Supporting Information

for

Primary-tertiary diamine-catalyzed Michael addition of ketones to isatylidenemalononitrile derivatives

Akshay Kumar and Swapandeep Singh Chimni*

Address: Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry,

Guru Nanak Dev University, Amritsar, 143005, India; Fax: (+)91-183-2258820

Email: Swapandeep Singh Chimni - sschimni@yahoo.com

*Corresponding author

Experimental procedures, copies of ¹H and ¹³C NMR spectra of Michael adducts and HPLC chromatogram of products **4**

Table of Contents

1. General remarks	S2
2. Experimental procedures	S2
3. Experiment data	S4
4. ¹ H and ¹³ C spectra of Michael adducts 4	S10
5. HPLC chromatograms of Michael adducts 4	S21

General Remarks

All reagents were commercially available and were used without purification. Isatylidenemalononitrile derivatives **3** were prepared according to the reported procedure [1]. The primary-tertiary diamines were prepared according to our previously reported method [2]. NMR spectra were obtained at 300 MHz for ¹H NMR and at 75 MHz for ¹³C NMR in CDCl₃ with Me₄Si as internal standard. The chemical shifts are reported on δ scale relative to TMS and coupling constants *J* are expressed in Hz. Spectral patterns are designated as s = singlet; d = doublet; dd = doublet of doublet; t = triplet; br = broad; m = multiplet. Optical rotations were determined on a digital polarimeter. Column chromatography was carried out on a with silica gel (60–120 mesh) using increasing concentration of ethyl acetate in hexane as eluent. HPLC analysis was performed using Daicel Chiralpak AD-H, AS-H, OD-H and IB columns.

General procedure for enantioselective Michael addition of ketone 2 to isatylidenemalononitriles 3.

To a stirred mixture of catalyst **1a** (2.33 mg, 0.0125 mmol), ketone **2** (0.11 mL, 1.5 mmol) in 1,2-dichloroethane (1.5 mL), the additive D-CSA (2.91 mg, 0.0125 mmol) was added at 25 °C and the mixture was allowed to stir for 2 min followed by the addition of the corresponding isatylidenemalononitrile derivative (0.125 mmol). The resulting mixture was stirred for 24–168 h and the progress of the reaction was monitored at regular intervals by TLC. After completion of the reaction, saturated solution of NH₄Cl (3 mL) was added and the resulting mixture was extracted with ethyl acetate (3 × 10 mL). The organic layer was separated, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to

obtain the crude Michael product. Subsequent purification by column chromatography gave the corresponding pure Michael adducts. The enantiomeric excess of the products was determined using Diacel Chiralpak AS-H, OD-H, AD-H and IB columns. Racemic standards were prepared using (±)-3-methyl-1morpholinobutan-2-amine as catalyst synthesized from (±)-valine.

General Procedure for three component enantioselective Michael reaction

To a stirred mixture of catalyst **1a** (2.33 mg, 0.0125 mmol), acetone (0.110 mL, 1.5 mmol), malononitrile (0.137 mmol) in DCE (1.5 mL), the additive D-CSA (2.91 mg, 0.0125 mmol) and isatin (0.125 mmol) was added at 25 °C. The reaction mixture was stirred for 24 h and quenched with saturated solution of NH_4CI (3 mL). After extraction with ethyl acetate (3 × 10 mL) the organic layer was separated, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give the crude Michael product. Purification by column chromatography on silica gel using hexane/ethyl acetate 7:3 as eluent gave the corresponding Michael adduct in 80% yield. The enantiomeric excess of the products was determined using Diacel Chiralpak AD-H.

Procedure for synthesis of spirooxindole [3].

To a stirred solution of **4a** (63 mg, 0.25 mmol) in ethanol (2.5 mL) NaBH₄ (28.5 mg, 0.75 mmol) was added. The reaction mixture was stirred for 2 h at rt and quenched with saturated solution of NH₄Cl (5 mL). After extraction with ethyl acetate the organic layer was separated, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain the crude product **6**. Purfication by column chromatography on silica gel using hexane/ethyl acetate 6:4 as eluent gave spirooxindole product **6** in 90% yield. The diastereomeric ratio was determined by

¹H NMR analysis of the pure product. In order to determine the enantiomeric excess of **6**, a racemic sample of spirooxiindole **6** was prepared from racemic Michael adduct **4a** following the same procedure. The enantiomeric excess of spiroxindole **6** was determined using Diacel Chiralpak AD-H column and found to be 98% ee.

