Supporting Information

for

Towards allosteric receptors - synthesis of β -
 cyclodextrin-functionalised 2,2'-bipyridines and their metal complexes

Christopher Kremer ${ }^{1}$, Gregor Schnakenburg ${ }^{2}$ and Arne Lützen*1

Address: ${ }^{1}$ University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany and ${ }^{2}$ University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany

Email: Arne Lützen - arne.luetzen@uni-bonn.de

* Corresponding author

Experimental data, NMR and ESI mass spectra

- Experimental part
- NMR spectra of compounds 1, 2, 3, 21, 22 and 6 and the metal complexes of 1, 2, 3, 14, and 22.
- Mass spectra of metal complexes of 1,2,14, and 22.

Experimental

General remarks: All solvents were distilled and dried prior to use according to standard procedures. All syntheses with air- and moisture-sensitive compounds were performed using Schlenk techniques under argon atmosphere. Column chromatography was performed on silica gel $60 \mathrm{M}(0.04-0.063 \mathrm{~mm})$ from MachereyNagel. All solvents used as eluents for column chromatography were distilled prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 293 K on a Bruker AM $300\left({ }^{1} \mathrm{H}: 300.1\right.$ $\mathrm{MHz},{ }^{13} \mathrm{C}: 75.5 \mathrm{MHz}$) or a Bruker AM $400\left({ }^{1} \mathrm{H}: 400.1 \mathrm{MHz},{ }^{13} \mathrm{C}: 100.6 \mathrm{MHz}\right) .{ }^{1} \mathrm{H}$ NMR chemical shifts are reported on the δ scale (ppm) relative to residual non-deuterated solvent as internal standard. ${ }^{13} \mathrm{C}$ NMR chemical shifts are given as δ values (ppm) relative to signals of the deuterated solvent as internal standards. Mass spectra were taken on a Bruker autoflex II TOF/TOF (MALDI) or a Bruker micrOTOF-Q (ESI, Hi-Res-ESI). Elemental analyses were carried out on a Heraeus Vario EL. Chemicals and reagents (except for the solvents) obtained from commercial sources were used as received. The following compounds were prepared according to published procedures: pyrrole-substituted 2-halogenopyridines 6 and $7,{ }^{[1]}$ bis(pyrrole)substituted 2,2'-bipyridines 8 and $\mathbf{9}^{[1]}$ as well as $\mathbf{1 0}^{[2]}$, diamino-2,2'-bipyridines 11 $13^{[1]}$, diisothiocyanato-2,2'-bipyridines $14-16^{[3]}$, 6^{A}-O-p-toluenesulfonyl- β-cyclodextrin (18) ${ }^{[4]}$, 6^{A}-azido-6 ${ }^{\mathrm{A}}$-deoxy- β-cyclodextrin (19) ${ }^{[5]}$, $2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}$-icosa-O-acetyl- 6^{A}-azido-

[^0]$6^{\text {A }}$-desoxy- β-cyclodextrin (20) ${ }^{[6]}$, 6,7-dihydro-5H-[1,4]di-azepino[1,2,3,4-I,m,n][1,10]-phenanthroline-4,8-diium dibromide (23) $)^{[7]}$, 3,6,7,9-tetrahydro-5H-[1,4]diazepino-$[1,2,3,4-I, m, n][1,10]$-phenanthroline-3,9-dione $\quad(24)^{[7]}, \quad$ 2,9-dichloro-1,10-phenanthroline $(\mathbf{2 5})^{[8]}, \quad$ 2,6-dimethoxyphenylboronic acid $(\mathbf{2 6})^{[9]}$, and 2,9-bis(2,6-dimethoxyphenyl)-1,10-phenanthroline (22) ${ }^{[10-12]}$.

$2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 2^{G}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 3^{G}, 6^{B}, 6^{C}, 6^{D}, 6^{E}, 6^{F}, 6^{G}$-lcosa-O-acetyl- 6^{A} -

amino- $\mathbf{6}^{\mathrm{A}}$-desoxy- β-cyclodextrin (21): $3.92 \mathrm{~g}(1.96 \mathrm{mmol})$ of peracetylated azidocyclodextrin 20 were dissolved in 12 mL of dry acetone and $1.03 \mathrm{~g}(3.95 \mathrm{mmol})$ PPh_{3} were added. The reaction mixture was stirred for two hours at rt, followed by the addition of 1 mL of water. After 30 minutes of reflux, the solvents were evaporated, the crude product was dissolved in dichloromethane and washed with water. After drying with MgSO_{4}, the solvents were evaporated. Further purification could be achieved by column chromatography on silica gel (eluent: dichloromethane/EtOH $96: 4+0.5 \% \mathrm{NEt}_{3}, R_{\mathrm{f}}=0.32$) to give $2.34 \mathrm{~g}(1.18 \mathrm{mmol}, 60 \%)$ of the desired product as a white solid.
$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right): 150^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=5.23-5.40\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}-\mathrm{G}}\right)$; $5.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}}\right) ; 5.03-5.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-1^{\mathrm{B}-\mathrm{G}}\right) ; 4.72-4.86\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}-\mathrm{G}}\right)$, 4.48-4.62 (m, 6H, H-6 ${ }^{B-G}$); 4.19-4.35 (m, 6H, H-6 ${ }^{B-G}$); 4.02-4.19 (m, 7H, H-5 ${ }^{\text {A-G }}$); 3.82$3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6^{\mathrm{A}}\right), 3.64-3.77\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-4^{\mathrm{A}-\mathrm{G}}\right) ; 1.95-2.20(\mathrm{~m}, 60 \mathrm{H},-\mathrm{COOMe})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=169.38-170.77$ (-COOMe); 96.79-98.42 $\left(\mathrm{C}-1^{\mathrm{A}-\mathrm{G}}\right) ; 76.51-77.40\left(\mathrm{C}-4^{\mathrm{A}-\mathrm{G}}\right) ; 69.38-71.24\left(\mathrm{C}-2^{\mathrm{A}-\mathrm{G}}, \mathrm{C}-3^{\mathrm{A}-\mathrm{G}}, \mathrm{C}-5^{\mathrm{A}-\mathrm{G}}\right) ; 62.44-62.78$

