Supporting Information

for

A new and efficient procedure for the synthesis of

hexahydropyrimidine-fused 1,4-naphthoquinones

Marcelo Isidoro P. Reis¹, Vinícius R. Campos¹, Jackson A. L. C. Resende², Fernando C. Silva¹ and Vitor F. Ferreira^{1,*}

Address: ¹Universidade Federal Fluminense, Departamento de Química Orgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil and ²Universidade Federal Fluminense, Departamento de Química Inorgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil

Email: Vitor F. Ferreira - cegvito@vm.uff.br

*Corresponding author

Experimental procedures and spectral data

Table of contents

General procedure for the preparation of 14–19	
General procedure for the preparation of 13 and 21–25	
References	
Spectral data	S9

General procedure for the preparation of 1,3,5-triazinanes 14–19

To a round-bottomed flask (125 mL) equipped with a reflux condenser was added the appropriate amine (0.05 mmol), toluene (40 mL) and formaldehyde (37%, 4.1 mL). The solution was brought to reflux using an external oil bath and kept stirring for 30 min. Then, the toluene was evaporated under reduced pressure, and the residue was dissolved in ethyl acetate and washed with a saturated aqueous solution of sodium chloride. After evaporation of the solvent under reduced pressure in a rotary evaporator, the residue was purified by silica gel column chromatography using hexane/ethyl acetate 9:1 as the eluent [1].

1,3,5-Tributyl-1,3,5-triazinane (**14**) was isolated as oil in 75% yield. IR v_{max} (cm⁻¹, film): 2955, 2929, 2862, 2791, 1684, 1466, 1374, 1304, 1261, 1240, 1192, 1141, 1109, 1012, 969, 952, 912, 869, 802, 734, 665. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 0.84 (9H, t, *J* 7.2 Hz), 1.20-1.43 (12H, m), 2.28-2.36 (6H, m), 3.23 (6H, s). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 13.8, 20.5, 29.6, 52.4, 74.6.

1,3,5-Tripentyl-1,3,5-triazinane (**15**) was isolated as oil in 89% yield. IR v_{max} (cm⁻¹, film): 2955, 2928, 2859, 2790, 1463, 1375, 1226, 1182, 1141, 1110, 1016, 982, 920, 900, 728. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 0.88 (9H, t, *J* 7.3 Hz), 1,26-1,34 (12H, m), 1.46 (6H, pent, *J* 7.3 Hz), 2.38-2.41 (6H, m), 3.29 (6H, s). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 14.1, 20.8, 29.9, 52.7, 74.0.

1,3,5-Tridecyl-1,3,5-triazinane (**16**) was isolated as oil in 70% yield. IR v_{max} (cm⁻¹, film): 2954, 2921, 2852, 2800, 1466, 1366, 1301, 1263, 1209, 1119, 1011, 979, 918, 721. ¹H NMR (500 MHz, DMSO-D₆) δ (ppm): 0.88 (9H, t, *J* 6.7 Hz), 1.26-1.47 (48H, m), 2.35-2.42 (6H, m), 3.29 (6H, s). ¹³C NMR (APT, 125 MHz, DMSO-D₆) δ (ppm): 14.0, 22.6, 27.4, 27.5, 29.2, 29.4, 29.5, 31.8, 52.7, 74.6.

1,3,5-Tribenzyl-1,3,5-triazinane (**17**) was isolated as white solid in 90% yield. m.p. 44-46 °C, (lit. 43-46 °C).**Fehler! Textmarke nicht definiert.** IR v_{max} (cm⁻¹, KBr): 3022, 2851, 2805, 2774, 1602, 1494, 1452, 1397, 1356, 1314, 1260, 1169, 1151, 1119, 1065, 1029, 1014, 920, 907, 878, 853, 736, 704, 697. ¹H NMR (500 MHz,

CDCl₃) δ (ppm): 3.42 (6H, s), 3.67 (6H, s), 7.18-7.32 (15H, m). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 56.9, 73.6, 126.8, 128.1, 128.7, 138.2.

