Supporting Information

Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

Awatef Ayadi ${ }^{1,2}$, Aziz El Alamy ${ }^{3}$, Olivier Alévêque ${ }^{1}$, Magali Allain ${ }^{1}$, Nabil Zouari ${ }^{2}$, Mohammed Bouachrine ${ }^{3}$ and Abdelkrim El-Ghayoury ${ }^{1 *}$

Address: ${ }^{1}$ Laboratoire MOLTECH Anjou, Université d'Angers, UFR Sciences, UMR 6200, CNRS, Bât. K, 2 Bd. Lavoisier, 49045 Angers Cedex, France, ${ }^{2}$ Laboratoire de Physico-chimie de l'état solide, Université de Sfax, Route de Soukra; Km 4; BP: 802, 3038, Sfax, Tunisia and ${ }^{3}$ MEM, High School of Technology (ESTM), University, Moulay Ismail, Meknès, Morocco

E-mail: Abdelkrim El-Ghayoury* - abdelkrim.elghayoury@univ-angers.fr
*Corresponding author

Additional analytical data

Figure S1: Partial crystal packing of ligand L1 with columns of stacked head to tail molecules that are connected laterally through S \cdots O heteroatom contacts.

Figure S2: Electronic delocalization scheme for ligands L1 and L2.

Figure S3: HOMO-LUMO Frontier orbitals representation for compounds 1 and 2.

Figure S4: Color change of ligand L1 upon addition of inorganic anions.

Figure S5: Color change of ligand L2 upon addition of inorganic anions.

Figure S6: UV-visible absorption spectra of L1 upon addition of 1 equiv of anion.

Figure S7: UV-visible absorption spectra of L2 upon addition of 1 equiv of anion.

Figure S8: Cyclic voltammograms of ligands L1 (left) and L2 (right) $\left(2 \times 10^{-5} \mathrm{M}\right)$ without (black, bold lines first cycle and dashed lines for second cycle) and with (red, bold lines first cycle and dashed lines for second cycle) 2 equiv of F^{-}. CVs recorded at $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ on a glassy carbon electrode in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}(9 / 1, \mathrm{v} / \mathrm{v})$ with n $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$.
L1+4eq F-

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectra of ligand $\mathrm{L} 1\left(4 \times 10^{-3} \mathrm{M}\right.$ in DMSO- $\left.d_{6}\right)$ upon addition of successive aliquots of TBAF (DMSO- d_{6}).

Figure S10: UV-visible absorption spectra of complex 3 (c $1.1 \times 10^{-4} \mathrm{M}$ in dichloromethane/acetonitrile, $9 / 1$, $(\mathrm{v} / \mathrm{v})$), room temperature. Ligand L2 is added for comparison.

Figure S11: Cyclic voltammograms of L2 (red, added for comparison) and complex $\mathbf{3}$ (black) $\left(1.1 \times 10^{-4} \mathrm{M}\right)$ at $100 \mathrm{mVs}^{-1}$ on a glassy carbon electrode in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ (9/1, v/v) with $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ (0.1 M).

