; H, 3.57; N, 5.20. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}$ requires C, 27.39; H, 3.45; N, $5.32 \%] ;$ NMR (DMSO-d $)_{6}$: $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 2.01(3 \mathrm{H}, \mathrm{s}$, $\mathrm{O}=\mathrm{CCH}_{3}$), $2.78\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{\mathrm{AB}} 17.5,{ }^{3} \mathrm{~J}_{\mathrm{HP}} 10.8,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 4.5, \mathrm{CH}_{2}\right), 2.94\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{\mathrm{AB}}\right.$ $\left.17.5,{ }^{3} \mathbf{J}_{\mathrm{HH}} 4.5,{ }^{3} \mathrm{~J}_{\mathrm{HP}} 2.7, \mathrm{CH}_{2}\right), 4.42-4.50(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}) ; \delta_{\mathrm{P}}(121 \mathrm{MHz}) 7.9\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}}\right.$ 91); $\delta_{\mathrm{F}}(282 \mathrm{MHz})-73.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 91\right)$.

3-Amino-3-[hydroxy(trifluoromethyl)phosphoryl)propanoic acid (41). A mixture of $40(0.50 \mathrm{~g}, 1.9 \mathrm{mmol})$ and $5 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was stirred in an ampoule with Teflon stopcock at $130{ }^{\circ} \mathrm{C}$ for 5 h . The resulting solution was evaporated under reduced pressure and co-evaporated with water to the dryness. The crude product was triturated with acetone, dissolved in water and passed down an ionexchange column to give $\mathbf{4 1}$ as a white powder ($0.18 \mathrm{~g}, 43 \%$), $\mathrm{mp} 210^{\circ} \mathrm{C}$ (dec.). [Found: C, 21.67; H, 3.09; N. 6.32. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 21.73 ; \mathrm{H}, 3.19 ; \mathrm{N}$, $6.34 \%] ; \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}(500 \mathrm{MHz}): 2.81\left(1 \mathrm{H}\right.$, ddd, $\mathrm{J}_{\mathrm{AB}} 18.1,{ }^{3} \mathrm{~J}_{\mathrm{HP}} 10.0,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 8.1$, CH_{2}), $2.97\left(1 \mathrm{H}, \operatorname{ddd}, \mathrm{J}_{\mathrm{AB}} 18.1,{ }^{3} \mathrm{~J}_{\mathrm{HP}} 12.5,{ }^{3} \mathrm{~J}_{\mathrm{HH}} 4.5, \mathrm{CH}_{2}\right), 3.84-3.92(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH})$; $\delta_{\mathrm{P}}(121 \mathrm{MHz}) 12.4\left(\mathrm{qm},{ }^{2} \mathrm{~J}_{\mathrm{PF}} 93\right) ; \delta_{\mathrm{F}}(282 \mathrm{MHz})-74.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FP}} 93\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz})$ $31.8\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 105, \mathrm{PCH}\right), 122.2\left(\mathrm{qd},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 316,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 179, C \mathrm{~F}_{3}\right), 173.7$ (COOH).

References

1. Vidal, J.; Guy, L.; Sterin, S.; Collet, A. J. Org. Chem. 1993, 58, 4791-4793.
2. Jung, M. E.; Shishido, K.; Light, L.; Davis, L. Tetrahedron Lett. 1981, 4607 - 4610.
3. Poisel, H.; Schmidt, U. Chem. Ber. 1975, 108, 2547-2553.
4. Ramapanicker, R.; Kavita, De; Srinivasan, Ch. Tetrahedron 2007, 63, 10534-10542.
5. Golovanov, A. V.; Maslennikov, I. G.; Lavrent ev, A.N. Zh. Obsch. Khim. 1988, 58, 1525 - 1529; J. Gen. Chem. USSR 1988, 58, 1357 - 1360;. Chem Abstr. 1988, 108, 21973h.
