Supporting Information

for

A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis

Darko Kresovic¹, Florence Schempp¹, Zakaria Cheikh-Ali¹ and Helge B. Bode^{*1,2}

Address: ¹Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany and ²Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany

Email: Helge B. Bode - h.bode@bio.uni-frankfurt.de * Corresponding author

Experimental procedures, details of bioinformatic analysis and NMR data of pseudopyronines

Materials and methods

Cultivation of strains. *E. coli* strains were cultivated in liquid or solid LB-medium (10 g/L tryptone, 5 g/L yeast extract and 10 g/L NaCl) or TB-medium (12 g/L tryptone, 24 g/L yeast extract, 4 mL/L glycerol and 0.17 M KH₂PO₄/0.72 M K₂HPO₄). For preparation of solid media, 1.5% (w/v) Agar was added. For plasmid preparation *E. coli* strains were cultivated at 37 °C in TB-medium. Kanamycin (50 μ g/mL) and chloramphenicol (20 μ g/mL) were used as resistant markers. For cultivation of *Pseudomonas* sp. GM30 and *Pseudomonas putida* KT2440 the same media was used but strains were grown at 30 °C.

Construction of *ppyS* **mutants.** Mutants were either constructed using the TA-cloning strategy [1] or with oligonucleotide-directed mutagenesis. Point mutations were introduced to the pCOLA_*ppys* vector, which is used to heterologously express

PpyS in E. coli BL21(DE3) Star. Mutants C129A, H281A, E105A and E330A were constructed using the TA-cloning strategy, for this method a pair of oligonucleotides (v.p. fw and v.p. rev) were used to amplify the vector, containing the non-mutated gene section using the Phusion polymerase (Fermentas). After separation by agarose gel electrophoresis, the desired fragments were extracted with the GeneJET Gel Extraction Kit (Fermentas) and incubated for 30 minutes at 70 °C with Tag polymerase (Thermo Scientific), resulting in a 3' A-overhang fragment. Another pair of oligonucleotides (ds fw and ds rev), containing the mutated gene section, was used to form the 3' T-overhang fragment carrying the mutation. For ligation both fragments were incubated overnight at room temperature with T4 DNA ligase (Fermentas). The N310A and R121D PpyS mutants were created using oligonucleotide-directed mutagenesis, for which a pair of oligonucleotides was applied to amplify the vector and to introduce the point mutation using the Phusion polymerase (Fermentas) for PCR. For both strategies the ligation mixture was subsequently used to transform *E. coli* DH10B by electroporation (1250 V, 200 Ω and 25 µF). After plasmid extraction the obtained plasmids were verified by sequencing at SeqIT GmbH (Germany, Kaiserslautern). Verified plasmids were used to transform E. coli BL21 (DE3) Star along with pACYC bkdABC ngrA [2] by electroporation. For photopyrone biosynthesis both vectors (pCOLA_ppyS and pACYC_bkdABC_ngrA) are induced with 0.01 mM isopropyl- β -D-thiogalactopyranoside (IPTG) (Fermentas) for expression in *E. coli* BL21 (DE3) Star.

Cloning of pseudopyronine synthase (*pyrS***).** We first constructed pCOLA_*pyrS* for heterologous expression in *E. coli* BL21 (DE3) Star. Therefore *pyrS* was cloned from extracted *Pseudomonas* sp. GM30 genomic DNA using the oligonucleotides *pyrS*_pCOLA_FW and *pyrS*_pCOLA_Rev. The vector pCOLADuet-1 and PyrS PCR

product were both digested with restriction enzymes BamHI and HindIII and ligated using the T4 DNA Ligase. This mixture was then used to transform *E. coli* DH10B by electroporation (1250 V). After plasmid extraction the obtained plasmid was verified by sequencing at SeqIT GmbH (Germany, Kaiserslautern). The verified plasmid was used to transform *E. coli* BL21 (DE3) Star by electroporation. The construction of pCom10_*pyrS* was performed using the Gibson assembly method [3]. Therefore the vector was amplified via PCR using the oligonucleotides pCom10_Fw and pCom10_Rev. PyrS was amplified using the oligonucleotides *pyrS*_pCom_Fw and *pyrS*_pCom_Rev and pCOLA_*pyrS* as template, the oligonucleotides were previously modified with a 30 bp 3' overhang which are homologues to the amplified pCom10 product. Both products were then incubated with the Gibson assembly mix for 1 h at 50 °C. This mixture was then used to transform *E. coli* DH10B by electroporation as described earlier. The plasmid was obtained by using the extraction protocol described previously.

Electrotransformation of *Pseudomonas* strains. *Pseudomonas* putida KT2440 and *Pseudomonas* sp. GM30 were grown over night at 30 °C in liquid LB media. To prepare cells for electro transformation 2 mL of fresh liquid LB media were inoculated with an overnight culture (1:100) and were then grown for 3 hours at 30 °C. The cells were then centrifuged and washed twice with cold water. Centrifuged cells were then resuspended in 50 μ L cold water and cells were kept on ice. 1 μ L of plasmid was used to transform *Pseudomonas* strains by electroporation (2500 V).

Analytical scale culture extraction. In order to detect photopyrone production in the wildtype and mutant strains by means of HPLC/MS, 20 mL of liquid LB-medium, containing the appropriate resistant markers, were inoculated with an overnight culture to an optical density of $OD_{600} = 0.05$ and cultivated for 3.5 h at 37 °C. Then

mM isopropyl-β-D-thiogalactopyranoside (IPTG) (Fermentas) 0.01 and 2% Amberlite[™] XAD16 (Sigma-Aldrich) were added to the culture, which was cultivated for 48 h at 16 °C. For detection of pseudopyronines 20 mL of liquid LB-medium, containing the appropriate resistant marker and 2% Amberlite[™] XAD16, were inoculated with an overnight culture (1:100). Expression was induced with addition of 0.05% (v/v) dicyclopropyl ketone. The Pseudomonas containing cultures were then incubated for 72 h at 30 °C. After 48 h again 0.05% (v/v) of dicyclopropyl ketone was added. Cultures were harvested by centrifugation (4000 rpm, 10 min, 18 °C) followed by removal of the supernatant. Amberlite[™] XAD16 resins were extracted with 30 mL of methanol and incubated for 1 h under constant rotation followed by a filtration step (Folded Filters (Quality), grade: 3 m/N, Munktell) to remove cells and resins. The elution step was repeated once with 10 mL of methanol. The methanol extract was then concentrated to dryness using a rotary evaporator. The solid residue was redissolved in 2 mL of methanol and a 1:10 dilution was analyzed by means of HPLC/MS. Extracts were analyzed using a Dionex UltiMate 3000 system coupled to a Bruker Daltonik AmaZon X mass spectrometer, a RP18-column (50 mm × 2.1 mm \times 1.7 µm; Waters GmbH) and an acetonitrile/0.1% formic acid in H₂O gradient, ranging from 5 to 95% in 22 min at a flow rate of 0.6 mL/min. The production of ppyS mutants of 4 was calculated against standard concentrations of the main compound photopyrone D (4) produced by wildtype ppyS. The retention time of 4 under these conditions was 10.5 min.