[^1]$\left(\mathrm{C}-6^{\mathrm{B}-\mathrm{G}}\right) ; 41.59\left(\mathrm{C}-6^{\mathrm{A}}\right) ; 20.77(-\mathrm{COOMe}) . \mathrm{MS}(\mathrm{ESI}(+)): m / z=1974.4\left([(7)+\mathrm{H}]^{+}\right) ; 999.2$ $\left([(7)+\mathrm{H}+\mathrm{Na}]^{2+}\right)$. Elemental analysis: calcd. for $\mathrm{C}_{82} \mathrm{H}_{111} \mathrm{NO}_{54}(\%): \mathrm{C}, 49.87 ; \mathrm{H}, 5.67 ; \mathrm{N}$, 0.71 ; found (\%): C, 49.53; H, 5.90; N, 0.89 .

N, N^{\prime} '-(2,2'-Bipyridine)-4, 4^{\prime}-diylbis($N^{\mathrm{N}}-2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}$,

 $6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}$-icosa-O-acetyl- 6^{A}-desoxy- β-cyclodextrin- 6^{A}-yl)thiourea) (1) $0.05 \mathrm{~g}(0.2 \mathrm{mmol})$ of 4,4'-diisothiocyanato-2,2'-bipyridine (14) and $0.9 \mathrm{~g}(0.46 \mathrm{mmol}$, 2.3 equiv) of $2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}$-icosa-O-acetyl- 6^{A}-amino- 6^{A}-desoxy- β-cyclodextrin (21) were dissolved in 20 mL of dry dichloromethane and stirred for 24 hours at rt , followed by evaporation of the solvent. Column chromatography on silica gel (eluent: dichloromethane: $\mathrm{EtOH} 96: 4, R_{\mathrm{f}}=0.32$) gave 0.77 g ($0.18 \mathrm{mmol}, 92 \%$) of the desired product as a slightly off-white amorphous solid.${ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=8.87(\mathrm{~b}, 2 \mathrm{H}, \mathrm{NH}) ; 8.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H-6 Bipy $^{\text {) }}$; 8.13 (s, 2H, H-3 Bipy $^{\text {) ; }} 7.97$ (b, 2H, H-5 Bipy); 6.89 (b, 2H, NH); 5.22-5.45 (m, $\left.14 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}-\mathrm{G}}\right) ; 4.96-5.24\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}-\mathrm{G}}\right) ; 4.69-4.93\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}-\mathrm{G}}\right)$, 3.93-4.66(m, $\left.38 \mathrm{H}, \mathrm{H}-5^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{B}-\mathrm{G}}\right) ; 3.61-3.88\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}-6^{\mathrm{A}} ; \mathrm{H}-4^{\mathrm{A}-\mathrm{G}}\right) ; 1.91-2.28(\mathrm{~m}$, $120 \mathrm{H},-\mathrm{COOMe}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=180.5(\mathrm{C}=\mathrm{S}) ;$ 169.4-171.3 (COOMe); 155.9 (C-4 Bipy); 150.0 (C-2 $2_{\text {Bipy }}$); 147.2 (C-6 Bipy); 114.6 (C-5 $5_{\text {вipy }}$); 111.8 (C$\left.3_{\text {Bipy }}\right) ; 96.3-98.1\left(\mathrm{C}-1^{\mathrm{A}-\mathrm{G}}\right) ; 76.5-77.4\left(\mathrm{C}-4^{\mathrm{A}-\mathrm{G}}\right) ; 69.5-71.8\left(\mathrm{C}-2^{\mathrm{A}-\mathrm{G}}, \mathrm{C}-3^{\mathrm{A-G}}, \mathrm{C}-5^{\mathrm{A}-\mathrm{G}}\right) ; 62.4-$ $63.1\left(\mathrm{C}-6^{\mathrm{A}-\mathrm{G}}\right) ; 20.6$ (-COOMe). MS (MALDI-TOF): $m / z=4219.8\left([(1)+\mathrm{H}]^{+}\right)$. Elemental analysis: calcd. for $\mathrm{C}_{176} \mathrm{H}_{228} \mathrm{~N}_{6} \mathrm{O}_{108} \mathrm{~S}_{2} \cdot 7 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (\%): $\mathrm{C}, 45.66 ; \mathrm{H}, 5.07 ; \mathrm{N}, 1.75 ; \mathrm{S}$: 1.33; found (\%): C, 45.82; H, 5.12; N, 1.85; S, 1.82.
$N, N^{\prime}-\left(2,2^{\prime}-\right.$ Bipyridine $)-6,6^{\prime}-\operatorname{diylbis}\left(N^{-}-2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}\right.$, $6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}$-icosa-O-acetyl- 6^{A}-desoxy- β-cyclodextrin- 6^{A}-yl)thiourea) (2)
$0.02 \mathrm{~g}(0.07 \mathrm{mmol})$ of $6,6^{\prime}$-diisothiocyanato-2, 2^{-}-bipyridine (15) and $0.34 \mathrm{~g}(0.17$ mmol, 2.3 equiv) of $2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}$-icosa-O-acetyl-6 ${ }^{\mathrm{A}}$-amino- b^{A}-desoxy- β-cyclodextrin (21) were dissolved in 10 mL of dry dichloromethane and stirred for 48 hours at ft , followed by evaporation of the solvent. Column chromatography on silica gel (eluent: dichloromethane:EtOH 96:4, $R_{\mathrm{f}}=0.38$) gave 0.29 g ($0.069 \mathrm{mmol}, 93 \%$) of the desired product as a slightly off-white amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=11.81(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 8.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 7.77$ (dd, ${ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\text {Bipy }}$); 7.59 (d, ${ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3_{\text {Bipy }}$); $7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{H}-5_{\text {Bipy }}\right) ; 5.10-5.40\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}-\mathrm{G}}\right.$); 4.91-5.09 (m, 14H, H-1 ${ }^{\text {A-G }}$); 4.64-4.83 (m, $14 \mathrm{H}, \mathrm{H}-2^{\text {A-G }}$), 3.88-4.27 ($\mathrm{m}, 38 \mathrm{H}, \mathrm{H}-5^{\text {A-G }}, \mathrm{H}-6^{B-G}$); 3.42-3.81 ($\mathrm{m}, 18 \mathrm{H}, \mathrm{H}-6^{\mathrm{A}} ; \mathrm{H}-4^{\text {A-G }}$); $1.82-2.52(\mathrm{~m}, 120 \mathrm{H},-\mathrm{COOMe}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=180.2$ (C=S); 169.2-171.5 (-COOMe); 153.0 (C-6 Bipy $^{\text {(}}$; 151.8 (C-2 $2_{\text {Bipy }}$; 139.6 (C-4 Bipy); 114.9
 C-3 ${ }^{\text {A-G }}, \mathrm{C}-5^{A-G}$); 62.4-65.2 (C-6 ${ }^{\text {A-G }}$); 20.8-21.1 (-COOMe). MS (MALDI-TOF): $m / z=$ $4217.9\left(\left[(\mathbf{2})+\mathrm{H}^{+}\right)\right.$. Elemental analysis: calcd. for $\mathrm{C}_{176} \mathrm{H}_{228} \mathrm{~N}_{6} \mathrm{O}_{108} \mathrm{~S}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\%)$: C , 48.70; H, 5.33; N, 1.91; S, 1.46; found (\%): C, 48.39; H, 5.48; N, 1.56; S, 1.85.

