Supporting Information

for

Tandem cross enyne metathesis (CEYM)-

intramolecular Diels–Alder reaction (IMDAR). An

easy entry to linear bicyclic scaffolds

Javier Miró¹, María Sánchez-Roselló^{1,2}, Álvaro Sanz¹, Fernando Rabasa¹, Carlos del Pozo^{*,1} and Santos Fustero^{*,1,2}

Address: ¹Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain and ²Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain Email: Santos Fustero - santos.fustero@uv.es, Carlos del Pozo - carlos.pozo@uv.es *Corresponding author

Experimental and analytical data

General experimental methods. Reactions were carried out under argon atmosphere unless otherwise indicated. The solvents were purified prior to use: THF, diethyl ether and toluene were distilled from sodium/benzophenone, dichloromethane and acetonitrile were distilled from calcium hydride. The reactions were monitored with the aid of thin-layer chromatography (TLC) on 0.25 mm precoated silica gel plates. Visualization was carried out with UV light and aqueous ceric ammonium molybdate solution or potassium permanganate stain. Flash column chromatography was performed with the indicated solvents on silica gel 60 (particle size 0.040–0.063 mm). ¹H and ¹³C NMR spectra were recorded on a 300 and a 500 MHz spectrometer, respectively. Chemical shifts are given in ppm (δ), with reference to the residual proton resonances of the solvents. Coupling constants (*J*) are given in Hertz (Hz). The letters m, s, d, t, and q stand for multiplet, singlet, doublet, triplet and quartet, respectively. The letters br indicate that the signal is broad. Starting dienes **2a** [1], **2b** [2], **2c** [3], **2d** [2] and **2e** [4] were previously described.

Preparation of starting substrates 8, method A. Homoallylbenzylamine **7** (1.0 mmol) was added to a mixture of the corresponding carboxylic acid **5** (1.0 mmol), EDCI (1.5 mmol), HOBt (2.0 mmol) and triethylamine (2.0 mmol) in DCM (0.10 M). The mixture was stirred overnight at rt. The reaction mixture was then hydrolysed with H_2O (20 mL) and extracted with DCM (3 × 15 mL). Collected organic fractions were dried over Na_2SO_4 and, after removal of the solvents the crude reaction mixture was purified by flash chromatography.

Method B. Homoallyl benzyl amine **7** (2.3 mmol) was dissolved in DCM (3.6 mL) and pyridine (3.0 mmol) and cooled to 0 °C. A solution of the corresponding acyl chloride **6** (3.0 mmol) in DCM (1.0 mL) was then syringed dropwise into the reaction. The resulting reaction mixture was stirred at room temperature for 3 hours. The reaction was then diluted with DCM (10 mL), quenched with sat NaHCO₃ (20 mL), extracted with DCM (3 × 20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified through flash chromatography to afford the title compound.

(E)-N-Benzyl-N-(3-butenyl)-2-butenamide (8a)

Amide **8a** was obtained in 49% yield (colourless oil) from (*E*)-2-butenoic acid **5a** as a mixture of rotamers following method A. ¹H-NMR (CDCl₃, 300 MHz): δ 1.84 (d, *J* =

6.6 Hz, 3/2H), 1.93 (d, J = 6.6 Hz, 3/2H), 2.28-2.39 (m, 2H), 3.36 (t, J = 7.5 Hz, 1H), 3.49 (t, J = 7.5 Hz, 1H), 4.61-4.71 (m, 2H), 5.01-5.11 (m, 2H), 5.68-5.87 (m, 1H), 6.17 (d, J = 15.3 Hz, 1/2H), 6.31 (d, J = 14.7 Hz, 1/2H), 6.93-7.09 (m, 1H), 7.19-7.37 (m, 5H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 18.1, 18.2, 32.1, 33.4, 46.0, 46.5, 49.0, 51.2, 116.5, 117.3, 121.5, 121.7, 126.3, 127.2, 127.4, 127.9, 128.4, 128.7, 134.2, 135.4, 137.1, 137.7, 142.1, 142.3, 166.5, 167.0; HRMS (ES) calc. for (M⁺+1) C₁₅H₂₀NO: 230.1539; found: 230.1545.