Preparative extraction and purification. For the isolation of compounds **9–11** from *Pseudomonas* sp. GM30, the strain was cultivated in 6 L of LB-medium, with an addition of 2% Amberlite[™] XAD16 for 3 days at 30 °C. Cultures were harvested by centrifugation (4000 rpm, 10 min, 18 °C) followed by removal of the supernatant.

Amberlite[™] XAD16 resins were extracted with methanol and incubated for 1 h under constant rotation followed by a filtration step to remove cells and resins. The methanol extract was then concentrated to dryness using a rotary evaporator. The solid residue (4.6 g) was redissolved in 10 mL of water, then 20 mL of ethyl acetate was added and the mixture was shacked in a separating funnel. This step was repeated two times with the addition of 20 mL of ethyl acetate and separation. The ethyl acetate phase was then concentrated to dryness using a rotary evaporator. The solid residue (0.7 g) was redissolved in a 70% dimethyl sulfoxide (DMSO), 20% methanol and 10% isopropanol mixture. Compounds were then isolated with a Waters Bridge XBridgeTM Prep C18 5 μ m OBDTM 19 × 150 mm Column (S/N) and a Waters HPLC-MS system as described in the following: Waters 3100 Mass Detector, Waters 2998 Photodiode Array Detector, Waters SFO System Fluidics Organizer, Waters 515 HPLC Pump, Waters 2545 Binary Gradient Module, Waters Selector Value, Waters 2767 Sample Manager. The purification was performed at a flow rate of 24 mL/min with an acetonitrile-water (0.1% formic acid) gradient: 0-26 min 50-75%, 26.1-30 min 76-95%. The combined fractions were then concentrated to dryness using a rotary evaporator to give 4.8 mg, 35.6 mg and 1.6 mg of 9, 10 and **11**, respectively.

NMR. 1D and 2D nuclear magnetic resonance (NMR) spectra for purified compounds were recorded on a Bruker DRX 500 spectrometer using deuterated dimethyl sulfoxide as solvent and internal standard.

HR-ESI-MS. Determination of exact masses of **9–11** were carried out using a Dionex Ultimate 3000 RSLC coupled to a Bruker micrOTOF-Q II equipped with an ESI source. The following masses were detected: for **9**, *m/z* 267.1956 (*calcd* for $[C_{16}H_{26}O_3 + H]^+$, 267.1955, $\Delta = 0.38$ ppm); **10**, *m/z* 295.2270 (*calcd* for $[C_{18}H_{30}O_3 + H]^+$)

H]⁺, 295.2268, $\Delta = 0.68$ ppm); **11**, *m*/z 323.2583 (*calcd* for $[C_{20}H_{34}O_3 + H]^+$, 323.2581, $\Delta = 0.62$ ppm).

Homology modelling. The protein sequences of PpyS and PyrS were used as queries for BLASTP [4] searches in the PDB [5], to identify the most similar available structure in the PDB. This resulted in the identification of OleA (sequence identity 27%, E-value 1e-14, PDB: 3S21) from *Xanthomonas campestris* for PpyS and OleA (sequence identity 37%, E-value 4e-10, PDB: 3S21) for PyrS-. These template structures were used to create a sequence alignment applying the ClustalW algorithm [6]. The homology models were generated using the Homology Modelling Tool integrated in MOE 2012.10 (Molecular Operating Environment; Chemical Computing Group Inc., Montreal, Canada) and the ClustalW sequence alignment was imported. A series of ten models was created, for further processing the one with the highest packing quality score was chosen and energy minimized applying the AMBER12EHT (integrated in MOE) force field. All figures showing protein structures in this work, were created using MOE.

Docking. Protein–ligand docking calculations were carried out using the program GOLD (version 5.2) [7] using the empirical scoring function for advanced protein–ligand docking CHEMPLP [8]. For each docking study the result with the highest docking score is shown in this work.

Phylogenetic analysis. A PHYML [9] tree (50 bootstraps) was calculated using a ClustalW alignment (gap opening: 10; gap extension: 0.1), which was generated using the collected ketosynthases. For visualization and calculation of the alignment as well as the PHYML tree the Geneious software (Biomatters Ltd., New Zealand) was used.

Supplementary Tables and Figures

Strain	Genotype	Reference
<i>E. coli</i> DH10B	F_mcrA (<i>mrr-hsd</i> RMS- <i>mcr</i> BC), 80 <i>lac</i> Z	[10]
	Δ , M15, Δ <i>lac</i> X74 <i>rec</i> A1 <i>end</i> A1 <i>ara</i> D 139	
	Δ (ara, leu)7697 galU galK λ rpsL (Strr)	
	nupG	
<i>E. coli</i> BL21 (DE3)	F- ompT hsdSB(rB-, mB-) gal dcm	Invitrogen
Star	rne131 (DE3)	
Pseudomonas sp.	Wildtype	[11]
GM30		
Pseudomonas putida	Wildtype	[12]
KT2440		
WT	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> ,	[2]
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
C129A	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> _C129A,	this work
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
H281A	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> _H281A,	this work
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
N310A	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> _N310A,	this work
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
E105A	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> _E105A,	this work
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
R121D	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> _R121D,	this work
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
E330A	BL21 (DE3) Star:pCOLA_ <i>ppyS</i> _E330A,	this work
	pACYC_ <i>bkd</i> ABC_ <i>ngr</i> A, Km ^R , Cm ^R	
<i>E. coli</i> DH10B	E. coli DH10B:pCOLA_pyrS	this work
pCOLA_ <i>pyr</i> S		
E. coli BL21 (DE3)	E. coli BL21 (DE3) Star:pCOLA_pyrS	this work
Star pCOLA_ <i>pyr</i> S		
<i>E. coli</i> DH10B	<i>E. coli</i> DH10B:pCom10_ <i>pyr</i> S	this work
pCom10 <i>_pyr</i> S		

Ρ.	putida	KT2440	Pseudomonas putida	this work
рСо	m10_ <i>pyr</i>	S	KT2440:pCom10_ <i>pyrS</i>	
Pse	udomona	as sp.	Pseudomonas sp. GM30:pCom10_pyrS	this work
Gma	30 pCom	10 <i>_pyr</i> S		

 Table S2: Plasmids used in this work.