1,3,5-Tris(4-chlorobenzyl)-1,3,5-triazinane (**18**) was isolated as white solid oil in 85% yield. m.p. 94-95 °C. IR ν_{max} (cm⁻¹, KBr): 2813, 1596, 1487, 1448, 1403, 1349, 1249, 1158, 1085, 1014, 976, 915, 882, 837, 801, 714, 655. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 3.37 (6H, s), 3.59 (6H, s), 7.19-7.25 (12H, m). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 56.4, 73.6, 128.6, 130.3, 133.1, 136.9.

Empirical formula	C ₂₄ H ₂₄ Cl ₃ N ₃
Formula weight	460.81
Temperature/K	293(2)
Crystal system	Triclinic
Space group	P-1
a/Å	9.7908(15)
b/Å	15.489(2)
c/Å	15.519(2)
α/°	83.337(5)
β/°	78.500(5)
γ/°	83.738(5)
Volume/Å ³	2281.8(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.341
μ/mm^{-1}	0.418
F(000)	960.0

Crystal size/mm ³	$0.60 \times 0.43 \times 0.12$
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	3.96 to 51.596
Index ranges	$-11 \le h \le 11, -18 \le k \le 18, -18 \le l \le 18$
Reflections collected	40337
Independent reflections	$8719 [R_{int} = 0.0626, R_{sigma} = 0.0435]$
Data/restraints/parameters	8719/0/541
Goodness-of-fit on F ²	0.996
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0483, wR_2 = 0.1337$
Final R indexes [all data]	$R_1 = 0.0925, wR_2 = 0.1628$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.35

1,3,5-Tris(2,4-dichlorobenzyl)-1,3,5-triazinane (**19**) was isolated as white solid in 88% yield. m.p. 102-103 °C. IR v_{max} (cm⁻¹, KBr): 1586, 1469, 1383, 1336, 1251, 1202, 1163, 1097, 1014, 981, 924, 855, 819, 765, 733, 657. ¹H NMR (500 MHz, DMSO-D₆) δ (ppm): 3.51 (6H, s), 3.76 (6H, s), 7.17 (3H, dd, *J* 1.8 and 8.2 Hz), 7.33-7.63 (6H, m). ¹³C NMR (APT, 125 MHz, DMSO-D₆) δ (ppm): 53.3, 73.6, 127.1, 129.5, 131.3, 133.6,134.8, 135.1.

General procedure for the preparation of 1,3-quinazoline derivatives 13 and 21–25

An equimolar mixture of lawsone (**20**, 2.87 mmol) and the appropriate 1,3,5triazinane (2.87 mmol) dissolved in chloroform (6 mL) was placed in a 10 mL microwave vial. The reaction was irradiated for 15 minutes at 150 °C in a microwave apparatus for synthesis. Afterwards TLC control indicated complete consumption of the starting materials and the formation of quinazolines **13** and **21–25**. The products were subsequently purified by column chromatography using hexane/ethyl acetate 98:2 as the eluent.

1,3-Dibutyl-1,2,3,4-tetrahydrobenzo[g]quinazoline-5,10-dione (**13**) was isolated as oil in 75% yield. IR v_{max} (cm⁻¹, film): 2956, 2930, 2870, 1670, 1615, 1592, 1548, 1458, 1367, 1270, 1231, 1157, 1106, 932, 789, 721, 685; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 0.86 (3H, t, *J* 7.0 Hz), 0.91 (3H, t, *J* 7.0 Hz), 1.24-1.38 (4H, m), 1.44-1.51 (2H, m), 1.54-1.65 (2H, m), 2.44-2.49 (2H, m), 3.53-3.58 (2H, m), 3.71 (2H, s), 3.96 (2H, s), 7.50 (1H, dt, *J* 1.5 and 7.6 Hz), 7.58 (1H, dt, 1H, *J* 1.5, 7.6 Hz), 7.87-7.90 (1H, m), 7.93-7.96 (1H, m). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 13.7, 13.8, 20.0, 20.3, 29.7, 31.6, 48.2, 51.6, 53.0, 71.0, 113.4, 125.0, 125.9, 131.6, 131.9, 132.5, 133.6, 146.4, 180.6, 182.0. HRESIMS m/z: (M+H)⁺ 327.2217 (Calculated for C₂₀H₂₇N₂O₂: 327.2073).