(E)-N-Benzyl-N-(3-butenyl)cinnamamide (8b)

Amide **8b** was obtained in 76% yield (colourless oil) from (*E*)-cinnamic acid **5b** as a mixture of rotamers following method A. ¹H-NMR (CDCl₃, 300 MHz): δ 2.26-2.38 (m, 2H), 3.40 (t, *J* = 7.4 Hz, 1H), 3.51 (t, *J* = 7.4 Hz, 1H), 4.66 (d, *J* = 16.2 Hz, 2H), 4.98-5.08 (m, 2H), 5.66-5.84 (m, 1H), 6.78 (d, *J* = 15.6 Hz, 1/2H), 6.88 (d, *J* = 15.3 Hz, 1/2H), 7.18-7.38 (m, 9H), 7.48-7.50 (m, 1H), 7.76 (t, *J* = 14.9 Hz, 1H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 31.9, 33.4, 46.2, 46.5, 49.1, 51.2, 116.5, 117.0, 117.3, 117.4, 126.1, 127.1, 127.4, 127.5, 127.8, 128.3, 128.4, 128.6, 128.6, 129.3, 129.4, 134.0, 134.9, 135.0, 135.1, 136.9, 137.4, 142.8, 142.9, 166.2, 166.6; HRMS (ES) calc. for (M⁺+1) C₂₀H₂₂NO: 292.1696; found: 292.1703.

(E)-N-Benzyl-N-(3-butenyl)-3-(2-naphthyl)acrylamide (8c)

Amide **8c** was obtained in 76% yield (colourless oil) from (*E*)-3-(2-naphthyl)acrylic acid **5c** as a mixture of rotamers following method A. ¹H-NMR (CDCl₃, 300 MHz): δ 2.40-2.43 (m, 2H), 3.51 (t, *J* = 7.5 Hz, 1H), 3.59 (t, *J* = 7.2 Hz, 1H), 4.71-4.78 (m, 2H), 5.04-5.17 (m, 2H), 5.75-5.91 (m, 1H), 6.93 (d, *J* = 15.3 Hz, 1/2H), 7.03 (d, *J* = 15.3 Hz, 1/2H), 7.27-7.40 (m, 5H), 7.47-8.00 (m, 8H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 32.2, 33.7, 46.4, 46.8, 49.4, 51.6, 116.8, 117.3, 117.6, 123.5, 123.6, 126.4, 126.5, 126.6, 126.8, 126.9, 127.3, 127.7, 128.1, 128.4, 128.4, 128.5, 128.6, 128.9, 129.3, 129.4, S3 132.6, 132.7, 133.3, 133.4, 133.9, 134.3, 135.4, 137.2, 137.7, 143.2, 143.3, 166.6, 167.0; HRMS (ES) calc. for (M⁺+1) C₂₄H₂₄NO: 342.1852; found: 342.1851.

(E)-N-Benzyl-N-(3-butenyl)-3-(2-furyl)acrylamide (8d)

Amide **8d** was obtained in 57% yield (brown oil) from (*E*)-3-(2-furyl)acrylic acid **5d** as a mixture of rotamers following method A. ¹H-NMR (CDCl₃, 300 MHz): δ 2.40 (t, *J* = 7.2 Hz, 2H), 3.47 (t, *J* = 7.5 Hz, 1H), 3.57 (t, *J* = 7.5 Hz, 1H), 4.71-4.76 (m, 2H), 5.05-5.16 (m, 2H), 5.74-5.91 (m, 1H), 6.47 (ddd, *J*₁ = 14.7 Hz, *J*₂ = 3.3 Hz, *J*₃ = 1.8 Hz, 1H), 6.58 (dd, *J*₁ = 12.9 Hz, *J*₂ = 3.3 Hz, 1H), 6.79 (d, *J* = 15.0 Hz, 1/2H), 6.87 (d, *J* = 15.0 Hz, 1/2H), 7.25-7.49 (m, 6H), 7.60 (dd, *J*₁ = 15.3 Hz, *J*₂ = 10.8 Hz, 1H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 32.0, 33.5, 46.1, 46.5, 49.2, 51.2, 112.0, 112.0, 113.8, 113.9, 114.6, 114.8, 116.5, 117.4, 126.3, 127.1, 127.4, 127.8, 128.4, 128.7, 129.7, 129.8, 134.1, 135.2, 136.9, 137.5, 143.7, 143.8, 151.4, 151.5, 166.2, 166.6; HRMS (ES) calc. for (M⁺+1) C₁₈H₂₀NO₂: 282.1489; found: 282.1483.