$N, N^{\prime}-\left(2,2^{\prime}-\right.$ Bipyridine $)-4,6^{\prime}$-diylbis $\left(N-2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}\right.$,

 $6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}$-icosa-O-acetyl- 6^{A}-desoxy- β-cyclodextrin- 6^{A}-yl)thiourea) (3) $0.02 \mathrm{~g}(0.07 \mathrm{mmol})$ of $4,6^{\prime}$-diisothiocyanato-2,2'-bipyridine (16) and $0.34 \mathrm{~g}(0.17$ mmol, 2.3 equiv) of $2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 2^{\mathrm{G}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 3^{\mathrm{G}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}, 6^{\mathrm{G}}-$ Icosa-O-acetyl-6 ${ }^{\mathrm{A}}$-amino- 6^{A}-desoxy- β-cyclodextrin were dissolved in 10 mL of dry dichloromethane and stirred for 48 hours at rt , followed by evaporation of the solvent.Column chromatography on silica gel (eluent: dichloromethane: $\mathrm{EtOH} 96: 4, R_{\mathrm{f}}=0.38$) gave 0.27 g ($0.06 \mathrm{mmol}, 86 \%$) of the desired product as a slightly off-white amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=12.26(\mathrm{~b}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 9.11$ (s, $\left.1 \mathrm{H}, \mathrm{H}-3_{\text {Bipy }}\right) ; 8.63$ (b, 1H, N-H); 8.53 (d, ${ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6_{\text {Bipy }}$); $8.30(\mathrm{~b}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 7.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}\right.$, 1H, H-3' ${ }_{\text {Bipy }}$); 7.69 (m, 2H, H-4 ${ }_{\text {Bipy }}, \mathrm{H}-5_{\text {Bipy }}$); 7.09 (b, 1H, N-H); 7.00 (d, ${ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$ 'вiру); 5.22-5.40 (m, 14H, H-3 ${ }^{\mathrm{A}-\mathrm{G}}$); 4.96-5.22 (m, 14H, H-1 ${ }^{\mathrm{A}-\mathrm{G}}$); 4.65-4.93 (m, $\left.14 \mathrm{H}, \mathrm{H}-2^{A-G}\right), 4.03-4.63\left(\mathrm{~m}, 38 \mathrm{H}, \mathrm{H}-5^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{B}-\mathrm{G}}\right) ; 3.57-3.91\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}-6^{\mathrm{A}} ; \mathrm{H}-4^{\mathrm{A}-\mathrm{G}}\right)$; 1.75-2.23 (m, 120H, -COOMe). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=180.1$ (C=S); 169.1-171.1 (-COOMe); 155.3 (C-4 ${ }_{\text {Bipy }}$); 152.7 (C-6' ${ }_{\text {Bipy }}$); 152.0 (C-2' ${ }_{\text {Bipy }}$); 150.5 (C-6 Bipy); 147.2 (C-2 $2_{\text {Bipy }}$); 139.7 (C-4' ${ }_{\text {вipy }}$); 115.7 (C-3' ${ }_{\text {Bipy }}$); 115.0 (C-5 ${ }_{\text {Bipy }}$); 113.0 (C-5'siру); 112.2 (C-3); 95.5-97.9 (C-1 $\left.{ }^{\text {A-G }}\right) ; 75.9-78.4\left(\mathrm{C}-4^{\text {A-G }}\right) ; 68.7-72.3\left(\mathrm{C}-2^{\text {A-G }}\right.$, $\left.\mathrm{C}-3^{\mathrm{A}-\mathrm{G}}, \mathrm{C}-5^{\mathrm{A}-\mathrm{G}}\right) ; 62.0-63.1\left(\mathrm{C}-6^{\mathrm{A}-\mathrm{G}}\right) ; 20.4$ (-COOMe). $\mathrm{MS}(\mathrm{ESI}(+): m / z=2132.5$ $\left([(3)+\mathrm{Na}]^{2+}\right)$. Hi-Res-MS (ESI(+)): calcd. for $\left[\mathrm{C}_{176} \mathrm{H}_{228} \mathrm{~N}_{6} \mathrm{O}_{108} \mathrm{~S}_{2} \mathrm{Na}_{2}\right]^{+}: \quad \mathrm{m} / \mathrm{z}=$ 2131.5880; found: $m / z=2131.5813(\Delta=3.1 \mathrm{ppm})$. Elemental analysis: calcd for $\mathrm{C}_{176} \mathrm{H}_{228} \mathrm{~N}_{6} \mathrm{O}_{108} \mathrm{~S}_{2}(\%): \mathrm{C}, 50.09 ; \mathrm{H}, 5.45 ; \mathrm{N}, 1.99 ; \mathrm{S}, 1.52$; found (\%): C, 49.72; H, 5.69; N, 1.58; S, 1.57.