1,3-Pentyl-1,2,3,4-tetrahydrobenzo[*g*]quinazoline-5,10-dione (**21**) was isolated as an oil in 77% yield. IR v_{max} (cm⁻¹, film): 2926, 2856, 1671, 1618, 1593, 1552, 1379, 1266, 1106, 722; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 0.83 (3H, t, *J* 6.8 Hz), 0.86 (3H, t, *J* 6.8 Hz), 1.24-1.34 (8H, m), 1.59-1.65 (6H, m), 2.45 (2H, m), 3.55 (2H, m), 3.71 (2H, s), 3.96 (2H, s), 7.50 (1H, dt, *J* 1.5 and 7.8Hz), 7.58 (1H, dt, 1H, *J* 1.5, 7.6 Hz), 7.87-7.89 (1H, m), 7.94-7.95 (1H, m). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 13.9, 22.4, 22.4, 27.3, 28.9, 29.2, 29.4, 29.6, 48.3, 51.9, 53.3, 71.0, 113.5, 125.0, 126.0, 131.6, 131.9, 132.6, 133.6, 146.4, 180.7, 182.0. HRESIMS m/z: (M+H)⁺ 355.2592 (Calculated for C₂₂H₃₀N₂O₂: 355.2386).

1,3-Decyl-1,2,3,4-tetrahydrobenzo[*g*]quinazoline-5,10-dione (**22**) was isolated as an oil in 80% yield. IR v_{max} (cm⁻¹, film): 2921, 2851,1670, 1619, 1592, 1551, 1465, 1370, 1335, 1267, 1109, 1024, 964, 843, 787, 685; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 0.85-0.90 (6H, m), 1.34-1.26 (28H, m), 1.51-1.72 (4H, m), 2.49-2.54 (2H, m), 3.58-3.64 (2H, m), 3.78 (2H, s), 4.03 (2H, s), 7.56 (1H, ddd, *J* 1.4, 7.4 and 8.9 Hz), 7.64 (1H, ddd, 1H, *J* 1.4, 7.4 and 8.9 Hz), 7.95 (ddd, 1H, *J* 0.5, 1.5 and 7.4 Hz), 8.01 (1H, ddd, *J* 0.5, 1.5 and 7.4 Hz). ¹³C NMR (APT, 125.0 MHz, CDCl₃) δ (ppm): 14.1, 22.6, 26.9, 27.3, 27.8, 29.3, 29.4, 29.5, 29.5, 29.6, 29.6, 31.8, 48.4, 52.0, 53.4, 71.0, 113.5, 125.1, 126.0, 131.7, 132.0, 132.7, 133.7, 146.5, 180.7, 182.1. HRESIMS m/z: (M+H)⁺ 495.4422 (Calculated for C₃₂H₅₀N₂O₂: 495,3951).

