Supporting Information

for

Novel carbocationic rearrangements of 1-styrylpropargyl

alcohols
Christine Basmadjian, Fan Zhang, and Laurent Désaubry*

Address: ${ }^{1}$ Laboratory of Therapeutic Innovation (UMR 7200), University of Strasbourg -
CNRS, Faculty of Pharmacy, 67401 Illkirch, France

Email: Laurent Désaubry - desaubry@unistra.fr
*Corresponding author

Experimental procedures for the synthesis of compounds 7-9, 13, 14 and 17-28

NOE correlation between $\mathrm{H}^{2}(\delta 4.91 \mathrm{ppm})$ and $\mathrm{H}^{3}(\delta 7.18 \mathrm{ppm})$ and HMBC correlations between $\mathrm{C}^{1}(\delta$ $206.7 \mathrm{ppm})$ and $\mathrm{H}^{1}(\delta 1.65 \mathrm{ppm})$, and between $\mathrm{H}^{2}(\delta 4.91 \mathrm{ppm})$ and $\mathrm{C}^{2}(\delta 1.65 \mathrm{ppm})$.

Figure S1: HMBC and NOESY correlation of methylnaphatalenone 17.

Scheme S1: Putative mechanism for the formation of methylnaphtalenone 17. An =p-anisyl

7 (E)-5-(tert-Butyldimethylsilyl)-2-(4-methoxyphenyl)-1-phenyl-pent-1-en-4-
yn-3-ol (7). $\mathrm{NaBH}_{4}(36.3 \mathrm{mg}, 0.96 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(209 \mathrm{mg}, 0.56 \mathrm{mmol})$ were added to a solution of ketone $6(300 \mathrm{mg}, 0.8 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 2 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with water and diluted in $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford alcohol 7 with 76% yield $(230 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 2.01(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.57-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.99-7.01(\mathrm{~m}$, $2 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-4.5(2 \mathrm{C}), 18.0$, 26.2 (3C), 45.4, 68.6, 91.9, 111.3, 112.2, 114.3 (2C), 127.3 (2C), 128.1 (2C), 128.1, 129.5 (2C), 130.9 (2C), 131.0, 132.9 ppm ; HR-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: 378.2015$, found: $401.1914(\mathrm{M}+\mathrm{Na})^{+}$.

8

(E)-3-((tert-Butyldimethylsilyl)ethynyl)-2-(4-methoxyphenyl)-1-phenylhept-

1-en-3-ol (8). At $-78^{\circ} \mathrm{C}, n-\mathrm{BuLi}(1.6 \mathrm{M}, 750 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ was added dropwise to ketone $6(300 \mathrm{mg}$, 0.8 mmol) in anhydrous THF (5 mL) under an argon atmosphere. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , then quenched with a saturated solution of KHSO_{4}. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was dried over MgSO_{4}, filtered and concentrated. The crude product was purified on a silica column to give $166 \mathrm{mg}(48 \%)$ of product 8: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}$, $3 \mathrm{H}), 0.86-0.90(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 6.86-6.90(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, 8.7 \mathrm{~Hz}), 7.19(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-4.5$ (2C), 14.2, 16.8, 22.8, 26.3 (3C), 26.9, 40.6, 47.2, 55.3, 108.3, 114.0 (2C), 125.2, 127.0, 128.0 (2C), 128.6, 129.6 (2C), 131.7 (2C), $142.9,159.2 \mathrm{ppm}$; HR-MS calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}: 434.2641$, found: $457.2537(\mathrm{M}+\mathrm{Na})^{+}$.