Genotype	Reference
ColA ori, Km ^R , T7lac promotor	Merck Millipore
CloDF13 ori, Cm ^R , T7lac promotor	Merck Millipore
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	[2]
CloDF13 ori, Cm ^R , T7lac promotor,	[2]
bkdABC, ngrA	
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	this work
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	this work
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	this work
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	this work
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	this work
ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>	this work
pBR322 ori, Km ^R , <i>alkB</i> promotor	[13]
pBR322 ori, Km ^R , <i>alkB</i> promotor, <i>pyr</i> S	this work
ColA ori, Km ^R , T7lac promotor, <i>pyr</i> S	this work
	Genotype ColA ori, Km ^R , T7lac promotor CloDF13 ori, Cm ^R , T7lac promotor ColA ori, Km ^R , T7lac promotor, <i>ppyS</i> CloDF13 ori, Cm ^R , T7lac promotor, <i>bkd</i> ABC, <i>ngr</i> A ColA ori, Km ^R , T7lac promotor, <i>ppyS</i> ColA ori, Km ^R , T7lac promotor, <i>ppyS</i>

 Table S3: Oligonucleotides used in this work.

Oligonucleotide	Sequence
Cys129_Fw.ds	CGCCGCGAACGGT
Cys129_Rev.ds	CCGTTCGCGGCGT
Cys129_Fw.V.P	TGGGTGGCAGCTATGGATATTATCAATAG
Cys129_Rev.V.P	CTACAACATCGTAGTTCCTACAAGTTAGCC
Glu105_Fw.ds	TAGCGCCAGCTAACAGTACTT
Glu105_Rev.ds	AGTACTGTTAGCTGGCGCTAT
Glu105_Fw.V.P	TTGTCTCAAAGGCACTAGGGCTAACTTGT
Glu105_Rev.V.P	GAAGCCGCGGGCAACACTGG
His281_Fw.ds	TTTTTATTGCGACAGGTTCACCAAAAACGT
His281_Rev.ds	CGTTTTTGGTGAACCTGTCGCAATAAAAAT
His281_Fw.V.P	GGGCACGCCTTGGTCAGAAGATG

His281_Rev.V.P	ATGTTCGATATCGTCAGATATTTTGTGATGATTAAA
Glu330_Fw.ds	TATTGGCGAAAAATCAACTTTGTATGGGATGGGCT
Glu330_Rev.ds	GCCCATCCCATACAAAGTTGATTTTTCGCCAATAT
Glu330_Fw.V.P	GGTAGTGGTGGAATGGTCTTTGCCGC
Glu330_Rev.V.P	ACCTTGATTAATGGCATCGAATATTCCGAACGG
Arg121Asp_Fw	GATAACTACGATGTTGTAGACGCCTGTAAC
Arg121Asp_Rev	ACAAGTTAGCCCTAGTGCCTTTGAGACAAA
Asn310_Fw	ATTGCTACAGCATCTATCCCGTTCGGAAT
Asn310_Rev	CGCACCTACCCGTTGGCCAAC
<i>pyr</i> S_pCOLA_FW	AGGATCCGATGAAAATAGTTGGGCTGTCC
pyrS_pCOLA_Rev	CGCAAGCTTTGCTACAAGGTAAACGACAGTGCA
pCom10_Fw	TCCAATTTTTATTAAATTAGTCGCTACGAG
pCom10_Rev	CTGTTTTGGCGGATGAGAGAAG
<i>pyr</i> S_pCom_Fw	CTCGTAGCGACTAATTTAATAAAAATTGGAATGAAAATAGTT
	GGGCTGTCC
<i>pyr</i> S_pCom_Rev	CTGAAAATCTTCTCTCATCCGCCAAAACAGCTACAAGGTAA
	ACGACAGTGCAG

Table S4: Ketosynthases used for the phylogenetic tree. The sequences are ordered clockwise according to their location in the respective branches. All KS showing the conserved glutamic acid residue identified as catalytically important are shown in red.

	Protein	Organism	Accession
			number
	OleA homologues		
1	3-Oxoacyl-ACP synthase	S. sp. NRRL F-5555	WP_030402327
2	3-Oxoacyl-ACP synthase	Streptomyces	WP_031086294
3	3-Oxoacyl-ACP synthase	S. sp. NRRL F-5650	WP_031039494
4	3-Oxoacyl-ACP synthase	A. rifamycini	WP_026404743
5	3-Oxoacyl-ACP synthase	M. rosea	WP_036407026
6	3-Oxoacyl-ACP synthase	N. candida	WP_043622914
7	3-Oxoacyl-ACP synthase	S. pristinaespiralis	WP_005309093
8	3-Oxoacyl-ACP synthase	<i>T</i> . sp. 28	WP_045191732
9	3-Oxoacyl-ACP synthase	S. hofmanni	WP_017748751
10	3-Oxoacyl-ACP synthase	L. araneosa	WP_007281261
11	OleA	X. campestris pv. campestris	3S21_A
12	3-Oxoacyl-ACP synthase	S. amylolyticus	AKF07269
13	3-Oxoacyl-ACP synthase	B. muris	WP_017822397
14	3-Oxoacyl-ACP synthase	A. phenanthrenivorans	WP_043453199
15	3-Oxoacyl-ACP synthase	Arthrobacter	WP_018779660
16	3-Oxoacyl-ACP synthase	A. sp. MWB30	KIA73109
17	3-Oxoacyl-ACP synthase	L. rubra	WP 021808728
18	3-Oxoacyl-ACP synthase	M. yannicii	WP_040569064
19	3-Oxoacyl-ACP synthase	<i>M</i> . sp. B19	WP_026096098
20	3-Oxoacyl-ACP synthase	M. testaceum	WP_043360932
21	3-Oxoacyl-ACP synthase	M. testaceum StLB037	BAJ73499
22	3-Oxoacyl-ACP synthase	<i>M</i> . sp. SUBG005	KEP74827
	PpyS homologues	•	
23	3-Oxoacyl-ACP synthase	X. nematophila	WP 010847197
24	3-Oxoacyl-ACP synthase	X. nematophila ATCC 19061	YP 003713506