2-[(S)-2'-Oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4a)

Sticky solid; yield = 92%; $[\alpha]_D^{25}$ = +24 (c 0.1, MeOH); ee = 99% determine by HPLC [Diacel chiralpak AD-H, hexane/*i*-PrOH, 80:20, 1.0 mL/min, λ = 254 nm, t_R (minor) = 10.2 min, t_R (major) = 13.8 min)]; ¹H NMR (300 MHz, DMSO-d₆): δ 2.03 (s, 3H, CH₃), 3.27 (d, J = 18.3 Hz, 1H, CH₂), 3.60 (d, J = 18.3 Hz, 1H, CH₂), 5.53 (s, 1H, CH), 6.92 (d, J = 8.1 Hz, 1H, ArH), 6.98-7.03 (m, 1H, ArH), 7.26-7.37 (m, 2H, ArH), 11.00 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆): δ 29.5, 29.6, 45.4, 48.4, 109.8, 111.3, 111.6, 123.8, 125.8, 128.6, 129.8, 142.1, 175.1, 203.6; m/z (ESI-TOF): 276.0796 (M⁺+Na).

2-[(S)-5'-Fluoro-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4b)

Sticky solid; yield = 93%; $[\alpha]_D^{25}$ = +28 (c 0.1, MeOH); ee = 98% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 80 : 20; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 19.1 min, t_R (major) = 50.4 min]; ¹H NMR (300 MHz, DMSO-d₆): δ 2.05 (s, 3H, CH₃), 3.30 (d, J = 18.3 Hz, 1H, CH₂), 3.65 (d, J = 18.3 Hz, 1H, CH₂), 5.54 (s, 1H, CH), 6.90-6.95 (m, 1H, ArH), 7.11-7.16 (m, 1H, ArH), 7.27 (d, J = 6.3 Hz, 1H, ArH); ¹³C NMR (75 MHz, DMSO-d₆): δ 29.7, 29.9, 45.6, 48.6, 111.0, 111.3, 111.7, 116.1, 116.4, 128.2, 139.4, 156.2, 159.3, 175.3, 203.6; m/z (ESI-TOF): 294.0649 (M⁺+Na)

2-[(S)-5'-Chloro-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4c)

Sticky solid; yield = 95%; $[\alpha]_D^{25}$ = +32 (c 0.1, MeOH); ee = 98% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 80 : 20; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 20.2 min, t_R (major) = 45.1 min]; ¹H NMR (300 MHz, DMSO-d₆): δ 2.05 (s, 3H, CH₃), 3.31 (d, J = 18.3 Hz, 1H, CH₂), 3.68 (d, J = 18.3 Hz, 1H, CH₂), 5.55 (s, 1H, CH), 6.94 (d, J = 8.1 Hz, 1H, ArH), 7.33-7.45 (m, 2H, ArH), 11.12 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆): δ 29.6, 29.8, 45.6, 48.4, 111.0, 111.3, 111.5, 123.8, 125.8, 128.6, 129.8, 142.1, 175.1, 203.6; m/z (ESI-TOF): 310.0349 (M⁺+Na).

2-[(S)-5'-Bromo-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4d)

Sticky solid; yield = 94%; $[\alpha]_D^{25}$ = +28 (c 0.1, MeOH); ee = 98% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 70 : 30; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 11.5 min, t_R (minor) = 23.5 min]; ¹H NMR (300 MHz, DMSO-d₆): δ 2.05 (s, 3H, CH₃), 3.32 (d, J = 18.0 Hz, 1H, CH₂), 3.68 (d, J = 18.0 Hz, 1H, CH₂), 5.55 (s, 1H, CH), 6.89 (d, J = 8.4 Hz, 1H, ArH), 7.46-7.57 (m, 2H, ArH), 11.13 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆): δ 29.6, 29.8, 45.6, 48.3, 110.9, 111.3, 112.0, 113.4, 126.5, 128.9, 132.6, 142.5, 175.0, 203.7; m/z (ESI-TOF): 353.9842 (M⁺+Na).