$\left[(\mathrm{CO})_{3} \operatorname{Re}(14) \mathrm{Cl}\right]$

$0.02 \mathrm{~g}(0.07 \mathrm{mmol})$ of 14 and $0.03 \mathrm{mg}(0.016 \mathrm{mmol})$ pentacarbonylrhenium (I) chloride were dissolved in 2 mL CHCl . The solution was stirred at $40{ }^{\circ} \mathrm{C}$. After 7 d , when ${ }^{1} \mathrm{H}$ NMR measurements showed complete conversion, the solvent was evaporated.
${ }^{1} \mathrm{H}$ NMR (300.1 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=8.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6\right) ; 7.85(\mathrm{~d}$, $\left.{ }^{4} J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3\right) ; 7.31\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5\right) . \mathrm{MS}(\mathrm{ESI}(+)):$ $m / z=605.0 \quad\left(\left\{\left[(\mathrm{CO})_{3} \mathrm{Re}(14)\right]+2 \mathrm{MeOH}^{+}\right) ; 623.0 \quad\left(\left[\left\{(\mathrm{CO})_{3} \mathrm{Re}(14)\right]+2 \mathrm{MeOH}+\mathrm{H}_{2} \mathrm{O}\right\}^{+}\right)\right.$.

Hi-Res.-MS (ESI (+)): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{ReS}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{+}: m / z=604.9950$; found: $m / z=604.9940(\Delta=1.7 \mathrm{ppm})$.

$\left[\mathrm{Zn}(\mathbf{1})_{2}\right](\mathrm{OTf})_{2}$

$0.7 \mathrm{mg}(0.002 \mathrm{mmol})$ of $\mathrm{Zn}(\mathrm{OTf})_{2}$ were in dissolved in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$. 0.3515 mL of this solution were transferred into a solution of $8 \mathrm{mg}(0.002 \mathrm{mmol})$ of 1 in 0.1985 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$ and stirred for 1 h at $40^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$): $\delta[\mathrm{ppm}]=9.58(\mathrm{~b}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 8.66(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}-3_{\text {Bipy }}\right) ; 8.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6_{\text {вipy }}\right) ; 8.39\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-5_{\text {вipy }}\right) ; 7.6(\mathrm{~b}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H})$; 5.32-5.43 (m, 14H, H-3 $\left.{ }^{A-G}\right) ; 5.01-5.13\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}-\mathrm{G}}\right) ; 4.70-4.83\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}-\mathrm{G}}\right)$; 4.08-4.62 (m, 38H, H-5 ${ }^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{B}-\mathrm{G}}$); 3.69-3.96 (m, 18H, H-6 ${ }^{\mathrm{A}} ; \mathrm{H}-4^{\mathrm{A}-\mathrm{G}}$); 1.85-2.01 (m, 120H, -COOMe). MS (MALDI-TOF): $m / z=4432.4\left\{[(\mathrm{Zn}(1)] O T f\}^{+} ; 8654.7\right.$ $\left\{\left[\mathrm{Zn}(\mathbf{1})_{2}\right] \mathrm{OTf}\right]^{+}$.