25 3-Oxoacyl-ACP synthase 26 3-Oxoacyl-ACP synthase 27 3-Oxoacyl-ACP synthase 28 PpyS 29 3-Oxoacyl-ACP synthase 30 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 31 32 3-Oxoacyl-ACP synthase 33 3-Oxoacyl-ACP synthase 34 3-Oxoacyl-ACP synthase 35 3-Oxoacyl-ACP synthase 36 PyrS 3-Oxoacyl-ACP synthase 37 3-Oxoacyl-ACP synthase 38 3-Oxoacyl-ACP synthase 39 3-Oxoacyl-ACP synthase 40 3-Oxoacyl-ACP synthase 41 42 3-Oxoacyl-ACP synthase 43 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 44 3-Oxoacyl-ACP synthase 45 46 3-Oxoacyl-ACP synthase 47 3-Oxoacyl-ACP synthase 48 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 49 3-Oxoacyl-ACP synthase 50 51 3-Oxoacyl-ACP synthase 52 3-Oxoacyl-ACP synthase 53 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 54 3-Oxoacyl-ACP synthase 55 56 3-Oxoacyl-ACP synthase 57 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 58 3-Oxoacyl-ACP synthase 59 3-Oxoacyl-ACP synthase 60 61 3-Oxoacyl-ACP synthase 62 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 63 3-Oxoacyl-ACP synthase 64 3-Oxoacyl-ACP synthase 65 3-Oxoacyl-ACP synthase 66 3-Oxoacyl-ACP synthase 67 3-Oxoacyl-ACP synthase 68 3-Oxoacyl-ACP synthase 69 3-Oxoacyl-ACP synthase 70 71 3-Oxoacyl-ACP synthase 72 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 73 74 3-Oxoacyl-ACP synthase **Closest BLAST-P hits for XcIC** [14] 75 3-Oxoacyl-ACP synthase 76 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 77 3-Oxoacyl-ACP synthase 78 79 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 80 81 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 82 3-Oxoacyl-ACP synthase 83

X. nematophila X. bovienii X. bovienii P. luminescens TT01 P. luminescens TT01 P. luminescens TT01 *P*. sp. PH1b *P*. sp. St29 P. sp. Os17 P. mosselii P. mosselii P. sp. GM30 P. sp. URIL14HWK12:I6 P. sp. W15Feb9B B. sp. UYPR1.413 B. bannensis B. mimosarum B. nodosa B. heleia B. phytofirmans PsJN B. phytofirmans B. sp. WSM2230 B. sp. WSM2232 B. sp. CCGE1003 B. sp. CCGE1003 *B.* sp. WSM3556 B. graminis B. sp. URHA0054 B. sp. CCGE1001 B. sp. CCGE1001 B. phenoliruptrix BR3459a **Burkholderia** L. anisa L. pneumophila S. sp. CNB091 A. mirum A. azurea S. sp. MspMP-M5 N. abscessus N. sp. CNY236 N. farcinica N. higoensis G. mallensis T. campylonemoides A. sp. PCC 7108 *M*. sp. SC2 M. rosea *M*. sp. SB2 *M*. sp. T1-4 C. fritschii C. acetobutylicum P. lactis B. thuringiensis B. sp. 1NLA3E O. scapharcae P. polymyxa P. polymyxa P. sp. Aloe-11 P. terrae

WP 013184973 WP 038246124 WP_038180969 AGO97060 CAE17216 WP_046396397 WP 025131331 BAQ80432 **BAQ74133** WP_023630065 WP_028692573 WP_007967127 WP 027611766 WP 041064001 WP 028370407 WP 027819887 WP_028232503 WP 028204568 WP 042262981 YP 001889944 WP_012428081 WP 025596424 WP_027214818 YP_003910175 WP 013342411 WP_027802201 WP_006049675 WP_029966890 YP_004230959 WP_013591004 YP_006793509 WP_014972441 WP_019234674 WP 028378564 WP_018955464 WP 015801934 WP_005164847 WP 018537413 WP 043690931 WP 028478668 WP 011207969 WP 040795117 WP_014267925 WP_041033411 WP 016949109 WP 014890909 WP_018405831 WP 029650722 WP 008198039 WP_016876568 NP_347450.1

WP_007130623.1 YP_006930640.1 YP_007911827.1 WP_010098042.1 YP_003947618.1 YP_003871436.1 WP_007431139.1 YP_005077926.1

84 3-Oxoacyl-ACP synthase FabH 85 CorB 86 Myxopyronin ketosynthase 87 FabHB 88 FabH 89 3-oxoacyl-ACP synthase 90 FabH 91 FabH 92 FabH 93 FabH 94 FabH 95 NP 626634 96 FabH 97 Q54206 98 FdmS 99 CAM58805_S._sp._BenQ 100 ZhuH 1MZJ 101 Frnl 102 AlnI KS type I PKS 103 Plu1885 104 NanA8 105 EryAll TylGI KSQ 106 107 MerA 108 TamAl 109 **OleAI KSQ** 110 HedT **Closest BLAST-P hits for XcIF** 3-Oxoacyl-ACP synthase 111 3-Oxoacyl-ACP synthase 112 3-Oxoacyl-ACP synthase 113 3-Oxoacyl-ACP synthase 114 3-Oxoacyl-ACP synthase 115 3-Oxoacyl-ACP synthase 116 117 3-Oxoacyl-ACP synthase 3-Oxoacyl-ACP synthase 118 3-Oxoacyl-ACP synthase 119 3-Oxoacyl-ACP synthase 120 FabF 121 FabF 122 FabF 123 cpin1855 Dfer_1997 124 125 FabB 126 FabB 127 NP 416826 128 FabB Type II PKS KS b NP_344945 129 130 FabF 131 FabF 132 FabF 133 NP 645683 134 FabF 135 FabF FabF 136 137 NP 415613 FabF 138 Type II PKS KS a

P. peoriae C. coralloides M. fulvus B. subtilis N. punctiforme B. subtilis A. fabrum P. luminescens E. coli S. griseus S. echinatus S. coelicolor A3(2) S. avermitilis S. glaucescens S. griseus S. sp. A2991200 S. sp. R1128 S. roseofulvus S. sp CM020 P. luminescens S. nanchangensis S. erythraea S. fradiae S. violaceusniger S. sp. 3079 S. antibioticus S. griseoruber R. blandensis X. nematophila X. nematophila *M*. sp. PE36 P. profundum P. damselae *P*. sp. AK15 P. leiognathi P. sp. SKA34 P. angustum *M*. sp. 4-46 C. pinensis C. pinensis D. fermentans A. pleuropneumoniae C. sp. 30_2 E. coli S. boydii S. pneumoniae T. thermophilus N. punctiforme B. subtilis S. aureus P. luminescens E. albertii E. coli E. coli S. avermitilis