2-[(S)-5'-lodo-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4e)

Sticky solid; yield = 91%; $[\alpha]_D^{25}$ = +21 (c 0.1, MeOH); ee = 99% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 70 : 30; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 12.1 min, t_R (minor) = 23.5 min]; ¹H NMR (300 MHz, DMSO-d₆): δ 2.05 (s, 3H, CH₃), 3.29 (d, J = 18.3 Hz, 1H, CH₂), 3.67 (d, J = 18.3 Hz, 1H, CH₂), 5.54 (s, 1H, CH), 6.78 (d, J = 8.1 Hz, 1H, ArH), 7.62-7.69 (m, 2H, ArH); 11.25 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆): δ 29.6, 29.8, 45.6, 48.1, 84.6, 111.0, 111.3, 112.4, 129.2, 131.8, 138.4, 142.9, 174.8, 203.7; m/z (ESI-TOF): 401.9715 (M⁺+Na).

2-[(S)-5',7'-Dibromo-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4f)

Sticky solid; yield = 92%; $[\alpha]_D^{25}$ = +51 (c 0.1, MeOH); ee = 96% determined by HPLC [Diacel Chiralpak AD-H; hexane/*i*-PrOH 90 : 10; flow rate 1 mL/min; λ = 254 nm; t_R (minor) = 22.4 min, t_R (major) = 30.9 min]; ¹H NMR (300 MHz, DMSO-d₆): δ 2.06 (s, 3H, CH₃), 3.37 (d, J = 18.3 Hz, 1H, CH₂), 3.73 (d, J = 18.3 Hz, 1H, CH₂), 5.60 (s, 1H, CH), 7.60 (s, 1H, ArH), 7.77 (s, 1H, ArH), 11.49 (s, 1H, NH); ¹³C NMR (75 MHz; DMSO-d₆): δ 29.5, 29.8, 45.8, 49.2, 103.1, 110.7, 111.0, 113.9, 125.7, 130.0, 134.6, 142.2, 174.8, 203.8; m/z (ESI-TOF): 431.9015 (M⁺+Na).

2-[(S)-1'-Allyl-5'-chloro-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4g)

Sticky solid; yield = 85%; $[\alpha]_D^{25}$ = +38 (c 0.1, MeOH); ee = 89% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 80 : 20; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 10.7 min, t_R (minor) = 25.4 min]; ¹H NMR (300 MHz, CDCl₃): δ 2.08 (s, 3H, CH₃), 3.12 (d, J = 18.0 Hz, 1H, CH₂), 3.42 (d, J = 18.0 Hz, 1H, CH₂), 4.35-4.437 (m, 3H, NCH₂ and CH), 5.22-5.38 (m, 2H, CH=CH₂), 5.74-5.84 (m, 1H, CH=CH₂), 6.84 (d, J = 8.4 Hz, 1H, ArH), 7.29-7.37 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 30.7, 30.9, 44.7, 47.3, 49.6, 109.7, 110.8, 112.1, 124.5, 127.2, 129.7, 131.4, 142.9, 173.6, 202.9; m/z (ESI-TOF): 350.0654 (M⁺+Na).

2-[(S)-1'-Allyl-5'-bromo-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4h)

Sticky solid; yield = 87%; $[\alpha]_D^{25}$ = +35 (c 0.1, MeOH); ee = 92% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 80 : 20; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 12.8 min, t_R (minor) = 37.9 min]; ¹H NMR (300 MHz, CDCl₃): δ 2.14 (s, 3H, CH₃), 3.20 (d, J = 18.3 Hz, 1H, CH₂), 3.49 (d, J = 18.3 Hz, 1H, CH₂), 4.40-4.42 (m, 2H, NCH₂), 4.46 (s, 1H, CH), 5.28-5.45 (m, 2H, CH=CH₂), 5.80-5.90 (m, 1H, CH=CH₂), 6.86 (d, J = 8.4 Hz, 1H, ArH), 7.51-7.57 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 29.9, 30.1, 43.2, 46.6, 48.8, 109.1, 110.1, 111.8, 116.1, 118.7, 126.4, 126.9, 130.0, 133.6, 142.7, 172.8, 202.3; m/z (ESI-TOF): 396.0134 (M⁺+Na+2H).

