Supporting Information

for

Towards allosteric receptors – synthesis of β-

cyclodextrin-functionalised 2,2'-bipyridines and their

metal complexes

Christopher Kremer¹, Gregor Schnakenburg² and Arne Lützen^{*1}

Address: ¹University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany and ²University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany

Email: Arne Lützen - arne.luetzen@uni-bonn.de

* Corresponding author

Experimental data, NMR and ESI mass spectra

- Experimental part
- NMR spectra of compounds 1, 2, 3, 21, 22 and 6 and the metal complexes of 1, 2, 3, 14, and 22.
- Mass spectra of metal complexes of 1, 2, 14, and 22.

Experimental

General remarks: All solvents were distilled and dried prior to use according to standard procedures. All syntheses with air- and moisture-sensitive compounds were performed using Schlenk techniques under argon atmosphere. Column chromatography was performed on silica gel 60 M (0.04-0.063 mm) from Macherey-Nagel. All solvents used as eluents for column chromatography were distilled prior to use. ¹H and ¹³C NMR spectra were recorded at 293 K on a Bruker AM 300 (¹H: 300.1 MHz, ¹³C: 75.5 MHz) or a Bruker AM 400 (¹H: 400.1 MHz, ¹³C: 100.6 MHz). ¹H NMR chemical shifts are reported on the δ scale (ppm) relative to residual non-deuterated solvent as internal standard. ¹³C NMR chemical shifts are given as δ values (ppm) relative to signals of the deuterated solvent as internal standards. Mass spectra were taken on a Bruker autoflex II TOF/TOF (MALDI) or a Bruker micrOTOF-Q (ESI, Hi-Res-ESI). Elemental analyses were carried out on a Heraeus Vario EL. Chemicals and reagents (except for the solvents) obtained from commercial sources were used as received. The following compounds were prepared according to published procedures: pyrrole-substituted 2-halogenopyridines 6 and 7,^[1] bis(pyrrole)substituted 2,2'-bipyridines 8 and 9^[1] as well as 10^[2], diamino-2,2'-bipyridines 11-**13**^[1], diisothiocyanato-2,2'-bipyridines **14–16**^[3], 6^A-O-p-toluenesulfonyl-β-cyclodextrin 6^A-azido-6^A-deoxy-β-cyclodextrin **(18)**^[4]. $(19)^{[5]}$ 2^A.2^B.2^C.2^D.2^E.2^F.2^G.3^A.3^B.3^C.3^D.3^E.3^F.3^G.6^B.6^C.6^D.6^E.6^F.6^G-icosa-O-acetyl-6^A-azido-

¹ Kiehne U.; Bunzen, J.; Staats, H.; Lützen, A. *Synthesis* **2007**, 1061–1069.

² Hapke, M.; Staats, H.; Wallmann, I.; Lützen, A. Synthesis **2007**, 2711–2719.

³ Kremer, C.; Lützen, A. Synthesis **2011**, 210–212.

⁴ Lee, T.; Lim, J.; Chung, I.; Kim, I.; Ha, C.-S. *Macromol. Res.* **2010**, *18*, 120–128.

⁵ Hbaieb, S.; Kalfat, R.; Chevalier, Y.; Amdouni, N.; Parrot-Lopez, H. *Mat. Sci. Eng. C* **2008**, *28*, 697–704.

 6^{A} -desoxy-β-cyclodextrin (**20**)^[6], 6,7-dihydro-5*H*-[1,4]di-azepino[1,2,3,4-*l,m,n*][1,10]phenanthroline-4,8-diium dibromide (**23**)^[7], 3,6,7,9-tetrahydro-5*H*-[1,4]diazepino-[1,2,3,4-*l,m,n*][1,10]-phenanthroline-3,9-dione (**24**)^[7], 2,9-dichloro-1,10-phenanthroline (**25**)^[8], 2,6-dimethoxyphenylboronic acid (**26**)^[9], and 2,9-bis(2,6dimethoxyphenyl)-1,10-phenanthroline (**22**)^[10-12].