WP 010345468.1 ADI59524 AGS77282 NP_388898 YP_001865657 NP_389015.1 NP_354198 NP_930069 NP_287225 YP_001826619 AAV84077 NP 626634 BAC73499 Q54206 AAQ08929 CAM58805 AAG30195 AAC18104 ACI88883 NP_929153 AAP42874 YP_001102990 AAB66504 ABJ97437 ADC79637 AAF82408 AAP85336 WP 008043745.1 YP 003714026.1 WP_010848687.1 WP 006034384.1 YP_132684.1 WP 005305524.1 WP 007465048.1 WP 008989540.1 WP 006644045.1 WP_005364526.1 YP 001771620 ACU62401 YP_003121552 YP_003086385 ZP_00134992 ZP_04562837 NP 416826 YP_001881145 NP_344945 YP_143679 YP_001867862 NP_389016 NP_645683 NP_930065 ZP_02902779.1 NP 287229 NP 415613 BAC70003

139 SimA2 140 TcmL 141 EncB 142 ActIA 143 NcnB FabB 144 AntD (Plu4191) 145 EncA 146 ActiB 147 NcnA 148 TcmK 149 SimA1 ChIB6; CerJ; KSIII DpsC-like 150 ChIB6 151 CerJ CosE 152 153 DpsC 154 AknE2 AknE2 155 BAB72048 156 157 PokM2 158 CalO4 159 FabH NdasDRAFT_3133 160 161 ChIB3 162 CalO4 163 AviN 164 PlaP2 CouN2 165 CloN2 166 **Closest BLAST-P hits for XcIB** 167 3-Oxoacyl-ACP synthase III 168 3-Oxoacyl-ACP synthase III 3-Oxoacyl-ACP synthase III 169 3-Oxoacyl-ACP synthase III 170 3-Oxoacyl-ACP synthase III 171 172 3-Oxoacyl-ACP synthase III 173 3-Oxoacyl-ACP synthase III 174 3-Oxoacyl-ACP synthase III 3-Oxoacyl-ACP synthase III 175 3-Oxoacyl-ACP synthase III 176 3-Oxoacyl-ACP synthase III 177 KS adjacent to XcIA homologues 3-Oxoacyl-ACP synthase 178 3-Oxoacyl-ACP synthase 179 180 3-Oxoacyl-ACP synthase KS type III PKS 181 Chs-like BPS (PLN03172) 182 183 CHS H. (PLN03173) 184 CHS9 185 STS 186 BAS bpsA 187 188 MXAN_6639 189 PKS10 PKS11 190 191 Cpz6 Capramyzin ketosynthase Germicidin synthase 192 193 RppA S

S. antibioticus S. glaucescens S. maritimus S. coelicolor A3(2) S. arenae P. luminescens S. maritimus S. coelicolor A3(2) S. arenae S. davawensis S. antibioticus S. antibioticus S. tendae S. olindensis S. peucetius S. sp. SPB74 S. galilaeus S. galilaeus S. diastatochromogenes S. aurantiaca S. erythraea N. dassonvillei S. antibioticus M. echinospora S. viridochromogenes S. sp. Tu6071 S. rishiriensis S. roseochromogenes *B.* sp. EniD312 A. nasoniae P. carotovorum P. pacifica C. stagnale N. punctiforme R. sp. PCC 7116 S. cvanosphaera Calothrix sp. PCC 6303 N. punctiforme R.sp. PCC 7116 C. sp. PCC 7822 N. punctiforme A. cylindrica R. baltica H. androsaemum H. androsaemum M. sativa P. quinquefolia R. palmatum B. subtilis str. 168 M. xanthus M. tuberculosis M. tuberculosis Streptomyces sp. MK730-62F2 Streptomyces coelicolor S. antibioticus

SCO5087 AAD20268 NP 931374 AAF81728 SCO5088 AAD20267 CCK26894 AAK06784 AAZ77679 AEI91069 ABC00733 AAA65208 ZP 04991255.1 AAF70109 BAB72048 ACN64832 ZP 01462124 YP_001107471 ZP_04334033.1 AAZ77676 AAM70354 AAK83178 ABB69750 AAG29787 AAN65231 WP 009111263.1 CBA73264.1 WP 010301235.1 WP_006975318.1 YP_007317906.1 YP 001865628.1 YP 007056099 YP 007130807.1 YP 007138278 YP 001868566.1 YP_007057764.1 YP 003899922.1 YP 001865657.1 YP_007155727.1 NP 868579 Q8SAS8 Q9FUB7 AAA02827 AAM21773 AAK82824 NP 390087 YP_634756 NP 216176 NP 216181 3V7I A BAB91443

AF324838 4

AAA67516

AAF81729

194 **RppA** 195 **RppB** DarB 196 O3I 37171 197 M446_0174 198 cpin6850 199 BFO 3187 200 NiasoDRAFT 0547 201 Mucpa_6793 202 Oweho 0889 203 CHU_0390 204 Fluta_1447 Dfer 5797 205 206 BZARG 2045 207 Lacal_2074 208 Aeqsu 0932 209 Zobellia 2074 210 Lbvs 1508 HMPREF0204 10987 211 212 PMI13 02465 213 HMPREF0156_01383 214 HMPREF9071 0527 215 CAPGI0001_0843 216 HMPREF1154_2288 217 HMPREF1320_1701 218 HMPREF1321_1154 219 CAPSP0001_1216 220 Coch 0547 221 HMPREF1319_0374 222 HMPREF1977_1456 223 Weevi 1554 224 HMPREF9716_01579 225 Myrod_1723 226 HMPREF9711 01694 227 HMPREF9712_01161 228 Fcol 11845 229 FP2279 230 PMI10 02641 231 FF52 12311 Fjoh_1102 232 FJSC11DRAFT_3961 233 234 MICAG_1820011 235 DP1817 236 DaAHT2_1139 MIdDRAFT 4065 237 238 CBGD1_514 SMGD1_1386 239 240 Sdel 2118 241 Sulba 2257 Arnit_2310 242 243 HMPREF9401 0244 244 Hbal 2902 245 ParcA3_010100003428 246 PspoU 010100018642 PSJM300 17945 247 248 MDS_0597 249 Psefu 0435 250 Plu2164 251 PA-RVA6-3077 PAU 02401 252 253 PchIO6_4243