1,3-Dibenzyl-1,2,3,4-tetrahydrobenzo[g]quinazoline-5,10-dione (**23**) was isolated as a red solid in 80% yield. m.p. 117-118 °C. IR v_{max} (cm⁻¹, KBr): 2949, 2930, 2837, 1657, 1623, 1588, 1556, 1453, 1381, 1357, 1293, 1272, 1250, 1232, 1209, 1108, 1080, 1065, 940, 751, 726, 720, 701. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 3.60 (2H, s), 3.77 (2H, s), 3.84 (2H, s), 4.75 (2H, s), 7.16-7.27 (10H, m), 7.53 (1H, dt, *J* 1.5 and 7.8Hz), 7.60 (1H, dt, *J* 1.5 and 7.8 Hz), 7.91 (1H, dd, *J* 1.5 and 7.8 Hz), 7.97 (dd, 1H, *J* 1.5 and 7.8 Hz). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 48.7, 54.6, 57.6, 68.9,

116.1, 125.2, 126.2, 127.3, 127.3, 127.5, 128.3, 128.5, 128.8, 132.0, 132.4, 133.7, 137.3, 137.6, 146.8, 181.2, 181.9. HRESIMS m/z: $(M+H)^+$ 395.2062 (Calculated for $C_{26}H_{22}N_2O_2$: 395.1760).

 Table S2. X-Ray crystallographic data for compound 23.

Empirical formula	$C_{26}H_{22}N_2O_2$
Formula weight	394.45
Temperature/K	293(2)
Crystal system	Monoclinic
Space group	$P2_1/c$
a/Å	16.0640(9)
b/Å	5.5113(3)
c/Å	22.5128(12)
α/°	90
β/°	93.298(2)
γ/°	90
Volume/Å ³	1989.84(19)
Z	4
$\rho_{calc}g/cm^3$	1.317
μ/mm^{-1}	0.084
F(000)	832.0
Crystal size/mm ³	$0.45 \times 0.27 \times 0.11$
Radiation	$MoK\alpha (\lambda = 0.71073)$
20 range for data collection/°	4.304 to 50.7
Index ranges	$-19 \le h \le 19, -6 \le k \le 6, -27 \le l \le 27$
Reflectionscollected	55863

Independentreflections	$3647 [R_{int} = 0.0624, R_{sigma} = 0.0209]$
Data/restraints/parameters	3647/0/271
Goodness-of-fit on F ²	1.100
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0429, wR_2 = 0.1065$
Final R indexes [all data]	$R_1 = 0.0624, wR_2 = 0.1200$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.15

1,3-Di-(4-chlorobenzyl)-1,2,3,4-tetrahydrobenzo[*g*]quinazoline-5,10-dione (24) wasisolated as oil in 75 % yield (995 mg). IR v_{max} (cm⁻¹, filme): 2921, 2847, 1667, 1618, 1592, 1551, 1487, 1381, 1349, 1289, 1268, 1250, 1088, 1011, 950, 921, 838, 799, 721, 686. ¹HNMR (500 MHz, CDCl₃) δ (ppm): 3.61 (2H, s), 3.81 (2H, s), 3.84 (2H, s), 4.73 (2H, s), 7.38 (2H, d, *J* 8.6 Hz), 7.22(2H, d, *J* 8.6 Hz), 7.26 (2H, d, *J* 8.6 Hz), 7.29 (2H, d, *J* 8.6 Hz), 7.62 (1H, dt, *J* 1.4 and 7.5 Hz), 7.68 (1H, dt, *J* 1.4 and 7.5 Hz), 7.98 (dd, 1H, *J* 1.4 and 7.5 Hz), 8.04 (1H, dd, *J* 1.4 and 7.5 Hz). ¹³C NMR (APT, 125 MHz, CDCl₃) δ (ppm): 48.8, 54.1, 56.9, 68.6, 116.8, 125.4, 126.3, 128.6,128.7, 129.1, 130.1, 132.0, 132.3, 133.2, 133.4, 133.9, 135.8, 136.1, 146.7, 181.4, 182.0. HRESIMS m/z: (M+H)⁺ 463.1484 (Calculated for C₂₆H₂₀Cl₂N₂O₂: 463.0980).