(*E*)-*N*-Benzyl-*N*-(3-butenyl)-3-methyl-2-butenamide (8e)

Amide **8e** was obtained in 67% yield (yellowish liquid) from (*E*)-2-butenoyl chloride **6a** as a mixture of rotamers following method B. ¹H-NMR (CDCl₃, 300 MHz): δ 1.77 (s, 3/2H), 1.85 (s, 3/2H), 1.97 (d, *J* = 6.0 Hz, 3H), 2.24 (q, *J* = 7.5 Hz, 1H), 2.31 (q, *J* = 7.2 Hz, 1H), 3.29 (t, *J* = 7.4 Hz, 1H), 3.41 (t, *J* = 7.4 Hz, 1H), 4.54 (s, 1H), 4.64 (s, 1H), 4.97-5.07 (m, 2H), 5.62-5.78 (m, 1H), 5.83 (s, 1/2H), 5.90 (s, 1/2H), 7.15-7.36 (m, 5H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 20.1, 20.1, 26.1, 26.3, 31.9, 32.7, 44.4, 46.6, 47.6, 51.6, 116.4, 117.0, 117.7, 117.9, 126.4, 127.0, 127.3, 127.8, 128.3, 128.6, 134.3, 135.4, 137.0, 137.7, 147.0, 147.0, 168.2, 168.5; HRMS (ES) calc. for (M⁺+1) C₁₆H₂₂NO: 244.1696; found: 244.1709.

(E)-N-Benzyl-N-(but-3-en-1-yl)-3-(1H-indol-3-yl)acrylamide (8f)

Amide **8f** was obtained in 67% yield (yellow solid) from (*E*)-3-(1*H*-3-indolyl)acrylic acid **5e** as a mixture of rotamers following method A. m.p. 173-175 °C. ¹H-NMR (CDCl₃, 300 MHz): δ 2.43 (q, *J* = 7.3 Hz, 2H), 3.52 (t, *J* = 7.7 Hz, 1H), 3.62 (t, *J* = 7.2 Hz, 1H), 4.75 (s, 1H), 4.78 (s, 1H), 5.03-5.19 (m, 2H), 5.77-5.91 (m, 1H), 6.81 (d, *J* = 15.3 Hz, 1/2H), 6.98 (d, *J* = 15.6 Hz, 1/2H), 7.18-7.52 (m, 10H), 7.96-8.07 (m, 1H), 8.76 (br s, 1/2H), 8.84 (br s, 1/2H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 32.5, 33.7, 46.8, 47.1, 49.5, 51.8, 111.8, 111.9, 112.5, 113.1, 114.1, 116.7, 117.5, 120.2, 121.1, 121.2, 123.0, 123.1, 125.2, 126.5, 127.2, 127.5, 128.0, 128.4, 128.6, 128.7, 128.9, 134.5, 135.5, 136.7, 137.1, 137.2, 137.7, 138.0, 167.8, 168.2; HRMS (ES) calc. for (M⁺+1) C₂₂H₂₃N₂O: 331.1805; found: 331.1807.

(E)-N-Benzyl-N-(3-butenyl)-3-(1-methyl-1H-3-indolyl)acrylamide (8g)

Indole **8f** (0.9 mmol) was dissolved in freshly distilled THF (0.05 M) and at 0 °C NaH (60% dispersion in mineral oil, 1.4 mmol) was added. After 15 min, MeI (1.2 mmol) was added slowly, and the mixture was stirred at rt for 1 hour. The reaction was cooled to 0 °C, sat aq NH₄Cl (50 mL) was added, and the mixture was extracted with Et₂O (3 x 20 mL). The combined organic layers were washed with 1 M KHSO₄ (3 x 50 mL), sat aq NaHCO₃ (3 x 20 mL) and brine (20 mL). The organic phase was dried on Na₂SO₄, evaporated to dryness, and the crude product was purified by column chromatography (*n*-hexanes:ethyl acetate). Amide **8g** was obtained in 89% yield (yellow solid) as a mixture of rotamers. m.p. 105-107 °C. ¹H-NMR (CDCl₃, 300 MHz): δ 2.42 (q, *J* = 7.3 Hz, 2H), 3.50 (t, *J* = 7.4 Hz, 1H), 3.60 (t, *J* = 7.5 Hz, 1H), 3.78 (s, 3/2H), 3.82 (s, 3/2H), 4.74 (s, 1H), 4.76 (s, 1H), 5.03-5.18 (m, 2H), 5.77-5.91 (m, 1H), 6.76 (d, *J* = 15.9 Hz, 1/2H), 6.92 (d, *J* = 15.3 Hz, 1/2H), 7.09-7.41 (m, 9H), 7.52 (d, *J* = 8.4 Hz, 1/2H), 7.88 (d, *J* = 7.8 Hz, 1/2H), 7.99 (t, *J* = 16.1 Hz, 1H); ¹³C-S5