2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^B,6^C,6^D,6^E,6^F,6^G-Icosa-O-acetyI-6^A-

amino-6^A-desoxy-β-cyclodextrin (**21**): 3.92 g (1.96 mmol) of peracetylated azidocyclodextrin **20** were dissolved in 12 mL of dry acetone and 1.03 g (3.95 mmol) PPh₃ were added. The reaction mixture was stirred for two hours at rt, followed by the addition of 1 mL of water. After 30 minutes of reflux, the solvents were evaporated, the crude product was dissolved in dichloromethane and washed with water. After drying with MgSO₄, the solvents were evaporated. Further purification could be achieved by column chromatography on silica gel (eluent: dichloromethane/EtOH 96:4 + 0.5% NEt₃, *R*_f = 0.32) to give 2.34 g (1.18 mmol, 60%) of the desired product as a white solid.

Mp (°C): 150°C. ¹H NMR (300.1 MHz, CDCl₃): δ [ppm] = 5.23-5.40 (m, 7H, H-3^{A-G}); 5.17 (d, ³*J* = 3.8 Hz, 1H, H-1^A); 5.03-5.35 (m, 6H, H-1^{B-G}); 4.72-4.86 (m, 7H, H-2^{A-G}), 4.48-4.62 (m, 6H, H-6^{B-G}); 4.19-4.35 (m, 6H, H-6^{B-G}); 4.02-4.19 (m, 7H, H-5^{A-G}); 3.82-3.98 (m, 2H, H-6^A), 3.64-3.77 (m, 7H, H-4^{A-G}); 1.95-2.20 (m, 60H, -COO*Me*). ¹³C NMR (75.5 MHz, CDCl₃): δ [ppm] = 169.38-170.77 (-COOMe); 96.79-98.42 (C-1^{A-G}); 76.51-77.40 (C-4^{A-G}); 69.38-71.24 (C-2^{A-G}, C-3^{A-G}, C-5^{A-G}); 62.44-62.78

⁶ Sallas, F.; Marsura, A.; Petot, V. *Helv. Chim. Acta* **1998**, *81*, 632–645.

⁴ Yamada, M.; Nakamura, Y.; Kuroda, S.; Shimano, I. *Bull. Chem. Soc. Jpn.* **1990**, 63, 2710–2712.

⁸ Frey, J.; Kraus, T.; Heitz, V.; Sauvage, J.-P. *Chem. Eur. J.* **2007**, *13*, 7584–7594.

⁹ Nishimura, N.; Yoza, K.; Kobayashi, K. *J. Am. Chem. Soc.* **2010**, *13*2, 777–790.

¹⁰ Lüning, U.; Abbass, M.; Fahrenkrug, F. *Eur. J. Org. Chem.* **2002**, *19*, 3294–3303.

¹¹ Cacciapaglia, R.; Di Stefano, S.; Fahrenkrug, F.; Lüning, U.; Mandolini, L. *J. Phys. Org. Chem.* **2004**, *17*, 350–355.

¹² Lüning, U.; Fahrenkrug, F. *Eur. J. Org. Chem.* **2004**, 3119–3127.

 $(C-6^{B-G})$; 41.59 $(C-6^{A})$; 20.77 (-COO*Me*). MS (ESI (+)): $m/z = 1974.4 ([(7)+H]^{+})$; 999.2 $([(7)+H+Na]^{2+})$. Elemental analysis: calcd. for C₈₂H₁₁₁NO₅₄ (%): C, 49.87; H, 5.67; N, 0.71; found (%): C, 49.53; H, 5.90; N, 0.89.

N,*N*''-(2,2'-Bipyridine)-4,4'-diylbis(*N*'-2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,

6^B,6^C,6^D,6^E,6^F,6^G-icosa-O-acetyl-6^A-desoxy-β-cyclodextrin-6^A-yl)thiourea) (1) 0.05 g (0.2 mmol) of 4,4'-diisothiocyanato-2,2'-bipyridine (**14**) and 0.9 g (0.46 mmol, 2.3 equiv) of 2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^B,6^C,6^D,6^E,6^F,6^G-icosa-Oacetyl-6^A-amino-6^A-desoxy-β-cyclodextrin (**21**) were dissolved in 20 mL of dry dichloromethane and stirred for 24 hours at rt, followed by evaporation of the solvent. Column chromatography on silica gel (eluent: dichloromethane:EtOH 96:4, *R*_f = 0.32) gave 0.77 g (0.18 mmol, 92%) of the desired product as a slightly off-white amorphous solid.