S. avermitilis S. antibioticus N. brasiliensis M. sp. 4-46 C. pinensis T. forsythia N. soli M. paludis O. hongkongensis C. hutchinsonii F. taffensis D. fermentans B. argentinensis L. sp. 5H-3-7-4 A. sublithincola Z. galactanivorans L. byssophila C. gleum C. sp. CF314 B. taxon 274 str. F0058 C. taxon 338 str. F0234 C. gingivalis C. sp. CM59 C. taxon 335 str. F0486 C. taxon 412 str. F0487 C. sputigena C. ochracea C. ochracea C. ochracea W. virosa M. odoratimimus M. odoratus M. odoratimimus M. odoratimimus F. columnare F. psychrophilum F. sp. CF136 F. sp. F52 F. johnsoniae F. sp. JSC-11 M. aeruginosa D. psychrophila D. alkaliphilus delta proteobacterium MLMS-1 S. gotlandica S. gotlandica S. deleyianum S. barnesii A. nitrofigilis A. butzleri H. baltica P. arctica P. spongiae P. stutzeri P. mendocina P. fulva P. luminescens P. asymbiotica P. asymbiotica P. chlororaphis

BAB91444 ZP 09843377 YP_001767187 YP_003126452 YP_005015826 ZP_09632794 ZP_09618305 YP_004988545 YP_677020 YP_004344279 YP 003090150 ZP 08820341 YP_004580348 YP 006417450 YP 004736513 YP 003997574 ZP 07085127 ZP 10726507 ZP 06983320 ZP 08201061 ZP_04056582 ZP_10880679 EJF37460 ZP_10366882 ZP_03390203 YP_003140666 EJF43732 ZP_07866642 YP 004238832.1 EKB07937 ZP 09672239 EKB04829 ZP 09523568 YP_004942963 YP 001297136 ZP 10730768 ZP 10481912 YP 001193454 ZP 08987753 CCI22605 YP_065553 YP_003690456 ZP_01289639 ZP_05070248 EHP29910 YP_003305165 YP_006405107 YP_003656468 ZP_07890833 YP_003061270 ZP_10280196 ZP 10300425 AFN79642 YP 004378380 YP 004472512 NP 929424 CAR66906 YP 003041237 ZP_10172862

NP 828307

254	DarB	P. chlororaphis	AAN18032
255	Pchl3084_3967	P. chlororaphis	EJL05977
256	PMI20_00702	<i>P</i> . sp. GM17	ZP_10707840
257	Daro_2368	D. aromatica	YP_285574
258	azo0292 DarB	<i>A</i> . sp. BH72	YP_931796
259	Rfer_3974	R. ferrireducens	YP_525203
260	Slit_0359	S. lithotrophicus	YP_003522988
261	PMI12_02025	<i>V</i> . sp. CF313	ZP_10567997
262	Vapar_3389	V. paradoxus	YP_002945272
263	Varpa_2231	V. paradoxus	YP_004154548
264	COI_2002	M. haemolytica	ZP_05992665
265	COK_0379	M. haemolytica	ZP_05988513
266	HMPREF9417_0595	H. parainfluenzae	ZP_08147854
267	HMPREF9952_1824	H. pittmaniae	ZP_08755481
268	HMPREF9064_0174	A.segnis	ZP_07888807
269	ATCC33389_0196	A. aphrophilus	EGY32238
270	NT05HA_1737	A. aphrophilus	YP_003008155
271	HMPREF9335_01583	A. aphrophilus	EHB89432
272	GCWU000324_02596	K. oralis	ZP_04603113
273	EIKCOROL_00456	E. corrodens	ZP_03712789
274	HMPREF9371_1043	N. shayeganii	ZP_08886538
275	HMPREF9370_1914	N. wadsworthii	ZP_08940206
276	NEIFLAOT_02523	N. flavescens	ZP_03720660
277	HMPREF0604_01363	N. mucosa	ZP_07993739
278	NEIFL0001_0036	N. flavescens	ZP_04757628
279	NEISUBOT_03200	N. subflava	ZP_05983976
280	NEISICOT_02133	N. sicca	ZP_05318975
281	HMPREF9418_1128	N. macacae	ZP_08684521
282	HMPREF1051_1749	N. sicca	EIG27057
283	HMPREF1028_00835	<i>N</i> . sp. GT4A_CT1	ZP_08888860
284	HMPREF9016_01947	N. taxon 014 str. F0314	ZP_06980826

	Pseudopyronine A		Pseudopyronine B		Pseudopyronine C	
Position	δ _c	δ _н (J in Hz)	δ _c	δ _н (J in Hz)	δ _c	δ _н (J in Hz)
2	164.9	-	165.0	-	166.9	-
3	100.7	-	101.3	-	101.5	-
3a	22.7	2.23 (t, 8.0, 2H)	22.7	2.24 (t, 8.0, 2H)	22.8	2.22 (t, 8.0, 2H)
3b	27.5	1.34 (m, 2H)	27.5	1.35 (t br, 8.0, 2 H)	27.7	1.34 (t br, 8.0, 2 H)
3c	28.5	1.24 (m, 2H)	28.6	1.26, (m, 2H)	28.8	1.23, (m, 2H)
3d	30.4	1.28 (m, 2H)	31.2	1.25 (m, 2H)	31.2	1.24 (m, 2H)
3e	22.0	1.24 (m, 2H)	22.0	1.26 (m, 2H)	22.1	1.25 (m, 2H)
3f	13.8	0.86 (m, 3H)	14.0	0.84 (m, 3H)	13.9	0.85 (m, 3H)
4	162.2	-	164.8	-	165.1	-
5	99.9	5.91 (s, 1H)	99.2	5.94 (s, 1H)	100.4	5.86 (s, 1H)
6	162.2	-	162.6	-	162.0	-
6a	32.5	2.36 (t, 8.0, 2H)	32.6	2.37 (t, 8.0, 2H)	32.6	2.34 (t, 8.0, 2H)
6b	25.8	1.52 (m, 2H)	26.2	1.51 (t br, 8.0, 2H)	26.2	1.50 (t br, 8.0, 2H)
6c	31.1	1.26 (m, 2H)	28.6	1.26 (m, 2H)	28.6	1.26 (m, 2H)
6d	21.7	1.26 (m, 2H)	28.2	1.28 (m, 2H)	28.2	1.26 (m, 2H)
6e	13.7	0.86 (m, 3H)	31.1	1.25 (m, 2H)	28.6	1.28 (m, 2H)
6f			22.0	1.26 (m, 2H)	28.6	1.28 (m, 2H)
6g			13.8	0.84 (m, 3H)	31.2	1.26 (m, 2H)
6h					22.1	1.26 (m, 2H)
6i					13.9	0.85 (m, 3H)

Table S5: NMR spectroscopic data (400 MHz, J in Hz) of pseudopyronine A, B and C in DMSO- d_6 .

Pseudopyronine A

Pseudopyronine C

Figure S1: Analysis of amino acid substitutions for PpyS activity regarding the biosynthesis of photopyrone D (PPYD, **4**). The data is calculated in dependence to the production of the PpyS wildtype enzyme. Cys129, His281 and Asn310 form the catalytic triade, Glu105 is proposed to act as a catalytic base, Arg121 is located at the dimerization interface and Glu330 was used as a neutral control. In PpyS-C129A, -N310A, -E105A and -R121D the production of **4** was not detectable (n. d.) anymore.