NMR (CDCl₃, 75.5 MHz): δ 32.0, 32.5, 33.2, 46.3, 46.5, 48.9, 51.3, 109.3, 109.5, 111.4, 111.9, 112.2, 116.1, 116.9, 119.8, 120.4, 120.4, 122.1, 122.2, 125.5, 126.0, 126.7, 127.0, 127.6, 128.0, 128.3, 132.0, 132.3, 134.2, 135.2, 135.8, 136.2, 137.3, 137.4, 137.5, 137.7, 167.2, 167.6; HRMS (ES) calc. for (M⁺+1) C₂₃H₂₅N₂O: 345.1961; found: 345.1965.

General procedure for the tandem protocol. A solution of Hoveyda-Grubbs 2nd generation (5 mol %), diene **2** or **8** (3.0 equiv) and alkyne **1** (0.5 mmol) in dry toluene 0.05M was heated at 90 °C in a sealed tube. The reaction mixture was stirred at this temperature for 48 h. The solvents were then removed under reduced pressure and the crude mixture was purified by flash chromatography in *n*-hexanes:ethyl acetate.

(4a*R**,8a*S**)-6-Phenyl-3,4,4a,7,8,8a-hexahydro-1*H*-isochromen-1-one (3a).

Following the general procedure described above, **3a** was obtained in 57% yield as a brown oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.68-1.87 (m, 2H), 2.00-2.10 (m, 1H), 2.25-2.36 (m, 2H), 2.41-2.53 (m, 1H), 2.75-2.85 (m, 2H), 4.22 (dd, $J_1 = 6.0$ Hz, $J_2 = 4.5$ Hz, 2H), 5.81-5.83 (m, 1H), 7.13-7.29 (m, 5H); ¹³C-NMR (CDCl3, 75.5 MHz): δ 24.1, 24.7, 28.5, 32.5, 38.9, 67.3, 124.8, 125.1, 127.3, 128.3, 139.4, 141.2, 173.4; HRMS (ES) calc. for (M⁺+1) C₁₅H₁₇O₂: 229.1223; found: 229.1233.

(4aR*,8aS*)-6-Phenyl-3,4,4a,7,8,8a-hexahydronaphthalen-1(2H)-one (3b)

Following the general procedure described above, **3b** was obtained in 38% yield as a yellow oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.63-1.73 (m, 1H), 1.77-1.86 (m, 3H), 1.93-2.01 (m, 1H), 2.24-2.44 (m, 4H), 2.56-2.68 (m, 2H), 2.90-2.94 (m, 1H), 5.92-5.94 (m, 1H), 7.28-7.39 (m, 5H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 22.8, 23.4, 25.1, 29.9, 38.0, 40.8, 47.5, 125.1, 127.0, 127.1, 128.2, 138.0, 141.6, 212.9; HRMS (ES) calc. for (M⁺) C₁₆H₁₈O: 226.1358; found: 226.1309.

(4a*R**,8a*S**)-2-Benzyl-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2*H*)-one (3c).