¹H NMR (300.1 MHz, CDCl₃): δ [ppm] = 8.87 (b, 2H, NH); 8.46 (d, ³*J* = 5.7 Hz, 2H, H-6_{Bipy}); 8.13 (s, 2H, H-3_{Bipy}); 7.97 (b, 2H, H-5_{Bipy}); 6.89 (b, 2H, NH); 5.22-5.45 (m, 14H, H-3^{A-G}); 4.96-5.24 (m, 14H, H-1^{A-G}); 4.69-4.93 (m, 14H, H-2^{A-G}), 3.93-4.66 (m, 38H, H-5^{A-G}, H-6^{B-G}); 3.61-3.88 (m, 18H, H-6^A; H-4^{A-G}); 1.91-2.28 (m, 120H, -COO*Me*). ¹³C NMR (75.5 MHz, CDCl₃): δ [ppm] = 180.5 (C=S); 169.4-171.3 (-COO*Me*); 155.9 (C-4_{Bipy}); 150.0 (C-2_{Bipy}); 147.2 (C-6_{Bipy}); 114.6 (C-5_{Bipy}); 111.8 (C-3_{Bipy}); 96.3-98.1 (C-1^{A-G}); 76.5-77.4 (C-4^{A-G}); 69.5-71.8 (C-2^{A-G}, C-3^{A-G}, C-5^{A-G}); 62.4-63.1 (C-6^{A-G}); 20.6 (-COO*Me*). MS (MALDI-TOF): *m*/z = 4219.8 ([(1)+H]⁺). Elemental analysis: calcd. for C₁₇₆H₂₂₈N₆O₁₀₈S₂ · 7 CH₂Cl₂ (%): C, 45.66; H, 5.07; N, 1.75; S: 1.33; found (%): C, 45.82; H, 5.12; N, 1.85; S, 1.82.

N,*N*''-(2,2'-Bipyridine)-6,6'-diylbis(*N*'-2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,

6^B,6^C,6^D,6^E,6^F,6^G-icosa-O-acetyl-6^A-desoxy-β-cyclodextrin-6^A-yl)thiourea) (2) 0.02 g (0.07 mmol) of 6,6'-diisothiocyanato-2,2'-bipyridine (**15**) and 0.34 g (0.17 mmol, 2.3 equiv) of 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 2^{G} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 3^{G} , 6^{B} , 6^{C} , 6^{D} , 6^{E} , 6^{F} , 6^{G} -icosa-O-acetyl-6^A-amino-6^A-desoxy-β-cyclodextrin (**21**) were dissolved in 10 mL of dry dichloromethane and stirred for 48 hours at rt, followed by evaporation of the solvent. Column chromatography on silica gel (eluent: dichloromethane:EtOH 96:4, R_{f} = 0.38) gave 0.29 g (0.069 mmol, 93%) of the desired product as a slightly off-white amorphous solid.

¹H NMR (400.1 MHz, CDCl₃): δ [ppm] = 11.81 (s, 2H, N-H); 8.97 (s, 2H, N-H); 7.77 (dd, ³*J* = 7.9 Hz, 2H, H-4_{Bipy}); 7.59 (d, ³*J* = 7.9 Hz, 2H, H-3_{Bipy}); 7.02 (d, ³*J* = 7.9 Hz, 2H, H-5_{Bipy}); 5.10-5.40 (m, 14H, H-3^{A-G}); 4.91-5.09 (m, 14H, H-1^{A-G}); 4.64-4.83 (m, 14H, H-2^{A-G}), 3.88-4.27 (m, 38H, H-5^{A-G}, H-6^{B-G}); 3.42-3.81 (m, 18H, H-6^A; H-4^{A-G}); 1.82-2.52 (m, 120H, -COO*Me*). ¹³C NMR (100.1 MHz, CDCl₃): δ [ppm] = 180.2 (C=S); 169.2-171.5 (-COOMe); 153.0 (C-6_{Bipy}); 151.8 (C-2_{Bipy}); 139.6 (C-4_{Bipy}); 114.9 (C-3_{Bipy}); 113.4 (C-5_{Bipy}); 96.3-97.5 (C-1^{A-G}); 76.1-78.1 (C-4^{A-G}); 68.5-72.0 (C-2^{A-G}, C-3^{A-G}, C-5^{A-G}); 62.4-65.2 (C-6^{A-G}); 20.8-21.1 (-COO*Me*). MS (MALDI-TOF): *m*/z = 4217.9 ([(2)+H]⁺). Elemental analysis: calcd. for C₁₇₆H₂₂₈N₆O₁₀₈S₂ · 2 CH₂Cl₂ (%): C, 48.70; H, 5.33; N, 1.91; S, 1.46; found (%): C, 48.39; H, 5.48; N, 1.56; S, 1.85.