(E)-5-(tert-Butyldimethylsilyl)-3-((tert-butyldimethylsilyl)-ethynyl)-2-(4-
methoxyphenyl)-1-phenylpent-1-en-4-yn-3-ol (9). tert-Butyldimethylsilylacetylene (180 $\mu \mathrm{L}$, 0.95 mmol) was dissolved in anhydrous THF (2.5 mL) under an argon atmosphere. At $-78{ }^{\circ} \mathrm{C}, n-\mathrm{BuLi}$ (1.6 M, $630 \mu \mathrm{~L}, 1 \mathrm{mmol}$) was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The obtained lithiated product was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a solution of compound $5(290 \mathrm{mg}$, $0.83 \mathrm{mmol})$ in anhydrous THF (2.5 mL). The obtained mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h then the reaction was quenched with a saturated solution of KHSO_{4}. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was dried over MgSO_{4}, filtered and concentrated. The crude product was purified on a silica column to give $128 \mathrm{mg}(30 \%)$ of product 9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.13(\mathrm{~s}, 12 \mathrm{H}), 0.93(\mathrm{~s}$, $18 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.93-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz})$,
 104.7, 113.9 (2C), 127.4, 128.1 (2C), 128.5, 129.2, 129.7 (2C), 132.2 (2C), 136.2, 139.9, 159.5 ppm ; HR-MS calculated for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}: 516.2880$, found: $529.2782(\mathrm{M}+\mathrm{Na})^{+}$.

General procedure for the $\mathrm{Re}_{2} \mathrm{O}_{7}$-catalyzed rearrangements

$\mathrm{Re}_{2} \mathrm{O}_{7}$ (0.015 equiv) and MeOH (7.7 equiv) were dissolved in 1,2-DCE under an argon atmosphere, and the resulting mixture was stirred at $45^{\circ} \mathrm{C}$ for 15 min . At $45^{\circ} \mathrm{C}$, a solution of propargylic alcohol (1 equiv) was added and the mixture was stirred at the same temperature overnight. The reaction was
then filtered on celite and concentrated to dryness. The obtained crude product was purified on silica gel.

13
3-(4-Methoxyphenyl)-4-phenyl-2-(2,4,6-trimethoxyphenyl)cyclopent-2-en-1-one (4) and 3-(4-methoxyphenyl)-5-methyl-2-phenyl-4-(2,4,6-trimethoxyphenyl)furan (13). Compounds $\mathbf{4}$ and $\mathbf{1 3}$ were obtained simultaneously following the general procedure starting from propargylic alcohol $7(9.3 \mathrm{~g}, 0.019 \mathrm{~mol})$ in 1,2-DCE (60 mL) with $\mathrm{Re}_{2} \mathrm{O}_{7}(134 \mathrm{mg}, 0.278 \mathrm{mmol})$ and $\mathrm{MeOH}(5 \mathrm{~mL}, 0.146 \mathrm{~mol})$. Cyclopentenone $\mathbf{4}$ was obtained with $32 \%(2.46 \mathrm{~g})$ along with methylfuran $13(1.43 \mathrm{~g}, 18 \%)$. The NMR data for $\mathbf{4}$ were the same as those published in Tetrahedron Lett. 2015, 56, 727-730. HR-MS calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{5}: 430.1780$, found: $431.1863(\mathrm{M}+\mathrm{H})^{+}$.
Methylfuran 13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $6.08(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.21(\mathrm{t}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.9,54.2,54.4,54.7$ (2C), 89.8 (2C), 102.3, 112.4 (2C), 114.7, 123.3, 124.6 (2C), 125.9, 126.6, 127.2 (2C), 129.4 (2C), 131.0, 145.4, 148.3, 157.2, 158.1, 160.0 ppm ; HR-MS calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{5}: 430.1780$, found: 431.1854 $(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4-phenylcyclopent-2-en-1-one
(14).

Compound $\mathbf{1 4}$ was obtained following the general procedure starting from propargylic alcohol 15 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) in 1,2-DCE (2 mL) with $\mathrm{Re}_{2} \mathrm{O}_{7}(1.45 \mathrm{mg}, 0.003 \mathrm{mmol}$) and $\mathrm{MeOH}(65 \mu \mathrm{~L}$, 1.58 mmol). Product $\mathbf{1 4}$ was obtained with 20% yield (15 mg). The NMR data for $\mathbf{1 4}$ were the same as those published in Tetrahedron Lett. 2015, 56, 727-730. HR-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClO}_{2}: 374.1074$, found: $375.1151(\mathrm{M}+\mathrm{H})^{+}$.