Following the general procedure described above, **3c** was obtained in 62% yield as a brown oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.77-1.88 (m, 1H), 1.95-2.06 (m, 2H), 2.35-2.43 (m, 1H), 2.45-2.59 (m, 2H), 2.73-2.85 (m, 2H), 3.11-3.26 (m, 2H), 4.35 (d, *J* = 15.0 Hz, 1H), 4.90 (d, *J* = 15.0 Hz, 1H), 5.92-5.95 (m, 1H), 7.14-7.40 (m, 10H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 24.5, 25.5, 27.5, 33.9, 40.0, 45.4, 50.4, 125.1, 125.5, 127.1, 127.1, 127.5, 128.3, 128.5, 137.2, 139.5, 141.6, 171.8; HRMS (ES) calc. for (M⁺+1) C₂₂H₂₄NO: 318.1852; found: 318.1866

(4a*R**,8a*S**)-2-Benzyl-6-(4-fluorophenyl)-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2*H*)-one (3d)

Following the general procedure described above, **3e** was obtained in 45% yield as a yellow oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.76-1.86 (m, 1H), 1.94-2.04 (m, 2H), 2.33-2.52 (m, 3H), 2.72-2.82 (m, 2H), 3.10-3.24 (m, 2H), 4.31 (d, *J* = 14.7 Hz, 1H), 4.92 (d, *J* = 14.7 Hz, 1H), 5.86-5.87 (m, 1H), 6.98-7.03 (m, 2H), 7.12-7.21 (m, 5H), 7.29-7.34 (m, 2H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 24.5, 25.7, 27.5, 33.9, 39.9, 45.4, 50.4, 115.0 (d, ²*J*_{CF} = 21.3 Hz), 125.4, 126.7 (d, ³*J*_{CF} = 7.8 Hz), 127.1, 127.5, 128.5, 137.2, 137.7 (d, ⁴*J*_{CF} = 2.9 Hz), 138.6, 162.1 (d, ¹*J*_{CF} = 246.0 Hz), 171.7; ¹⁹F-NMR (CDCl₃, 282 MHz): δ -116.1; HRMS (ES) calc. for (M⁺+1) C₂₂H₂₃NOF: 336.1758; found: 336.1749.

(4a*R**,8a*S**)-2-Benzyl-6-(4-methoxyphenyl)-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2*H*)-one (3e).

Following the general procedure described above, **3d** was obtained in 35% yield as a yellow oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.76-1.86 (m, 1H), 1.93-2.04 (m, 2H), 2.30-2.49 (m, 3H), 2.71-2.82 (m, 2H), 3.09-3.25 (m, 2H), 3.82 (s, 3H), 4.34 (d, J = S7 14.7 Hz, 1H), 4.88 (d, J = 14.7 Hz, 1H), 5.84-5.85 (m, 1H), 6.86 (d, $J_0 = 8.7$ Hz, 2H), 7.12-7.21 (m, 5H), 7.30-7.33 (m, 2H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 24.6, 25.6, 27.6, 33.9, 40.1, 45.4, 50.4, 55.3, 113.6, 123.9, 126.2, 127.1, 127.5, 128.5, 129.9, 134.2, 137.2, 149.7, 166.4; HRMS (ES) calc. for (M⁺+1) C₂₃H₂₆NO₂: 348.1958; found: 348.1943.

(3aR*,7aS*)-2-Benzyl-5-phenyl-2,3,3a,6,7,7a-hexahydro-1*H*-isoindol-1-one (3f)

Following the general procedure described above, **3f** was obtained in 50% yield as a brown oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.87-1.98 (m, 1H), 2.24 (ddd, $J_1 = 13.2$ Hz, $J_2 = 10.5$ Hz, $J_3 = 5.4$ Hz, 1H), 2.35-2.44 (m, 1H), 2.45-2.57 (m, 1H), 2.81 (dt, $J_1 = 7.5$ Hz, $J_2 = 5.1$ Hz, 1H), 2.97 (dd, $J_1 = 9.6$ Hz, $J_2 = 3.3$ Hz, 1H), 3.02-3.10 (m, 1H), 3.51 (dd, $J_1 = 9.3$ Hz, $J_2 = 7.2$ Hz, 1H), 4.38 (d, J = 15.0 Hz, 1H), 4.60 (d, J = 15.0 Hz, 1H), 5.83-5.85 (m, 1H), 7.14-7.34 (m, 10H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 21.4, 24.4, 32.7, 40.1, 46.3, 51.4, 124.1, 125.2, 127.2, 127.4, 127.7, 128.3, 128.6, 136.4, 139.9, 141.8, 175.4; HRMS (ES) calc. for (M⁺+1) C₂₁H₂₂NO: 304.1696; found: 304.1702.