N,*N*''-(2,2'-Bipyridine)-4,6'-diylbis(*N*'-2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,

6^B,**6**^C,**6**^D,**6**^E,**6**^G-icosa-O-acetyl-6^A-desoxy-β-cyclodextrin-6^A-yl)thiourea) (3) 0.02 g (0.07 mmol) of 4,6'-diisothiocyanato-2,2'-bipyridine (**16**) and 0.34 g (0.17 mmol, 2.3 equiv) of 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 2^{G} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 3^{G} , 6^{B} , 6^{C} , 6^{D} , 6^{E} , 6^{F} , 6^{G} -lcosa-O-acetyl-6^A-amino-6^A-desoxy-β-cyclodextrin were dissolved in 10 mL of dry dichloromethane and stirred for 48 hours at rt, followed by evaporation of the solvent. Column chromatography on silica gel (eluent: dichloromethane:EtOH 96:4, $R_{\rm f}$ = 0.38) gave 0.27 g (0.06 mmol, 86%) of the desired product as a slightly off-white amorphous solid.

¹H NMR (300.1 MHz, CDCl₃): *δ* [ppm] = 12.26 (b, 1H, N-H); 9.11 (s, 1H, H-3_{Bipy}); 8.63 (b, 1H, N-H); 8.53 (d, ${}^{3}J$ = 5.5 Hz, 1H, H-6_{Bipy}); 8.30 (b, 1H, N-H); 7.95 (d, ${}^{3}J$ = 7.9 Hz, 1H, H-3'_{Bipy}); 7.69 (m, 2H, H-4'_{Bipy}, H-5_{Bipy}); 7.09 (b, 1H, N-H); 7.00 (d, ${}^{3}J$ = 7.9 Hz, 1H, H-3'_{Bipy}); 5.22-5.40 (m, 14H, H-3^{A-G}); 4.96-5.22 (m, 14H, H-1^{A-G}); 4.65-4.93 (m, 14H, H-2^{A-G}), 4.03-4.63 (m, 38H, H-5^{A-G}, H-6^{B-G}); 3.57-3.91 (m, 18H, H-6^A; H-4^{A-G}); 1.75-2.23 (m, 120H, -COO*Me*). ¹³C NMR (75.5 MHz, CDCl₃): *δ* [ppm] = 180.1 (C=S); 169.1-171.1 (-COOMe); 155.3 (C-4_{Bipy}); 152.7 (C-6'_{Bipy}); 152.0 (C-2'_{Bipy}); 150.5 (C-6_{Bipy}); 147.2 (C-2_{Bipy}); 139.7 (C-4'_{Bipy}); 115.7 (C-3'_{Bipy}); 115.0 (C-5_{Bipy}); 113.0 (C-5'_{Bipy}); 112.2 (C-3); 95.5-97.9 (C-1^{A-G}); 75.9-78.4 (C-4^{A-G}); 68.7-72.3 (C-2^{A-G}, C-3^{A-G}, C-5^{A-G}); 62.0-63.1 (C-6^{A-G}); 20.4 (-COO*Me*). MS (ESI(+): *m/z* = 2132.5 ([(3)+Na]²⁺). Hi-Res-MS (ESI(+)): calcd. for [C₁₇₆H₂₂₈N₆O₁₀₈S₂Na₂]⁺: *m/z* = 2131.5880; found: *m/z* = 2131.5813 (Δ = 3.1 ppm). Elemental analysis: calcd for C₁₇₆H₂₂₈N₆O₁₀₈S₂ (%):C, 50.09; H, 5.45; N, 1.99; S, 1.52; found (%): C, 49.72; H, 5.69; N, 1.58; S, 1.57.

[(CO)₃Re(14)CI]

0.02 g (0.07 mmol) of **14** and 0.03 mg (0.016 mmol) pentacarbonylrhenium(I) chloride were dissolved in 2 mL CHCl₃. The solution was stirred at 40 °C. After 7 d, when ¹H NMR measurements showed complete conversion, the solvent was evaporated. ¹H NMR (300.1 MHz, CDCl₃): δ [ppm] = 8.98 (d, ³J = 6.0 Hz, 2H, H-6); 7.85 (d, ⁴J = 2.1 Hz, 2H, H-3); 7.31 (dd, ³J = 6.0 Hz, ⁴J = 2.1 Hz, 2H, H-5). MS (ESI (+)): m/z = 605.0 ({[(CO)₃Re(**14**)]+2 MeOH}⁺); 623.0 ([{(CO)₃Re(**14**)]+2 MeOH+H₂O}⁺). Hi-Res.-MS (ESI (+)): calcd. for $[C_{15}H_6N_4O_3ReS_2(CH_3OH)_2]^+$: m/z = 604.9950; found: m/z = 604.9940 ($\Delta = 1.7$ ppm).