[Cu(2)] PF_{6}

$2 \mathrm{mg}(0.00537 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ were dissolved in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). 0.177 mL of this solution were transferred into a solution of $8 \mathrm{mg}(0.00186$ mmol) of $\mathbf{2}$ in 0.423 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$. The yellow solution was stirred for 1 h at $40^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=12.04(\mathrm{~b}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 9.79(\mathrm{~b}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ;$ 7.91 (m, 2H, H-4 Bipy); 7.81 (m, 2H, H-3 Bipy $) ; 7.31$ (m, 2H, H-5 Bipy $) ; 5.30-5.63$ (m, 14H, $\left.H-3^{A-G}\right) ; 5.03-5.25\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}^{\mathrm{A}-\mathrm{G}}\right) ; 4.7-4.96\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}-\mathrm{G}}\right), 4.10-4.70(\mathrm{~m}, 38 \mathrm{H}$, $\mathrm{H}-5^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{B}-\mathrm{G}}$) ; 3.73-4.05 (m, 18H, H-6 $\mathrm{C}^{\mathrm{A}} ; \mathrm{H}-4^{\mathrm{A}-\mathrm{G}}$); 1.90-2.25 (m, 120H, -COOMe). MS (MALDI-TOF): $m / z=4283.3\left([\mathrm{Cu}(2)]^{+}\right)$.

$[\mathrm{Zn}(2)](\mathrm{OTf})_{2}$

$1 \mathrm{mg}(0.00275 \mathrm{mmol})$ of $\mathrm{Zn}(\mathrm{OTf})_{2}$ were dissolved in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). 0.338 mL of this solution were transferred into a solution of $8 \mathrm{mg}(0.00186 \mathrm{mmol}) \mathbf{2}$ in 0.162 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$ and stirred for 1 h at $40^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=10.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 8.43(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H})$; 7.87 (dd, ${ }^{3} J=8.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\text {Bipy }}$); $7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3_{\text {Bipy }}\right) ; 7.33$ ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5_{\text {Bipy }}$); 5.35-5.50 (m, 14H, H-3 $3^{\mathrm{A}-\mathrm{G}}$); 4.91-5.21 (m, $14 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}-\mathrm{G}}$); 4.68-4.95 (m, 14H, H-2 ${ }^{\mathrm{A}-\mathrm{G}}$); 4.05-4.59 (m, 42H, H-5 ${ }^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{A}-\mathrm{G}}$); 3.75-3.92 (m, 14H, $\left.H-4^{\text {A-G }}\right) ; 1.82-2.08(\mathrm{~m}, 120 \mathrm{H},-\mathrm{COOMe}) . \mathrm{MS}(\mathrm{ESI}(+)): m / z=1429.2\left(\{[\mathrm{Zn}(2)]+\mathrm{H}\}^{3+}\right)$.

[$\mathrm{Cu}(22)] \mathrm{PF}_{6}$

$5 \mathrm{mg}(0.01341 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ were dissolved in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). 0.297 mL of this solution were transferred into a solution of 3.6 mg (0.00796 mmol) of 22 in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$. A yellow solution was obtained. ${ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN} 1: 1\right): \delta[\mathrm{ppm}]=8.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,4}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4\right)$; 7.54 (s, 2H, H-5); 7.52 (d, ${ }^{3} J_{3,4}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$); 7.3 (dd, ${ }^{3} \mathrm{~J}_{3^{3}, 4^{4}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{〔}$); $6.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3^{\prime}, 4^{4}}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-3^{〔}\right) ; 3.43(\mathrm{~s}, 12 \mathrm{H},-\mathrm{OMe}) . \mathrm{MS}(\mathrm{ESI}(+)): m / z=515.2$ $\left([\mathrm{Cu}(\mathbf{2 2})]^{+}\right)$. Hi-Res.-MS $(\mathrm{ESI}(+))$: calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{CuN}_{2} \mathrm{O}_{4}\right]^{+}: m / z=515.1026$; found: $m / z=515.1027(\Delta=0.2 \mathrm{ppm})$.