4-(4-Methoxyphenyl)-2-methyl-4-phenylnaphthalen-1(4H)-one (17). Compound 17 was obtained following the general procedure starting from propargylic alcohol $\mathbf{1 6}(100 \mathrm{mg}$, 0.22 mmol) in 1,2-DCE (2 mL) with $\mathrm{Re}_{2} \mathrm{O}_{7}(1.6 \mathrm{mg}, 0.0033 \mathrm{mmol})$ and $\mathrm{MeOH}(70 \mu \mathrm{~L}, 1.77 \mathrm{mmol})$. Product 17 was obtained with 35% yield (26 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.65(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.23-7.49(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13}$ C NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 24.3,55.3,67.2,114.1(2 \mathrm{C}), 120.8,123.7,126.1,127.3,128.0,128.2$, 129.2 (2C), 129.3 (2C), 130.0 (2C), 135.5, 139.6, 139.9, 141.6, 147.2, 159.2, 206.7 ppm ; HR-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}: 340.1463$, found: $341.1536(\mathrm{M}+\mathrm{H})^{+}$.

18
3-(4-Methoxyphenyl)-5-methyl-2-phenylfuran (18). Compound 18 was obtained following the general procedure starting from propargylic alcohol $7(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ in 1,2-DCE $(2 \mathrm{~mL})$ with $\mathrm{Re}_{2} \mathrm{O}_{7}(1.92 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{MeOH}(80 \mu \mathrm{~L}, 2 \mathrm{mmol})$. Product 18 was obtained with 54% yield $(37 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, 2$ $\mathrm{H}, J=8.8 \mathrm{~Hz}), 7.17-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 13.7, 55.3, 110.3, 114.1 (2C), 122.2, 125.8 (2C), 126.9, 127.1, 128.4 (2C), 129.8 (2C), 131.7, 146.5, 151.2, 158.8 ppm ; HR-MS calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}: 264.1150$, found: $265.1226(\mathrm{M}+\mathrm{H})^{+}$.

19
(E)-3-((E)-1-(4-Methoxyphenyl)-2-phenylvinyl)hept-3-en-2-one (19).

Compound 19 was obtained following the general procedure starting from propargylic alcohol 8 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) in 1,2-DCE (2 mL) with $\mathrm{Re}_{2} \mathrm{O}_{7}(1.67 \mathrm{mg}, 0.0035 \mathrm{mmol})$ and $\mathrm{MeOH}(70 \mu \mathrm{~L}$, $1.77 \mathrm{mmol})$. Product 19 was obtained with 47% yield (35 mg). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.96(\mathrm{t}$, $3 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 1.54 (sex., $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$), $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.38$ (quad., $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $3.78(\mathrm{~s}, 3 \mathrm{H})$, $6.42(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.83(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.14-7.19(\mathrm{~m}$, $5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 14.2,22.5,27.7,31.8,55.3,113.9$ (2C), 127.0, 128.2 (2C), 129.4 (2C), 130.6 (2C), 131.1, 136.7, 137.1, 143.6, 145.3, 159.1, 199.2 ppm ; HR-MS calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}: 320.1776$, found: $321.1858(\mathrm{M}+\mathrm{H})^{+}$. The structure of ketone 19 was confirmed by NMR 2D
experiment. NOESY correlations were observed between H^{1} ($\delta 6.83 \mathrm{ppm}$) and H^{2} ($\delta 2.16 \mathrm{ppm}$), and also between $\mathrm{H}^{3}(\delta 2.38 \mathrm{ppm})$ and $\mathrm{H}^{4}(\delta 6.42 \mathrm{ppm})$.

(3-(2-Methoxy-1-(4-methoxyphenyl)-2-phenylethylidene)penta-1,4-diyne-1,5-

diyl)bis(tert-butyldimethylsilane) (20). Compound 20 was obtained following the general procedure starting from propargylic alcohol $9(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in 1,2-DCE $(2 \mathrm{~mL})$ with $\mathrm{Re}_{2} \mathrm{O}_{7}(1.4 \mathrm{mg}$, $0.0029 \mathrm{mmol})$ and $\mathrm{MeOH}(60 \mu \mathrm{~L}, 1.46 \mathrm{mmol})$. Product 20 was obtained with 31% yield (31 mg). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 3.47$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.19-7.31(\mathrm{~m}$, $5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-4.6$ (2C), -4.8 (2C), 16.8, 17.0, 26.1 (3C), 26.3 (3C), 55.3, 57.1, 83.0, $96.4,98.3,102.2,102.4,106.4,112.9$ (2C), 126.2 (2C), 127.3, 128.2 (2C), 128.4, 130.9 (2C), 140.0, 157.5, 159.5 ppm ; HR-MS calculated for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{2}$: 530.3036, found: 553.2922 $(\mathrm{M}+\mathrm{Na})^{+}$.