2-[(S)-1'-Benzyl-2'-oxo-3'-(2"-oxoprop-1"-yl)indolin-3'-yl]malononitrile (4i)

Sticky solid; yield = 86%; $[\alpha]_D^{25}$ = +45 (c 0.1, MeOH); ee = 88% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 80 : 20; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 10.8 min, t_R (minor) = 16.1 min]; ¹H NMR (300 MHz, CDCl₃): δ 2.15 (s, 3H, CH₃), 3.18 (d, J = 17.7 Hz, 1H, CH₂), 3.53 (d, *J* = 17.7 Hz, 1H, CH₂), 4.53 (s, 1H, CH), 5.01 (br s, 2H, CH₂), 6.81 (d, J = 8.1 Hz, 1H, ArH), 7.08-7.17 (m, 2H, ArH), 7.25-7.47 (m, 6H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 30.1, 30.2, 44.7, 46.5, 48.9, 109.4, 110.4, 110.5, 123.3, 123.6, 124.9, 127.3, 127.8, 128.8, 130.7, 134.6, 143.5, 173.7, 202.5; m/z (ESI-TOF): 366.1236 (M⁺+Na).

2-[(S)-2'-Oxo-3'-(4"-methyl-2"-oxopent-1"-yl)indolin-3'-yl]malononitrile (4j)

Sticky solid; yield = 80%; $[\alpha]_D^{25}$ = +45 (c 0.1, MeOH); ee = 96% determined by HPLC [Diacel Chiralpak IB; hexane/*i*-PrOH 90 : 10; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 27.2 min, t_R (minor) = 16.7 min]; ¹H NMR (300 MHz, CDCl₃): δ 0.86 (d, J = 10.5 Hz, 6H, 2 × CH₃), 1.98-2.08 (m, 1H, CH), 2.25-2.28 (m, 2H, CH₂), 3.14 (d, J = 17.7 Hz, 1H, CH₂), 3.45 (d, J = 18.0 Hz, 1H, CH₂), 4.56 (s, 1H, CH), 6.99-7.14 (m, 2H, ArH), 7.33-7.44 (m, 2H, ArH), 8.55 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 20.9, 24.6, 49.3, 51.8, 53.7, 60.4, 109.5, 110.4, 111.1, 123.4, 123.6, 125.5, 130.7, 141.5, 171.2, 205.4; m/z (ESI-TOF): 318.1212 (M⁺+Na).

2-[(S)-2'-Oxo-3'-(2"-oxooct-1"-yl)indolin-3'-yl]malononitrile (4k)

Sticky solid; yield = 85%; $[\alpha]_D^{25}$ = +28 (c 0.1, MeOH); ee = 97% determined by HPLC [Diacel Chiralpak AS-H; hexane/*i*-PrOH 90 : 10; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 30.1 min, t_R (minor) = 25.3 min]; ¹H NMR (300 MHz, CDCl₃): δ 0.84 (t, J = 6.9 Hz, 1H, CH₃), 1.20-1.25 (m, 6H, CH₂), 1.45-1.52 (m, 1H, CH₂), 2.36-2.41 (m, 1H, CH₂), 3.17 (d, J = 18.0 Hz, 1H, CH₂), 3.46 (d, J = 17.4 Hz, 1H, CH₂), 4.58 (s, 1H, CH), 6.99 (d, J = 7.8 Hz, 1H, ArH), 7.08-7.13 (m, 1H, ArH), 7.32-7.43 (m, 2H, ArH), 8.78 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃): δ 13.9, 22.4, 23.4, 28.6, 29.9, 30.3, 31.5, 43.1, 45.5, 49.3, 109.7, 110.5, 111.4, 123.6, 125.7, 125.5, 130.8, 141.6, 175.7, 206.1; m/z (ESI-TOF): 346.1518 (M⁺+Na).