[Zn(1)₂](OTf)₂

0.7 mg (0.002 mmol) of $Zn(OTf)_2$ were in dissolved in 0.5 mL of C_6D_6/CD_3CN (1:1). 0.3515 mL of this solution were transferred into a solution of 8 mg (0.002 mmol) of **1** in 0.1985 mL of C_6D_6/CD_3CN (1:1) and stirred for 1 h at 40 °C.

¹H NMR (400.1 MHz, C_6D_6/CD_3CN): δ [ppm] = 9.58 (b, 2H, N-H); 8.66 (s, 2H, H-3_{Bipy}); 8.57 (d, ³*J* = 6.1 Hz, 2H, H-6_{Bipy}); 8.39 (b, 2H, H-5_{Bipy}); 7.6 (b, 2H, N-H); 5.32-5.43 (m, 14H, H-3^{A-G}); 5.01-5.13 (m, 14H, H-1^{A-G}); 4.70-4.83 (m, 14H, H-2^{A-G}); 4.08-4.62 (m, 38H, H-5^{A-G}, H-6^{B-G}); 3.69-3.96 (m, 18H, H-6^A; H-4^{A-G}); 1.85-2.01 (m, 120H, -COO*Me*). MS (MALDI-TOF): m/z = 4432.4 {[(Zn(1)]OTf]⁺; 8654.7 {[Zn(1)₂]OTf]⁺.

[Cu(2)]PF₆

2 mg (0.00537 mmol) of Cu(MeCN)₄PF₆ were dissolved in 0.5 mL of C₆D₆/CD₃CN (1:1). 0.177 mL of this solution were transferred into a solution of 8 mg (0.00186 mmol) of **2** in 0.423 mL of C₆D₆/CD₃CN (1:1). The yellow solution was stirred for 1 h at 40 °C.

¹H NMR (400.1 MHz, C₆D₆/CD₃CN): δ [ppm] = 12.04 (b, 2H, N-H); 9.79 (b, 2H, N-H); 7.91 (m, 2H, H-4_{Bipy}); 7.81 (m, 2H, H-3_{Bipy}); 7.31 (m, 2H, H-5_{Bipy}); 5.30-5.63 (m, 14H, H-3^{A-G}); 5.03-5.25 (m, 14H, H-1^{A-G}); 4.7-4.96 (m, 14H, H-2^{A-G}), 4.10-4.70 (m, 38H, H-5^{A-G}, H-6^{B-G}); 3.73-4.05 (m, 18H, H-6^A; H-4^{A-G}); 1.90-2.25 (m, 120H, -COO*Me*). MS (MALDI-TOF): *m/z* = 4283.3 ([Cu(**2**)]⁺).

[Zn(2)](OTf)₂

1 mg (0.00275 mmol) of $Zn(OTf)_2$ were dissolved in 0.5 mL of C_6D_6/CD_3CN (1:1). 0.338 mL of this solution were transferred into a solution of 8 mg (0.00186 mmol) **2** in 0.162 mL of C_6D_6/CD_3CN (1:1) and stirred for 1 h at 40 °C.

¹H NMR (400.1 MHz, C_6D_6/CD_3CN): δ [ppm] = 10.58 (s, 2H, N-H); 8.43 (s, 2H, N-H); 7.87 (dd, ${}^{3}J$ = 8.1 Hz, ${}^{3}J$ = 8.1 Hz, 2H, H-4_{Bipy}); 7.70 (d, ${}^{3}J$ = 8.1 Hz, 2H, H-3_{Bipy}); 7.33 (d, ${}^{3}J$ = 8.1 Hz, 2H, H-5_{Bipy}); 5.35-5.50 (m, 14H, H-3^{A-G}); 4.91-5.21 (m, 14H, H-1^{A-G}); 4.68-4.95 (m, 14H, H-2^{A-G}); 4.05-4.59 (m, 42H, H-5^{A-G}, H-6^{A-G}); 3.75-3.92 (m, 14H, H-4^{A-G}); 1.82-2.08 (m, 120H, -COO*Me*). MS (ESI(+)): *m/z* = 1429.2 ({[Zn(2)]+H}³⁺).