21-1 (E)-2-(4-Chlorophenyl)-3-phenylacrylic acid (21-1). Compound 21-1 was obtained following the procedure in reference [4] starting from p-chlorophenylacetic acid ($28 \mathrm{~g}, 0.163 \mathrm{~mol}$) in acetic anhydride $(62 \mathrm{~mL})$ with benzaldehyde $(18.4 \mathrm{~mL}, 0.182 \mathrm{~mol})$ and triethylamine $(22.3 \mathrm{~mL}, 0.2$ mol). Product 21-1 was obtained quantitatively (50 g). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.088(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 7.17-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.98(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 128.6 (2C), 129.2 (2C), 129.9, 130.5, 130.9 (2C), 131.5 (2C), 133.8, 134.1, 134.3, 142.3, 172.7 ppm ; BR-MS calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2}$: 258.04, found: $258.0(\mathrm{M}+\mathrm{H})^{+}$.

21-2
(E)-2-(4-chlorophenyl)-3-phenylacryloyl chloride (21-2). Compound 21-2 was obtained following the procedure in reference [4] starting from carboxylic acid $\mathbf{2 1 - 1}(9.9 \mathrm{~g}, 0.039 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ with DMF ($70 \mu \mathrm{~L}, 1 \mathrm{mmol}$) and oxalyl chloride ($3.8 \mathrm{ml}, 0.045 \mathrm{~mol}$). Product 21-2 was obtained quantitatively $(10 \mathrm{~g}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$,
$7.25(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 128.3,128.5$ (2C), 129.1 (2C), 129.9, 130.4, 130.9 (2C), 131.5 (2C), 133.7, 137.1, 143.3, 172.6 ppm .

21-3 (\boldsymbol{E})-2-(4- Chlorophenyl)-1-phenyl-5-(trimethylsilyl)pent-1-en-4-yn-3-one (213). Compound 21-3 was obtained following the procedure in reference [4] starting from acyl chloride $\mathbf{2 1 - 2}(10 \mathrm{~g}, 0.037 \mathrm{~mol})$ in 1,4-dioxane (280 mL) with trimethylsilylacetylene ($5.27 \mathrm{~mL}, 0.037 \mathrm{~mol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(512 \mathrm{mg}, 0.73 \mathrm{mmol}), \mathrm{CuI}(282 \mathrm{mg}, 1.48 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(15.5 \mathrm{~mL}, 0.111 \mathrm{~mol})$. Product 21-3 was obtained with 80% yield $(10 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.287(\mathrm{~s}, 9 \mathrm{H}), 7.09-7.13(\mathrm{~m}$, $4 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.13(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-$ 0.6 (3C), 100.7, 101.0, 128.7 (2C), 129.2 (2C), 130.3, 131.2 (2C), 131.5 (2C), 133.0, 134.1, 134.4, $140.3,146.4,178.7 \mathrm{ppm}$.

(E)-2-(4-Chlorophenyl)-1-phenyl-3-(2,4,6-trimethoxyphenyl)-5-(tri-methylsilyl)pent-1-en-4-yn-3-ol (21). Compound 21 was obtained following the procedure in reference [4] starting from ketone $\mathbf{2 1 - 3}(5 \mathrm{~g}, 0.015 \mathrm{~mol})$ in THF (110 mL) with 2,4,6trimethoxybenzene ($7.4 \mathrm{~g}, 0.044 \mathrm{~mol}$) and $\sec -\mathrm{BuLi}(1.3 \mathrm{M}, 33.8 \mathrm{~mL}, 0.044 \mathrm{~mol})$. Product 21 was obtained with 46% yield $(3.5 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.20(\mathrm{~s}, 9 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $6.07(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.06-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}$, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.21(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.1(3 \mathrm{C}), 55.2,56.1(2 \mathrm{C}), 88.8,92.6$ (2C), 107.3, 110.7, 126.7, 127.2, 127.7 (2C), 127.8 (2C), 129.3 (2C), 132.1 (2C), 132.8, 136.6, 136.8, $142.7,158.7,160.5 \mathrm{ppm}$; HR-MS calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{ClO}_{4} \mathrm{Si}: 506.1651$, found: $529.1573(\mathrm{M}+\mathrm{Na})^{+}$.