$\left[\mathrm{Zn}(22)_{2}\right](\mathrm{OTf})_{2}$

$5 \mathrm{mg}(0.014 \mathrm{mmol})$ of $\mathrm{Zn}(\mathrm{OTf})_{2}$ were dissolved in 0.3 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1) .0 .289$ mL of this solution were transferred into a solution of $5 \mathrm{mg}(0.01105 \mathrm{mmol})$ of $\mathbf{2 2}$ in 0.4 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). The colourless solution was stirred at $40^{\circ} \mathrm{C}$ for 1 h . ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=8.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,4}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4\right) ; 7.86$ (s, 2H, H-5); $7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,4}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3\right) ; 7.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3^{\prime}, 4^{4}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{C}^{\text {(}}\right.$) 6.70
(d, $\left.{ }^{3} J_{3^{\prime}, 4^{4}}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 3.31$ (s, $12 \mathrm{H},-\mathrm{OMe}$). MS (ESI (+)): $m / z=258.0$ $\left([\mathrm{M}+\mathrm{Zn}]^{2+}\right) ; 484.1\left(\left[\mathrm{Zn}(22)_{2}\right]^{2+}\right) ; 665.1\left(\{[\mathrm{Zn}(11)] \mathrm{OTf}\}^{+}\right)$. Hi-Res.-MS (ESI (+)): calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SZn}\right]^{+}: m / z=665.0542$; found: $m / z=665.0522(\Delta=3 \mathrm{ppm})$.

[$\mathrm{Cu}(1)(22)] \mathrm{PF}_{6}$

$2 \mathrm{mg}(0.005366 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{PF}_{6}$ were dissolved in 0.4 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). 0.3295 mL of this solution were transferred to a solution of $2 \mathrm{mg}(0.00442$ mmol) of 22 in 0.4 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). From this solution, 0.3129 mL were taken and added to a solution of 8 mg (0.001896 mmol) of $\mathbf{1} \mathrm{in} 0.3 \mathrm{~mL}$ of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). The resulting solution has a deep red colour.
${ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=9.10(\mathrm{~b}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 8.26$ (b, 2H, $\mathrm{H}-3_{\text {Bipy }}$); 8.14 (d, $\left.{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\text {Phen }}\right) ; 7.85\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-5_{\text {Bipy }}\right) ; 7.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-6_{\text {Bipy }}$); 7.60 (s, 2H, H-5Phen); 7.52 (d, ${ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3_{\text {Phen }}$); 7.19 (b, 2H, NH); 6.79 (dd, ${ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4{ }^{\prime}$ Phen) ; 6.01 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-3$ 'Phen); 5.35-5.48 $\left(\mathrm{m}, 14 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}-\mathrm{G}}\right) ; 5.02-5.18\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}-\mathrm{G}}\right) ; 4.70-4.85\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}-\mathrm{G}}\right) ; 4.05-4.55$ ($\mathrm{m}, 38 \mathrm{H}, \mathrm{H}-5^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{B}-\mathrm{G}}$); 3.69-3.92 (m, 18H, H-6 $; \mathrm{H}-4^{\mathrm{A}-\mathrm{G}}$); 3.21 (s, 12H, -OMe); 1.85-1.98 (m, 120H, -COOMe). MS (MALDI-TOF): $4735.9\left(\left[\mathrm{Cu}(\mathbf{1})(\mathbf{2 2)}]^{+}\right)\right.$.

$[\mathrm{Zn}(1)(22)](\mathrm{OTf})_{2}$

2.5 mg (0.00688 mmol) of $\mathrm{Zn}(\mathrm{OTf})_{2}$ were dissolved in $0.6 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$. 0.4821 mL of this solution were transferred into a solution of 2.5 mg (0.00553 mmol) of 22 in $0.6 \mathrm{~mL} \mathrm{C} 6_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}$ (1:1). From this solution, 1.0211 mL were taken and added to a solution of $22 \mathrm{mg}(0.005214 \mathrm{mmol})$ of 1 in 0.3 mL of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$. The colourless mixture was stirred for 1 h at $40^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=9.79(\mathrm{~b}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; 8.54(\mathrm{~s}, 2 \mathrm{H}$, H-3 Bipy); 8.41 (d, ${ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\text {Phen }}$); 8.17 (d, ${ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6_{\text {Bipy }}$); 7.92 (s,
$2 \mathrm{H}, \mathrm{H}-5_{\text {Phen }}$); 7.75 (b, 2H, N-H); 7.67 (d, ${ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3_{\text {Phen }}$); 7.66 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-5_{\text {Bipy }}$); 6.92 (dd, ${ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4{ }^{\prime}{ }_{\text {Phen }}$); 6.13 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3{ }^{\prime}{ }_{\text {Phen }}$); 5.35-5.50 $\left(\mathrm{m}, 14 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}-\mathrm{G}}\right) ; 5.02-5.19\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}-\mathrm{G}}\right) ; 4.68-4.80\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}-\mathrm{G}}\right) ; 4.10-4.48$ ($\mathrm{m}, 42 \mathrm{H}, \mathrm{H}-5^{\mathrm{A}-\mathrm{G}}, \mathrm{H}-6^{\mathrm{A}-\mathrm{G}}$); 3.75-3.90 (m, 14H,H-6$; \mathrm{H}^{\mathrm{A}} 4^{\mathrm{A}-\mathrm{G}}$); 3.19 (s, 12H, -OMe); 1.86-1.98 (m, 120H, -COOMe). MS (MALDI-TOF): $m / z=4884.6\left\{[\mathrm{Zn}(\mathbf{1})(\mathbf{2 2)}] \mathrm{OTf}\}^{+}\right.$.