(5a*R**,9a*S**)-2-Benzyl-7-phenyl-2,3,4,5,5a,8,9,9a-octahydro-1*H*-benzo[*c*]azepin-1one (3g)

Following the general procedure described above, **3g** was obtained in 44% yield as a yellowish oil. ¹H-NMR (CDCl₃, 300 MHz): δ 1.31 (q, *J* = 10.5 Hz, 2H), 1.68-1.74 (m, 1H), 1.95-2.56 (m, 7H), 3.17 (dd, *J*₁ = 15.3 Hz, *J*₂ = 6.0 Hz, 1H), 3.45 (dd, *J*₁ = 15.3 Hz, *J*₂ = 10.5 Hz, 1H), 4.44 (d, *J* = 14.7 Hz, 1H), 4.75 (d, *J* = 14.4 Hz, 1H), 5.74 (s, 1H), 7.15-7.35 (m, 10H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 25.4, 26.4, 28.0, 37.4, 38.2, 44.2, 48.0, 51.3, 125.1, 126.9, 127.3, 128.3, 128.3, 128.5, 128.6, 136.7, 138.1, 141.8, 176.5; HRMS (ES) calc. for (M⁺+1) C₂₃H₂₆NO: 332.2009; found: 332.2012.

(8R*,8aS*)-2-Benzyl-8-methyl-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-

1(2*H*)-one (10a)

Following the general procedure described above, **10a** was obtained in 85% yield (*endo:exo* 93:7) as a yellow oil. <u>*endo* isomer:</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.12 (d, J = 7.2 Hz, 3H), 1.91-2.05 (m, 2H), 2.07-2.15 (m, 1H), 2.45 (t, J = 5.0 Hz, 1H), 2.60-2.70 (m, 1H), 2.86 (br s, 1H), 2.95-3.10 (m, 2H), 3.22 (td, $J_1 = 12.0$ Hz, $J_2 = 5.4$ Hz, 1H), 4.27 (d, J = 15.0 Hz, 1H), 4.92 (d, J = 15.0 Hz, 1H), 5.87 (s, 1H), 7.08-7.17 (m, 5H), 7.23-7.38 (m, 5H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 18.8, 27.5, 28.0, 29.9, 31.2, 44.6, 45.1, 50.6, 124.3, 125.2, 127.0, 127.1, 127.3, 128.3, 128.5, 137.2, 138.4, 141.9, 171.2; HRMS (ES) calc. for (M⁺+1) C₂₃H₂₆NO: 332.2009; found: 332.1995.

N-Benzyl-*N*-[(*Z*)-5-phenylhexa-3,5-dien-1-yl]cinnamamide (9b-cis)

Intermediate **9b-cis** was detected as a mixture of rotamers in 15% yield. ¹H-NMR (CDCl₃, 300 MHz): δ 2.42-2.50 (m, 2H), 3.39 (t, J = 7.4 Hz, 1H), 3.53 (t, J = 7.4 Hz, 1H), 4.53 (s, 1H), 4.66 (s, 1H), 5.13 (s, 1/2H), 5.15 (s, 1/2H), 5.55 (s, 1H), 5.66 (ddd, $J_1 = J_{cis} = 11.4$ Hz, $J_2 = 7.5$ Hz, $J_3 = 7.5$ Hz, $J_3 = 7.5$ Hz, 1/2H), 5.77 (ddd, $J_1 = J_{cis} = 11.4$ Hz, $J_2 = 7.5$ Hz, 1/2H), 6.26 (d, $J_{cis} = 10.7$ Hz, 1/2H), 6.30 (d, $J_{cis} = 10.7$ Hz, 1/2H), 6.75 (d, J = 15.3 Hz, 1/2H), 6.84 (d, J = 15.3 Hz, 1/2H), 7.15-7.46 (m, 15H), 7.75 (d, J = 15.3 Hz, 1/2H), 7.77 (d, J = 15.3 Hz, 1/2H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 27.0, 28.3, 46.1, 46.9, 49.1, 51.0, 115.0, 115.1, 117.1, 117.5, 126.3, 126.4, 126.5, 126.9, 127.3, 127.6, 127.8, 127.8, 128.0, 128.3, 128.4, 128.5, 128.5, 128.7, 128.7, 128.8, 129.6, 130.3, 131.0, 132.1, 135.2, 135.2, 137.0, 137.5, 140.0, 140.9, 143.1, 143.2, 144.0, 144.1, 166.5, 166.9; HRMS (ES) calc. for (M⁺+1) C₂₈H₂₈NO: 394.2165; found: 394.2150.