3-(4-Chlorophenyl)-4-phenyl-2-(2,4,6-trimethoxyphenyl)cyclopent-2-en-1-one
(22) and 3-(4-chlorophenyl)-5-methyl-2-phenyl-4-(2,4,6-trimethoxyphenyl)furan (23).

Compounds 22 and 23 were obtained following the general procedure starting from propargylic 21 $(150 \mathrm{mg}, 0.296 \mathrm{mmol})$ in $1,2-\mathrm{DCE}(2 \mathrm{~mL})$ with $\mathrm{Re}_{2} \mathrm{O}_{7}(2.1 \mathrm{mg}, 0.0044 \mathrm{mmol})$ and $\mathrm{MeOH}(92 \mu \mathrm{~L}$, 2.28 mmol). Cyclopentenone $22(40 \mathrm{mg}, 31 \%)$ was obtained along with methylfurane $23(21 \mathrm{mg}$, $16 \%)$. Cyclopentenone 22: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.45(\mathrm{dd}, 1 \mathrm{H}, J=1.9$ and 18.4 Hz$), 3.19$ $(\mathrm{dd}, 1 \mathrm{H}, J=7.4$ and 18.6 Hz$), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{dd}, 1 \mathrm{H}, J=2.0$ and $7.4 \mathrm{~Hz}), 6.12(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.22(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.18-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 45.9,47.4,55.5,55.8,56.1,66.0,91.4$, $91.5,127.0,127.5$ (2C), 128.3 (2C), 129.1 (2C), 129.3 (2C), 134.3, 135.0, 136.5, 143.3, 158.5, 159.1, 162.1, 168.3, 207.1 ppm ; HR-MS calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClO}_{4}: 434.1285$, found: $435.1359(\mathrm{M}+\mathrm{H})^{+}$. Methylfurane 23: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.15-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 14.4,54.4,54.6$ (2C), 65.0, 89.8 (2C), 101.7, 114.4, 122.3, 124.9 (2C), $125.8,127.2$ (2C), 127.3 (2C), 129.6 (2C), 130.6, 131.2, 132.9, 145.8, 148.7, 158.0, 160.2 ppm ; HRMS calculated $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClO}_{4}: 434.1285$, found: $435.1363(\mathrm{M}+\mathrm{H})^{+}$.

24
(\boldsymbol{E})-2-(4-(4-Chlorophenyl)-5-methoxy-5-phenylpent-3-en-1-yn-3-yl)-1,3,5-
trimethoxybenzene (24) Compound 24 was obtained following general procedure starting from compound $21(100 \mathrm{mg}, 0.197 \mathrm{mmol})$ in 1,2-DCE (2 mL) with $\mathrm{ReO}_{4} \mathrm{SiPh}_{3}(1.5 \mathrm{mg}, 0.003 \mathrm{mmol})$ and $\mathrm{MeOH}(61 \mu \mathrm{~L}, 1.52 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.23(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.91(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 5.95(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, 8.5 \mathrm{~Hz}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$ ppm.