Crystal structure determination: The data collection was performed on a NONIUS KappaCCD diffractometer (area detector) using graphite monochromated Mo K_{α} radiation $(\lambda=0.71073 \AA$ A $)$. The diffractometer was equipped with a low-temperature device (Cryostream 600er series, Oxford Cryosystems, 123(2) K). Intensities were measured by fine-slicing ω and φ-scans and corrected for background, polarization and Lorentz effects.

An empirical absorption correction was applied for all data sets according to Blessing's method. ${ }^{[13]}$ The structures were solved by direct methods and refined anisotropically by the least-squares procedure implemented in the SheIX program system. ${ }^{[14]}$ Hydrogen atoms were included isotropically using the riding model on the bound carbon atoms.

CCDC-974931 ([(CO) $\left.\left.{ }_{3} \operatorname{Re}(\mathbf{1 4}) \mathrm{CI}\right]\right), \quad \mathrm{CCDC}-974932 \quad\left(\left[\mathrm{Cu}(\mathbf{2 2})\left(\mathrm{H}_{3} \mathrm{CCN}\right)_{2}\right] \mathrm{PF}_{6}\right)$, and CCDC-974933 $\left(\left[\mathrm{Zn}(\mathbf{2 2})_{2}\right](\mathrm{OTf})_{2}\right)$ contain the supplementary crystallographic data for this paper, which can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[^2]Table S1: Crystallographic data for $\left[(\mathrm{CO})_{3} \mathrm{Re}(\mathbf{1 4}) \mathrm{Cl}\right],\left[\mathrm{Cu}(\mathbf{2 2})\left(\mathrm{H}_{3} \mathrm{CCN}\right)_{2}\right] \mathrm{PF}_{6}$, and $\left[\mathrm{Zn}(\mathbf{2 2})_{2}\right](\mathrm{OTf})_{2}$.

Parameters	$\left[(\mathrm{CO})_{3} \mathrm{Re}(14) \mathrm{Cl}\right]$	$\left[\mathrm{Cu}(22)\left(\mathrm{H}_{3} \mathrm{CCN}\right)_{2} \mathrm{PFF}_{6}\right.$	[$\left.\mathrm{Zn}(\mathbf{2 2})_{2}\right](\mathrm{OTf})_{2}$
formula	$\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{ReS}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{CuF}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$	$\mathrm{C}_{58} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{Zn}$
M	695.38	743.11	1268.49
T [K]	123(2)	123(2)	123.2(1)
crystal system	monoclinic	triclinic	triclinic
space group	P $21 / \mathrm{c}$	$P-1$	$P-1$
crystal dimensions [mm]	$0.32 \times 0.18 \times 0.08$	$0.28 \times 0.20 \times 0.02$	$0.40 \times 0.12 \times 0.08$
a [Å]	11.7253(2)	11.1033(8)	10.6987(2)
b [Å]	17.6132(3)	12.4397(9)	12.9294(3)
c [$\left.{ }_{\text {a }}\right]$	11.6498(2)	13.5810(10)	19.7165(4)
$\alpha\left[{ }^{\circ}\right]$	90	66.770(2)	90.5060(12)
$\beta\left[{ }^{\circ}\right]$	115.0710(10)	87.495(2)	92.8121(14)
$\gamma\left[{ }^{\circ}\right]$	90	71.359(2)	101.5840(12)
$\mathrm{V}\left[\AA^{3}\right]$	2179.24(6)	1620.0(2)	2668.08(10)
Z	4	2	2
$\rho\left[\mathrm{mg} \mathrm{m}{ }^{3}\right]$	2.119	1.518	1.579
$\mu\left[\mathrm{mm}^{-1}\right]$	6.285	0.799	0.634
$\mathrm{F}(000)$	1320	760	1304
θ range [${ }^{\circ}$]	3.00-28.00	2.66-28.00	2.16-28.00
completeness [\%]	99.8	99.6	99.7
reflections measured	58475	42418	67742
unique reflections	5260/	7816	12833
($R_{\text {int }}$)	(0.0693)	(0.0632)	(0.0719)
data/restrains/parameters	5260/2/271	7816/6/445	12833/101/812
GoF on F^{2}	1.083	1.033	1.055
final R indices	$\mathrm{R} 1=0.0299$	$\mathrm{R} 1=0.0588$	$\mathrm{R} 1=0.0694$
[$/>2 \sigma(\mathrm{l})$]	ω ¢2 0.0566	$\omega \mathrm{R} 2=0.1415$	$\omega \mathrm{R} 2=0.2157$
R indices all data	$\mathrm{R} 1=0.0299$	$\mathrm{R} 1=0.0998$	$\mathrm{R} 1=0.1024$
	$\omega \mathrm{R} 2=0.0583$	$\omega \mathrm{R} 2=0.1659$	$\omega \mathrm{R} 2=0.2364$
largest diff. peak and hole [e \AA^{3}]	1.090/-1.507	1.250/-1.236	3.587/-2.247

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum (400.1 MHz , in CDCl_{3} at 293 K) of 1 .

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum (100.6 MHz, in CDCl_{3} at 293 K) of $\mathbf{1}$.

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum (400.1 MHz , in CDCl_{3} at 293 K) of $\mathbf{2}$.

Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum (100.6 MHz , in CDCl_{3} at 293 K) of 2 .

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum (400.1 MHz , in CDCl_{3} at 293 K) of 3 .