1,3-Di-(2,4-dichlorobenzyl)-1,2,3,4-tetrahydrobenzo[*g*]quinazoline-5,10-dione (**25**) was isolated as an oil in 80% yield. IR v_{max} (cm⁻¹, film): 2948, 2821, 1677, 1587, 1471, 1384, 1337, 1257, 1202, 1163, 1138, 1098, 1045, 1014, 982, 946, 856, 824, 763, 732, 696, 659. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 3.77 (2H, s), 3.83 (2H, s), 3.97 (2H, s), 4.89 (2H, s), 7.20-7.24 (2H, m), 7.33-7.39 (4H, m), 7.61 (1H, dt, 1H, *J* 1.1 and 7.6 Hz), 7.69(1H, dt, 1H, *J* 1.1 and 7.6 Hz), 7.95 (dd, 1H, *J* 1.1 and 7.6 Hz), 8.04 (1H, dd, 1H, *J* 1.1 and 7.6 Hz). ¹³C NMR (APT, 125.0 MHz, CDCl₃) δ (ppm): 48.3, 52.0, 54.1, 69.9, 116.5, 125.4, 126.3, 127.0, 127.3, 129.2, 129.2, 129.3, 129.6, 130.9, 131.7, 132.2, 132.2, 133.3, 133.5, 133.6, 133.7, 133.8, 133.9, 134.6, 146.6, 181.3, 181.7. HRESIMS m/z: (M+CH₃OH₂)⁺ 561.9746 (Calculated for C₂₇H₂₂Cl₄N₂O₃: 562.0385).

References

Barluenga, M.; Bayon, A. M.; Campos, P.; Asensio, G.; Gonzalez-Nuiiez, E.;
 Molina, Y. J. Chem. Soc. Perkin Trans. 1 1988, 1631-1636.
 doi:10.1039/P19880001631

Agilent Resolutions Pro

Name	
TPent	

Op. Vania_1 Marcelo

1 1

| | | | |

| | | | |

-1

Agilent Resolutions Pro

Name	
T4-ClBenz	

1 1

. .

S30

-1

Name	
T2,6Benz	

Agilent Resolutions Pro

Name LTBUT —

7.606	7.580	7.556	7.527	7.501	7.476	S43

Agilent Resolutions Pro

Name (2) -----

HELVECIO

Agilent Resolutions Pro

Name (2) -----

.672	.647	.622	.592	.566	.542
.667	.642	.617	.587	.562	.537

HELVECIO

Op Vania_1 Marcelo

op valia_r Halcolo

No	cm-1	Т	FWHH	Asym	Intensity	No	cm-1	Т	FWHH	Asym	Intensity
1	460.40	0.803	-	-	М	15	1249.46	0.567	-	-	S
2	485.90	0.742	-	-	М	16	1267.87	0.572	-	-	S
3	593.56	0.897	-1.00	0.00	W	17	1289.12	0.567	-	-	S
4	655.89	0.870	-	-	W	18	1348.62	0.635	-	-	М
5	685.64	0.762	-1.00	0.00	М	19	1381.20	0.657	-	-	М
6	721.06	0.467	-1.00	0.00	S	20	1402.45	0.685	-	-	М
7	798.97	0.508	-1.00	0.00	S	21	1433.62	0.810	-	-	М
8	838.64	0.691	-	-	М	22	1487.45	0.550	-1.00	0.00	S
9	920.80	0.585	-1.00	0.00	S	23	1551.20	0.362	-1.00	0.00	VS
10	950.55	0.706	-	-	М	24	1592.28	0.538	-1.00	0.00	S
11	1011.47	0.554	-1.00	0.00	S	25	1617.78	0.685	-	-	М
12	1087.96	0.431	-1.00	0.00	S	26	1667.36	0.581	-1.00	0.00	S
13	1157.38	0.734	-	-	М	27	2847.41	0.884	-	-	W
14	1209.79	0.609	-	-	S	28	2921.07	0.892	-	-	W

Agilent Resolutions Pro

Name	
LT2,4Cl	

7.60

7.40

7.20