[Cu(22)]PF₆

5 mg (0.01341 mmol) of Cu(MeCN)₄PF₆ were dissolved in 0.5 mL of C₆D₆/CD₃CN (1:1). 0.297 mL of this solution were transferred into a solution of 3.6 mg (0.00796 mmol) of **22** in 0.5 mL of C₆D₆/CD₃CN (1:1). A yellow solution was obtained. ¹H NMR (400.1 MHz, C₆D₆/CD₃CN 1:1): δ [ppm] = 8.09 (d, ³J_{3,4} = 8.3 Hz, 2H, H-4); 7.54 (s, 2H, H-5); 7.52 (d, ³J_{3,4} = 8.3 Hz, 2H, H-3); 7.3 (dd, ³J_{3,4} = 8.4 Hz, 2H, H-4'); 6.57 (d, ³J_{3',4'} = 8.4 Hz, 4H, H-3'); 3.43 (s, 12H, -O*Me*). MS (ESI(+)): *m/z* = 515.2 ([Cu(**22**)]⁺). Hi-Res.-MS (ESI(+)): calcd. for [C₂₈H₂₄CuN₂O₄]⁺: *m/z* = 515.1026; found: *m/z* = 515.1027 (Δ = 0.2 ppm).

[Zn(22)₂](OTf)₂

5 mg (0.014 mmol) of Zn(OTf)₂ were dissolved in 0.3 mL of C₆D₆/CD₃CN (1:1). 0.289 mL of this solution were transferred into a solution of 5 mg (0.01105 mmol) of **22** in 0.4 mL of C₆D₆/CD₃CN (1:1). The colourless solution was stirred at 40 °C for 1 h. ¹H NMR (400.1 MHz, C₆D₆/CD₃CN): δ [ppm] = 8.34 (d, ³J_{3,4} = 8.4 Hz, 2H, H-4); 7.86 (s, 2H, H-5); 7.45 (d, ³J_{3,4} = 8.4 Hz, 2H, H-3); 7.45 (dd, ³J_{3,4} = 8.4 Hz, 2H, H-4'); 6.70

(d, ${}^{3}J_{3^{\circ},4^{\circ}} = 8.4$ Hz, 4H, H-3'); 3.31 (s, 12H, -O*Me*). MS (ESI (+)): m/z = 258.0 ([M+Zn]²⁺); 484.1 ([Zn(**22**)₂]²⁺); 665.1 ({[Zn(**11**)]OTf}⁺). Hi-Res.-MS (ESI (+)): calcd. for [C₂₉H₂₄F₃N₂O₇SZn]⁺: m/z = 665.0542; found: m/z = 665.0522 ($\Delta = 3$ ppm).

[Cu(1)(22)]PF₆

2 mg (0.005366 mmol) of Cu(MeCN)₄PF₆ were dissolved in 0.4 mL of C₆D₆/CD₃CN (1:1). 0.3295 mL of this solution were transferred to a solution of 2 mg (0.00442 mmol) of **22** in 0.4 mL of C₆D₆/CD₃CN (1:1). From this solution, 0.3129 mL were taken and added to a solution of 8 mg (0.001896 mmol) of **1** in 0.3 mL of C₆D₆/CD₃CN (1:1). The resulting solution has a deep red colour.

¹H NMR (400.1 MHz, C₆D₆/CD₃CN): δ [ppm] = 9.10 (b, 2H, N-H); 8.26 (b, 2H, H-3_{Bipy}); 8.14 (d, ³*J* = 8.3 Hz, 2H, H-4_{Phen}); 7.85 (b, 2H, H-5_{Bipy}); 7.82 (d, ³*J* = 5.7 Hz, 2H, H-6_{Bipy}); 7.60 (s, 2H, H-5_{Phen}); 7.52 (d, ³*J* = 8.3 Hz, 2H, H-3_{Phen}); 7.19 (b, 2H, N-H); 6.79 (dd, ³*J* = 8.4 Hz, 2H, H-4'_{Phen}); 6.01 (d, ³*J* = 8.4 Hz, 4H, H-3'_{Phen}); 5.35-5.48 (m, 14H, H-3^{A-G}); 5.02-5.18 (m, 14H, H-1^{A-G}); 4.70-4.85 (m, 14H, H-2^{A-G}); 4.05-4.55 (m, 38H, H-5^{A-G}, H-6^{B-G}); 3.69-3.92 (m, 18H, H-6^A; H-4^{A-G}); 3.21 (s, 12H, -O*Me*); 1.85-1.98 (m, 120H, -COO*Me*). MS (MALDI-TOF): 4735.9 ([Cu(1)(22)]⁺).