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum (100.6 MHz , in CDCl_{3} at 293 K) of 3.

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.1 \mathrm{MHz}\right.$, in CDCl_{3} at 293 K$)$ of 21.

Figure S8: ${ }^{13} \mathrm{C}$ NMR spectrum (100.6 MHz , in CDCl_{3} at 293 K) of 21.

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum (400.1 MHz , in CDCl_{3} at 293 K) of $\left[(\mathrm{CO})_{3} \mathrm{Re}(14) \mathrm{Cl}\right]$.

Figure S10: ESI-MS (positive mode, sprayed from benzene/acetonitrile 1:1) of $\left[(\mathrm{CO})_{3} \operatorname{Re}(14) \mathrm{Cl}\right]$.

Figure S11: Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectra ($100.6 \mathrm{MHz}, 400.1 \mathrm{MHz}, 293 \mathrm{~K}$, benzene $-d_{6} /$ acetonitrile $\left.-d_{3} 1: 1\right)$ of a) 2 and b) $[\mathrm{Cu}(2)] \mathrm{PF}_{6}$.

Figure S12: MALDI-MS (sample prepared from benzene/acetonitrile (1:1) solution using DCTB as matrix) of $\left[\mathrm{Zn}(1)_{2}\right](\mathrm{OTf})_{2}$.

Figure S13: ESI-MS (positive mode, sprayed from benzene/acetonitrile 1:1) of $[\mathrm{Zn}(\mathbf{2})](\mathrm{OTf})_{2}$.
a)

Figure S14: Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectra ($100.6 \mathrm{MHz}, 400.1 \mathrm{MHz}, 293 \mathrm{~K}$, benzene- $d_{6} /$ acetonitrile $-d_{3} 1: 1$) of a) 3 and b) a 1:2 mixture of $\mathrm{Zn}(\mathrm{OTf})_{2}$ and 3.

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum (100.6 MHz, 400.1 MHz , 293 K , benzene$d_{6} /$ acetonitrile $-d_{3} 1: 1$) of a 1:1 mixture of CuPF_{6} and 22.

Figure S16: MALDI-MS (sample prepared from a benzene/acetonitrile (1:1) solution using DCBT as matrix) of $[\mathrm{Cu}(22)] \mathrm{PF}_{6}$.

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum ($100.6 \mathrm{MHz}, 400.1 \mathrm{MHz}, 293 \mathrm{~K}$, benzene$d_{6} /$ acetonitrile $-d_{3} 1: 1$) of a 1:1 mixture of $\mathrm{Zn}(\mathrm{OTf})_{2}$ and 22.

Figure S19: Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectra ($100.6 \mathrm{MHz}, 400.1 \mathrm{MHz}, 293 \mathrm{~K}$, benzene- $d_{6} /$ acetonitrile $-d_{3} 1: 1$) of a) $\mathbf{1}$, b) a 1:1:1 mixture of $\mathrm{CuPF}_{6}, \mathbf{1}$, and 22, and c) 22.

Figure S20: MALDI-MS (sample prepared from a benzene/acetonitrile (1:1) solution using DCTB as matrix) of $\left[\mathrm{Zn}(\mathbf{2 2)}(\mathbf{1})](\mathrm{OTf})_{2}\right.$.

[^0]: ${ }^{1}$ Kiehne U.; Bunzen, J.; Staats, H.; Lützen, A. Synthesis 2007, 1061-1069.
 2 Hapke, M.; Staats, H.; Wallmann, I.; Lützen, A. Synthesis 2007, 2711-2719.
 ${ }^{3}$ Kremer, C.; Lützen, A. Synthesis 2011, 210-212.
 4 Lee, T.; Lim, J.; Chung, I.; Kim, I.; Ha, C.-S. Macromol. Res. 2010, 18, 120-128.
 5 Hbaieb, S.; Kalfat, R.; Chevalier, Y.; Amdouni, N.; Parrot-Lopez, H. Mat. Sci. Eng. C 2008, 28, 697-704.

[^1]: ${ }^{6}$ Sallas, F.; Marsura, A.; Petot, V. Helv. Chim. Acta 1998, 81, 632-645.
 7 Yamada, M.; Nakamura, Y.; Kuroda, S.; Shimano, I. Bull. Chem. Soc. Jpn. 1990, 63, 2710-2712.
 8 Frey, J.; Kraus, T.; Heitz, V.; Sauvage, J.-P. Chem. Eur. J. 2007, 13, 7584-7594.
 9 Nishimura, N.; Yoza, K.; Kobayashi, K. J. Am. Chem. Soc. 2010, 132, 777-790.
 10 Lüning, U.; Abbass, M.; Fahrenkrug, F. Eur. J. Org. Chem. 2002, 19, 3294- 3303.
 11 Cacciapaglia, R.; Di Stefano, S.; Fahrenkrug, F.; Lüning, U.; Mandolini, L. J. Phys. Org. Chem. 2004, 17, 350-355.
 12 Lüning, U.; Fahrenkrug, F. Eur. J. Org. Chem. 2004, 3119-3127.

[^2]: ${ }_{14}^{13}$ Blessing, R. H. Acta Cryst., 1995, A61, 33-38
 ${ }^{14}$ Sheldrick, G. M.; SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.