Figure S2: Extracted-ion chromatograms (EICs) of the most abundant photopyrones, which are produced heterologously in *E. coli* wildtype and mutant strains. **2** (*m*/*z* 267.2 [M + H]⁺), **3** (*m*/*z* 281.2 [M + H]⁺), **4** (*m*/*z* 295.2 [M + H]⁺), **5** (*m*/*z* 309.2 [M + H]⁺), **6** *m*/*z* 323.3 [M + H]⁺). As the data for PpyS N310A, E105A and R121D look identical to C129A showing a complete loss of photopyrone production, they are not shown here.

Figure S3: Structure of OleA-dimer (PDB: 3ROW) from *Xanthomonas campestris* (A). Modeled structure of PpyS-dimer from *P. luminescens* TT01 (B), which was generated using the OleA structure as a template: Red (α -helices), yellow (β -sheets), blue (turns), white (random coils). The superposition of OleA (blue) and PpyS (red) structures (C) revealed a root-mean-square deviation (RMSD) of 2.0 Å. To picture the dimer interface of PpyS the surface of chain α was calculated (green, magenta, and white represent a lipophilic, hydrophilic and neutral surface area, respectively) and the ribbon of chain β is shown (D). At the interface the atoms of Arg121 β are represented as spheres, this residue is predicted to be involved in the dimerization of PpyS by interacting with Asp137 α . The mutation of Arg121 led to a complete loss of photopyrone production. Furthermore Glu330 is shown in cyan spheres, this residue was mutated as a control, which should not influence the photopyrone production as indeed shown in Figure S1.

Figure S4: Structure of the FabH-dimer (PDB: 1HN9) from *E. coli* (A). Structure of FabH-monomer (PDB: 1HNJ) from *E. coli* along with co-crystallized malonyl-CoA (B). The superposition of both these structures (C) reveals the location of the substrate malonyl-CoA within the dimeric structure and the distance to Phe87 β , which is the analogue to Glu105 of PpyS. With a shortest distance of ca. 5.3 Å to the ligand this residue seems not to be directly involved in the catalysis.

Figure S5: Last step of myxopyronin A [15] and corallopyronin A [16] biosynthesis. The western (red) and the east (blue) chains are thought to be condensed by the catalytic activity of the KS MxnB or CorB, respectively. The intermediate shown here follows from the nucleophilic attack of the deprotonated α -carbon of the western chain with the carbonyl carbon of the eastern chain. Both intermediates were used for docking studies.

PpyS	INSRYWLADNEKPMELIEAAFNHALAQANIIKEDIDLLIYSSVARGFI E PA	107
YP42	LVNRRWCDSHESPIDHVAMATRKALSETYLRPEHIELFIYVGIGRGFLEPG	101
WP16	SDVRYWLDKDEKPIDLVARAFQEAINEANCDKDDIDLLVYTGVGRGFI D PA	102
PyrS	SGTRHWLGANETPMELMETAFNSALAQANIDKADLDLLIYPNVTRGFI D PA	102
OleA	IHARRLWDQDVQASDAATQAARKALIDANIGIEKIGLLINTSVSRDYL	106
FabH	IRERHIAAPNETVSTMGFEAATRAIEMAGIEKDQIGLIVVATTSATHAFPS	89
CorB	IRERRWVKD-ETASFMGAEAAKEAVRDAGLKLEDIDLIINASGSPEQAVPD	96
MxnB	IRERRWVKG-ETAAFMGAEAAKEAVRDAGLQLSDIDLIISASGSPQQAVPD	96
Cpz6	-VGRRNLTAFADACEMAVDAARRALAATGLVADDIDAIVTSH-TTSWTLPN	114
Gcs	TVQERTAPAWEAVQAYGERAARGALQIAGLDVADVDCLITSN-STTPALPG	174
PpyS	NSTFVSKALGLTCRNYDVVDACNGWVAAMDIINSKMKAGEIRHAAIVN	155
YP42	NSHMMASTLGFINAECFDVVDACMSWTRAMSIIDSLFKCGQYRNAMIVN	150
WP16	AAYHVAASLGLQNAECFDILDACMSWTRVLNIVYSLFKSGRYKRALIVN	151
PyrS	NSTFIAKALGLSCRNFDVVDACNGWVTAMDVINSKMQAGEIRYAAIVN	150
OleA	TASIVSGNLGVSD-HCMTFDVANACLAFINGMDIAARMLERGEIDYALVVD	156
FabH	AACQIQSMLGIKGCPAFDVAAACAGFTYALSVADQYVKSGAVKYALVVG	138
CorB	GGPLVQRELGLGRSGVPSITVNASCLSFFVALDVAANYLNMRRYKRILIVS	147
MxnB	GGPLVQRELGLGRSGTPAITVNASCLSFFVALEVASNYLNMRRYRRILVVS	147
Cpz6	LDVHLVEVLGLRPDVSRVALTSLACAGGTQALVRAADQLRARPGGKVLVVV	165
Gcs	LDVALANRLPLRGDTMLLPATQWACVAGTRSLALAADLVAADPDRVVLVVI	225
PpyS	IEHIFI <mark>H</mark> TGSPKTWARLGQKMGID-DKIHHVGQRVG <mark>N</mark> IATASIP	317
YP42	IDIVFT <mark>H</mark> ASSKAAWHGYGEKVGIQ-DKMYHIYPETG <mark>N</mark> LVSASIP	309
WP16	IRAIFP <mark>H</mark> ASSKREWDKVAEALNIK-HLLWHIYPTYG <mark>N</mark> LVSASVP	161
PyrS	VHKVFIHTGSPKMWEHIGQLIGID-HKLHHVGHKTGNIITASIP	313
OleA	LDQFVI <mark>H</mark> QVSRPHTAAFVKSFGIDPAKVMTIFGEHG <mark>N</mark> IGPASVP	309
FabH	LDWLVPHQANLRIISATAKKLGMSMDNVVVTLDRHGNTSAASVP	281
CorB	CRYVIPHQPSRVVLDYLS-LTYPD-DKLVRIIDRFANCIGASMP	299
MxnB	VKYIIPHQPSRVVLDYLS-LSYPE-EKLIRIIERFGNCIGASMP	299
Cpz6	PEFAVV <mark>H</mark> PGGPRIISEVTAALGLDAARTRHSFAS-LEENG <mark>N</mark> LGGNAVL	307
Gcs	PDVLLA <mark>H</mark> PGGTRVLEYMEQTMPDEWPSGLLSYSRDSYTSG <mark>N</mark> RGGAAVF	377

Figure S6: A multiple sequence alignment (ClustalW, standard parameters) of PpyS from P. luminescens TT01, YP_004230959 (YP42) from Burkholderia sp. WP_016949109 (WP16) from PCC CCGE1001, Anabaena sp. 7108. WP_007967127 (PyrS) from Pseudomonas sp. GM30, OleA from X. campestris, FabH from E. coli, CorB from C. coralloides, MxnB from M. fulvus, Cpz6 [17] (caprazamycin biosynthesis) from Streptomyces sp. MK730-62F2 and Gcs [18] (germicidin synthase) from S. coelicolor. Highly conserved residues are shown in grey, conserved catalytic triad and position of E105 from PpyS are highlighted in black.