[Zn(1)(22)](OTf)₂

2.5 mg (0.00688 mmol) of $Zn(OTf)_2$ were dissolved in 0.6 mL C_6D_6/CD_3CN (1:1). 0.4821 mL of this solution were transferred into a solution of 2.5 mg (0.00553 mmol) of **22** in 0.6 mL C_6D_6/CD_3CN (1:1). From this solution, 1.0211 mL were taken and added to a solution of 22 mg (0.005214 mmol) of **1** in 0.3 mL of C_6D_6/CD_3CN (1:1). The colourless mixture was stirred for 1 h at 40 °C.

¹H NMR (400.1 MHz, C₆D₆/CD₃CN): δ [ppm] = 9.79 (b, 2H, N-H); 8.54 (s, 2H, H-3_{Bipy}); 8.41 (d, ³J = 8.4 Hz, 2H, H-4_{Phen}); 8.17 (d, ³J = 6.0 Hz, 2H, H-6_{Bipy}); 7.92 (s,

2H, H-5_{Phen}); 7.75 (b, 2H, N-H); 7.67 (d, ${}^{3}J$ = 8.4 Hz, 2H, H-3_{Phen}); 7.66 (d, ${}^{3}J$ = 6.0 Hz, 2H, H-5_{Bipy}); 6.92 (dd, ${}^{3}J$ = 8.4 Hz, 2H, H-4'_{Phen}); 6.13 (m, 4H, H-3'_{Phen}); 5.35-5.50 (m, 14H, H-3^{A-G}); 5.02-5.19 (m, 14H, H-1^{A-G}); 4.68-4.80 (m, 14H, H-2^{A-G}); 4.10-4.48 (m, 42H, H-5^{A-G}, H-6^{A-G}); 3.75-3.90 (m, 14H, H-6^A; H-4^{A-G}); 3.19 (s, 12H, -O*Me*); 1.86-1.98 (m, 120H, -COO*Me*). MS (MALDI-TOF): m/z = 4884.6 {[Zn(1)(22)]OTf}⁺.

Crystal structure determination: The data collection was performed on a NONIUS KappaCCD diffractometer (area detector) using graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). The diffractometer was equipped with a low-temperature device (Cryostream 600er series, Oxford Cryosystems, 123(2) K). Intensities were measured by fine-slicing ω and φ -scans and corrected for background, polarization and Lorentz effects.

An empirical absorption correction was applied for all data sets according to Blessing's method.^[13] The structures were solved by direct methods and refined anisotropically by the least-squares procedure implemented in the ShelX program system.^[14] Hydrogen atoms were included isotropically using the riding model on the bound carbon atoms.

CCDC-974931 ([(CO)₃Re(**14**)Cl]), CCDC-974932 ([Cu(**22**)(H₃CCN)₂]PF₆), and CCDC-974933 ([Zn(**22**)₂](OTf)₂) contain the supplementary crystallographic data for this paper, which can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

¹³ Blessing, R. H. Acta Cryst., **1995**, A61, 33–38

¹⁴ Sheldrick, G. M.; SHELXS97 and SHELXL97, University of Göttingen, Germany, **1997**.

Table	S1:	Crystallographic	data	for	[(CO) ₃ Re(14)Cl],	$[Cu(22)(H_3CCN)_2]PF_6,$	and
[Zn(22) ₂](O	Tf) ₂ .					