26
(Z)-(4-(4-Chlorophenyl)-5-methoxy-5-phenyl-3-(2,4,6-trimethoxy-
phenyl)pent-3-en-1-yn-1-yl)trimethylsilane (25) and (E)-(4-(4-chlorophenyl)-5-methoxy-5-phenyl-3-(2,4,6-trimethoxyphenyl)-pent-3-en-1-yn-1-yl)trimethylsilane (26). MeOH (62 $\mu \mathrm{L}$, $1.52 \mathrm{mmol})$ and $\mathrm{AcOH}(3 \mu \mathrm{~L}, 0.049 \mathrm{mmol})$ were added to a solution of propargylic alcohol 21 in anhydrous 1,2-DCE (2 mL) under an argon atmosphere. The reaction mixture was stirred overnight at $45{ }^{\circ} \mathrm{C}$. Concentration under reduced pressure and purification of the crude over silica gel afforded compounds 25 ($53 \mathrm{mg}, 51 \%$) and 26 ($48 \mathrm{mg}, 47 \%$). Compound 25: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.19(\mathrm{~s}, 9 \mathrm{H}), 6.61(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.91(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 5.93(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.20(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.27(\mathrm{t}, 2 \mathrm{H}$,
 $56.6,83.1,90.8$ (2C), $97.8,104.3,109.3,118.2,126.7$ (2C), 126.7 (2C), 126.1, 127.8 (2C), 130.1 (2C), $132.4,135.9,140.5,149.8,157.9,158.0,161.0 \mathrm{ppm}$; $\mathrm{HR}-\mathrm{MS}$ calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClO}_{4} \mathrm{Si}: 520.1837$, found: $521.1907(\mathrm{M}+\mathrm{H})^{+}$. Compound 26: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-0.05(\mathrm{~s}, 9 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.21(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz})$, $7.14-7.21(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-0.1(3 \mathrm{C}), 55.5,55.7,55.9,56.9,81.8,91.1$, $91.2,96.8,105.4,107.9,118.5,126.8$ (2C), 126.9, 127.3 (2C), 127.7 (2C), 131.8 (2C), 132.9, 137.0, 140.4, 149.8, 158.2, 158.8, 161.5 ppm ; HR-MS calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClO}_{4} \mathrm{Si}$: 520.1837, found: $521.736(\mathrm{M}+\mathrm{H})^{+}$.

10

27
(E)-2-(4-Methoxyphenyl)-1-phenyl-3-(2,4,6-trimethoxyphenyl)-5-
(trimethylsilyl)pent-1-en-4-yn-3-ol (10) and (E)-2-(4-methoxyphenyl)-1-phenyl-3-(2,4,6-trimethoxyphenyl)pent-1-en-4-yn-3-ol (27). Compound 10 was obtained following the procedure in reference [4] with 71% yield (26.6 g) along with deprotected alkyne 27 ($1.1 \mathrm{~g}, 14 \%$). Compound 10: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.21(\mathrm{~s}, 9 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 6.50$ $(\mathrm{s}, 1 \mathrm{H}), \quad 6.51(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.89-6.92(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.126(3 \mathrm{C}), 55.1,55.2,56.2(2 \mathrm{C}), 88.5,92.7(2 \mathrm{C}), 107.7,113.0,113.1$ (2C), 114.1, 114.3, 126.4, 126.8, 127.7 (2C), 129.3 (2C), 130.1, 131.0, 131.7 (2C), 137.3, 143.5, 158.6, 158.8 ppm ; HR-MS calculated for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}$: 502.2176, found: $525.2077(\mathrm{M}+\mathrm{Na})^{+}$. Compound 27: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H})$, $6.05(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.18-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 55.4(2 \mathrm{C}), 55.9(2 \mathrm{C}), 91.3(2 \mathrm{C}), 111.3,113.2(2 \mathrm{C}), 126.4,128.0(2 \mathrm{C}), 129.8$ (2C), 130.1 (2C), 130.6, 139.5, 158.1 (2C), 160.7, 162.4, 198.2 ppm .

1-(4-Methoxyphenyl)-2-phenylethane-1,2-dione (28). MeOH (109 $\mu \mathrm{L}$, $2.68 \mathrm{mmol})$ and $\mathrm{ReO}_{4} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}(50 / 50$, $\mathrm{v} / \mathrm{v}, 2.6 \mu \mathrm{~L})$ were added to a solution of compound 27 in anhydrous 1,2-DCE (2 mL) under an argon atmosphere. The reaction mixture was stirred 48 h at 45 ${ }^{\circ} \mathrm{C}$, concentrated and purified over silica gel to give compound $28(30 \mathrm{mg}, 36 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.50(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.65(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $7.94-7.98(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 55.8,114.5$ (2C), 126.3, 129.1 (2C), 130.1 (2C), 132.5 (2C), 133.4, 134.8, 165.1, 193.3, 195.0 ppm .