Figure S7: Extracted-ion chromatograms (EICs) of pseudopyronines. **9** (*m*/*z* 267.2 $[M + H]^+$), **10** (*m*/*z* 295.2 $[M + H]^+$), **11** (*m*/*z* 323.2 $[M + H]^+$). In *Pseudomonas putida* KT2440 no pseudopyronines could be detected (top chromatogram). All chromatograms are drawn to the same scale.

Figure S8: Structure of OleA-dimer (PDB: 3ROW) from *Xanthomonas campestris* (A). Modeled structure of pseudopyronine synthase (PyrS)-dimer from *Pseudomonas* sp. GM30 (B), which was generated using the OleA structure as a template. The superposition of OleA (blue) and PyrS (red) structures (C) revealed a root-mean-square deviation (RMSD) of 3.3 Å. The modeled PyrS-dimer structure with covalently to Cys124 docked pseudopyronine B intermediate (**19**, D). In a green sphere representation Glu100 is shown, which is the analogue to Glu105 of PpyS.

Figure S9: A detailed view of the proposed PyrS-binding pocket with covalently to Cys124 docked substrate (**17**, A) and intermediat (**19**, B) of pseudopyronine B. The catalytic triade consists of Cys124, His277 and Asn306. The cavity of the binding pocket is shown in a line representation, where green represents a lipophilic surface area, magenta a hydrophilic and white a neutral. Possible formed hydrogen bonds are shown as dashed blue lines.

Scheme S1: Proposed biosynthesis of **10** by PyrS from *Pseudomonas* sp. GM30. In the first step octanoic acid (**17**) is covalently bound to the active site Cys124. The deprotonated α -carbon nucleophilicly attacks a 3-oxodecanoyl thioester (**18**, R = ACP or CoA) to form the covalently bound intermediate (**19**). Due to a spontaneous or a catalyzed deprotonation (by E100) the pyrone ring is formed and **10** is released from PyrS.

References

1. Adachi, Y.; Fukuhara, C. Anal. Biochem. 2012, 431, 66-68.

2. Brachmann, A. O.; Brameyer, S.; Kresovic, D.; Hitkova, I.; Kopp, Y.; Manske, C.; Schubert, K.; Bode, H. B.; Heermann, R. *Nat. Chem. Biol.* **2013**, *9*, 573-578.

3. Gibson, D. G.; Young, L.; Chuang, R.; Venter, J. C.; 3rd, C. A. H.; Smith, H. O. *Nat. Methods* **2009**, *6*, 343-345.

4. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. J. Mol. Biol. **1990**, 215, 403-410.

5. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. *Nucleic Acids Res.* **2000**, *28*, 235-242.

6. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G. *Bioinformatics* **2007**, *23*, 2947-2948.

7. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. *J. Mol. Biol.* **1997**, *267*, 727-748.

8. Korb, O.; Stützle, T.; Exner, T. E. J. Chem. Inf. Model. 2009, 49, 84-96

9. Guindon, S.; Gascuel, O. Syst. Biol. 2003, 52, 696-704

10. Hanahan, D. J. Mol. Biol. 1983, 166, 557-580.

11. Brown, S. D.; Utturkar, S. M.; Klingeman, D. M.; Johnson, C. M.; Martin, S. L.; Land, M. L.; Lu, T. S.; Schadt, C. W.; Doktycz, M. J.; Pelletier, D. A. *J. Bacteriol.* **2012**, *194*, 5991-5993

12. Nelson, K. E.; Weinel, C.; Paulsen, I. T.; Dodson, R. J.; Hilbert, H.; Santos, dos, V. A. P. M.; Fouts, D. E.; Gill, S. R.; Pop, M.; Holmes, M.; Brinkac, L.; Beanan, M.; DeBoy, R. T.; Daugherty, S.; Kolonay, J.; Madupu, R.; Nelson, W.; White, O.; Peterson, J.; Khouri, H.; Hance, I.; Lee, P. C.; Holtzapple, E.; Scanlan, D.; Tran, K.; Moazzez, A.; Utterback, T.; Rizzo, M.; Lee, K.; Kosack, D.; Moestl, D.; Wedler, H.; Lauber, J.; Stjepandic, D.; Hoheisel, J.; Straetz, M.; Heim, S.; Kiewitz, C.; Eisen, J. A.; Timmis, K. N.; Düsterhöft, A.; Tümmler, B.; Fraser, C. M. *Environ. Microbiol.* **2002**, *4*, 799-808.

13. Smits, T. H.; Seeger, M. A.; Witholt, B.; van Beilen, J. B. *Plasmid* 2001, 46, 16-24.

14. Proschak, A.; Zhou, Q.; Schöner, T.; Thanwisai, A.; Kresovic, D.; Dowling, A.; ffrench-Constant, R.; Proschak, E.; Bode, H. B. *ChemBioChem* **2014**, *15*, 369-372.

15. Sucipto, H.; Wenzel, S. C.; Müller, R. ChemBioChem 2013, 14, 1581-1589.

16. Erol, O.; Schäberle, T. F.; Schmitz, A.; Rachid, S.; Gurgui, C.; Omari, el, M.; Lohr, F.; Kehraus, S.; Piel, J.; Müller, R.; König, G. M. *ChemBioChem* **2010**, *11*, 1253-1265.

17. Tang, X.; Eitel, K.; Kaysser, L.; Kulik, A.; Grond, S.; Gust, B. *Nat. Chem. Biol.* **2013**, *9*, 610-615.

18. Chemler, J. A.; Buchholz, T. J.; Geders, T. W.; Akey, D. L.; Rath, C. M.; Chlipala, G. E.; Smith, J. L.; Sherman, D. H. *J. Am. Chem. Soc.* **2012**, *134*, 7359-7366.

¹³C -NMR spectrum of pseudopyronine C, DMSO-*d6*