Parameters	[(CO) ₃ Re(14)Cl]	$[Cu(22)(H_3CCN)_2]PF_6$	$[Zn(22)_2](OTf)_2$
formula	$C_{16}H_7CI_4N_4O_3ReS_2$	$C_{32}H_{30}CuF_6N_4O_4P$	$C_{58}H_{48}F_6N_4O_{14}S_2Zn$
M _r	695.38	743.11	1268.49
Т [К]	123(2)	123(2)	123.2(1)
crystal system	monoclinic	triclinic	triclinic
space group	P 2 ₁ /c	<i>P</i> -1	<i>P</i> -1
crystal dimensions [mm]	0.32 × 0.18 × 0.08	0.28 × 0.20 × 0.02	0.40 × 0.12 × 0.08
a [Å]	11.7253(2)	11.1033(8)	10.6987(2)
b [Å]	17.6132(3)	12.4397(9)	12.9294(3)
c [Å]	11.6498(2)	13.5810(10)	19.7165(4)
α [°]	90	66.770(2)	90.5060(12)
β [°]	115.0710(10)	87.495(2)	92.8121(14)
γ [°]	90	71.359(2)	101.5840(12)
V [Å ³]	2179.24(6)	1620.0(2)	2668.08(10)
Z	4	2	2
ρ [mg m³]	2.119	1.518	1.579
μ [mm ⁻¹]	6.285	0.799	0.634
F(000)	1320	760	1304
θ range [°]	3.00-28.00	2.66-28.00	2.16-28.00
completeness [%]	99.8	99.6	99.7
reflections measured	58475	42418	67742
unique reflections	5260/	7816	12833
(R _{int})	(0.0693)	(0.0632)	(0.0719)
data/restrains/para- meters	5260/2/271	7816/6/445	12833/101/812
GoF on F ²	1.083	1.033	1.055
final R indices	R1 = 0.0299	R1 = 0.0588	R1 = 0.0694
[<i>l</i> > 2σ(I)]	ωR2 0.0566	ωR2 = 0.1415	ωR2 = 0.2157
R indices all data	R1 = 0.0299	R1 = 0.0998	R1 = 0.1024
	ωR2 = 0.0583	ωR2 = 0.1659	ωR2 = 0.2364
largest diff. peak and hole [e Á ³]	1.090/ -1.507	1.250/ -1.236	3.587/-2.247

Figure S1: ¹H NMR spectrum (400.1 MHz, in $CDCI_3$ at 293 K) of **1**.

Figure S2: ¹³C NMR spectrum (100.6 MHz, in CDCI₃ at 293 K) of **1**.

Figure S3: ¹H NMR spectrum (400.1 MHz, in $CDCI_3$ at 293 K) of **2**.

Figure S4: ¹³C NMR spectrum (100.6 MHz, in CDCI₃ at 293 K) of **2**.

Figure S5: ¹H NMR spectrum (400.1 MHz, in $CDCI_3$ at 293 K) of 3.

Figure S6: ¹³C NMR spectrum (100.6 MHz, in CDCI₃ at 293 K) of 3.

Figure S7: ¹H NMR spectrum (400.1 MHz, in $CDCI_3$ at 293 K) of 21.

Figure S8: ¹³C NMR spectrum (100.6 MHz, in CDCl₃ at 293 K) of 21.

Figure S9: ¹H NMR spectrum (400.1 MHz, in CDCl₃ at 293 K) of [(CO)₃Re(**14**)Cl].

Figure S10: ESI-MS (positive mode, sprayed from benzene/acetonitrile 1:1) of [(CO)₃Re(14)Cl].

Figure S11: Aromatic region of the ¹H NMR spectra (100.6 MHz, 400.1 MHz, 293 K, benzene- d_6 /acetonitrile- d_3 1:1) of a) **2** and b) [Cu(**2**)]PF₆.

Figure S14: Aromatic region of the ¹H NMR spectra (100.6 MHz, 400.1 MHz, 293 K, benzene- d_6 /acetonitrile- d_3 1:1) of a) **3** and b) a 1:2 mixture of Zn(OTf)₂ and **3**.

Figure S15: ¹H NMR spectrum (100.6 MHz, 400.1 MHz, 293 K, benzene d_6 /acetonitrile- d_3 1:1) of a 1:1 mixture of CuPF₆ and **22**.

Figure S16: MALDI–MS (sample prepared from a benzene/acetonitrile (1:1) solution using DCBT as matrix) of $[Cu(22)]PF_6$.

Figure S17: ¹H NMR spectrum (100.6 MHz, 400.1 MHz, 293 K, benzene d_6 /acetonitrile- d_3 1:1) of a 1:1 mixture of Zn(OTf)₂ and **22**.

Figure S19: Aromatic region of the ¹H NMR spectra (100.6 MHz, 400.1 MHz, 293 K, benzene- d_6 /acetonitrile- d_3 1:1) of a) **1**, b) a 1:1:1 mixture of CuPF₆, **1**, and **22**, and c) **22**.

Figure S20: MALDI–MS (sample prepared from a benzene/acetonitrile (1:1) solution using DCTB as matrix) of [Zn(**22**)(**1**)](OTf)₂.