6'-Amino-2'-methyl-2-oxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carbonitrile (6)

Yellow solid; yield = 90%; m.p. = 283-284 °C; $[\alpha]_D^{25}$ = +28 (c 0.1, MeOH); dr = 82:18; ee = 98% determined by HPLC [Diacel Chiralpak AD-H; hexane/*i*-PrOH 80 : 20; flow rate 1 mL/min; λ = 254 nm; t_R (major) = 13.8 min, t_R (minor) = 12.1 min]; ¹H NMR (300 MHz, acetone-d₆): δ 1.32 (d, J = 7.8 Hz, 3H, CH₃), 1.69-1.74 (m, 1H, CH₂), 1.81-1.86 (m, 1H, CH₂), 4.56-4.64 (m, 1H, CH), 5.89 (s, 2H, NH₂), 6.94-7.03 (m, 2H, ArH), 7.20-7.25 (m, 1H, ArH), 7.39 (d, J = 6.0 Hz, 1H, ArH), 9.51 (s, 1H, NH); ¹³C NMR (75 MHz, acetone-d₆): δ 20.9, 40.0, 48.7, 56.2, 71.8, 110.5, 119.7, 122.8, 124.9, 129.2, 135.8, 141.9, 166.5, 179.8; m/z (ESI-TOF): 278.0915 (M⁺+Na).

References

[1] For synthesis of isatylidenemalononitriles, see: Demchuk, D. V.; Elinson, M. N.;Nikishin, G. I. *Mendelev Commun.* 2011, *21*, 224-225.

[2] For synthesis of Primary-tertiary diamines, see: Kumar, A.; Singh, S.; Kumar, V.;Chimni, S. S. Org. Biomol. Chem. 2011, 9, 2731-2742.

[3] For preparation of spirooxindoles, see: Liu, L.; Wu, D.; Li, X.; Wang, S.; Li, H.; Li,

J.; Wang, W. Chem. Commun. 2012, 48, 1692-1694;

C:¥Users¥HP¥Desktop¥other¥AKS_NMR¥aks¥aaaa¥Dr_Chimni¥ C-SUH5001BCM_E5.ALS

C:¥Users¥HP¥Desktop¥other¥AKS_NMR¥aks¥aaaa¥Dr_Chimni¥ c-aks3101NON_E2_FT.als

Entry	Ret. Time	Area%
1	9.788	49.7678
2	11.898	50.2322

Entry	Ret. Time	Area%
1	9.806	0.3825
2	11.735	99.6175

Peak	Ret. Time	Area%
1	19.252	50.6597
2	52.381	49.3403

Peak	Ret. Time	Area%
1	19.052	99.3137
2	50.426	0.6863

Peak	Ret. Time	Area%
1	19.551	50.2963
2	44.227	49.7037

Peak	Ret. Time	Area%
1	20.227	99.2792
2	45.109	0.7208

Peak	Ret. Time	Area%
1	11.791	48.3476
2	22.964	51.6524

Peak	Ret. Time	Area%
1	11.520	99.0534
2	23.524	0.9466

Peak	Ret. Time	Area%
1	11.251	49.4420
2	19.750	50.5580

Peak	Ret. Time	Area%
1	11.276	99.9526
2	20.294	0.0474

Peak	Ret. Time	Area%
1	21.753	50.9149
2	30.820	49.0851

Peak	Ret. Time	Area%
1	22.451	2.3424
2	30.894	97.6576

Peak	Ret. Time	Area%
d1	10.585	49.9527
2	23.983	50.0473

Peak	Ret. Time	Area%
1	10.719	94.6486
2	25.426	5.3514

Peak	Ret. Time	Area%
1	13.047	50.7389
2	34.298	49.2611

Peak	Ret. Time	Area%
1	12.860	96.2548
2	37.916	3.7452

Peak	Ret. Time	Area%
1	11.036	50.6657
2	15.994	49.3343

Peak	Ret. Time	Area%
1	10.808	93.3538
2	16.129	6.6462

Peak	Ret. Time	Area%
1	17.401	48.2755
2	29.878	51.7245

Peak	Ret. Time	Area%
1	17.477	3.5335
2	28.771	96.4665

Peak	Ret. Time	Area%
1	24.239	49.1981
2	30.625	50.8019

Peak	Ret. Time	Area%
1	25.286	1.1596
2	30.052	98.8404