(8*R**,8a*R**)-2-Benzyl-6,8-diphenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2*H*)-one (10b)

Following the general procedure described above, **10b** was obtained in 78% overall yield (yellow oil) as a separable mixture of isomers (*exo:endo* 47:53). <u>*exo* isomer:</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.67-1.80 (m, 1H), 2.10-2.20 (m, 1H), 2.53-2.84 (m, 4H), 3.21-3.44 (m, 3H), 4.33 (d, *J* = 14.7 Hz, 1H), 4.67 (d, *J* = 14.7 Hz, 1H), 6.01 (s, 1H), 7.18-7.40 (m, 15H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 29.4, 37.2, 38.9, 41.7, 44.5, 46.9, 49.5, 125.1, 125.7, 126.0, 126.8, 127.2, 127.3, 128.1, 128.3, 128.4, 128.5, 136.9, 137.6, 140.6, 147.5, 171.6; HRMS (ES) calc. for (M⁺+1) C₂₈H₂₈NO: 394.2165; found: 394.2145. <u>*endo* isomer:</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.89-1.95 (m, 2H), 2.47 (br s, 1H), 2.71-2.80 (m, 2H), 2.92-3.02 (m, 1H), 3.08-3.14 (m, 1H), 3.22-3.32 (m, 1H), 4.26-4.31 (m, 2H), 5.02 (d, *J* = 15.0 Hz, 1H), 6.02 (s, 1H), 7.12-7.52 (m, 15H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 27.4, 27.7, 29.2, 38.3, 44.7, 46.5, 50.6, 125.3, 125.8, 126.1, 127.0, 127.2, 127.4, 127.4, 128.3, 128.4, 128.5, 137.0, 139.5, 141.2, 144.5, 170.6; HRMS (ES) calc. for (M⁺⁺¹) C₂₈H₂₈NO: 394.2165;

(8R*,8aR*)-2-Benzyl-8-(naphthalen-2-yl)-6-phenyl-3,4,4a,7,8,8a-

hexahydroisoquinolin-1(2*H*)-one (10c)

Following the general procedure described above, **10c** was obtained in 47% overall yield (yellow oil) as a separable mixture of isomers (*exo:endo* 34:66). <u>*exo* isomer:</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.87-1.93 (m, 2H), 2.46 (br s, 1H), 2.85-2.91 (m, 2H), 3.01-3.14 (m, 2H), 3.28 (td, $J_1 = 12.0$ Hz, $J_2 = 6.9$ Hz, 1H), 4.30 (d, J = 15.0 Hz, 1H), 4.46-4.48 (m, 1H), 5.05 (d, J = 15.0 Hz, 1H), 6.04 (s, 1H), 7.15-7.20 (m, 5H), 7.36-7.49 (m, 5H), 7.53-7.58 (m, 3H), 7.75-7.84 (m, 4H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 27.4, 27.8, 29.3, 38.5, 44.7, 46.3, 50.6, 125.3, 125.4, 125.8, 126.3, 127.0, 127.2, 127.4, 127.5, 127.7, 127.9, 128.5, 128.5, 132.0, 133.3, 137.0, 139.4, 141.2, 141.8, S10

170.5; HRMS (ES) calc. for (M⁺+1) C₃₂H₃₀NO: 444.2322; found: 444.2338. <u>endo</u> <u>isomer:</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.69-1.86 (m, 1H), 2.10-2.24 (m, 1H), 2.63-2.77 (m, 2H), 2.82-2.92 (m, 2H), 3.29 (dt, $J_1 = 12.9$ Hz, $J_2 = 7.8$ Hz, 1H), 3.39-3.53 (m, 2H), 4.35 (d, J = 14.7 Hz, 1H), 4.64 (d, J = 14.7 Hz, 1H), 6.05 (s, 1H), 7.18-7.54 (m, 13H), 7.76-7.87 (m, 4H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 29.5, 37.2, 38.9, 41.9, 44.6, 47.0, 49.5, 124.8, 125.1, 125.6, 125.7, 126.1, 127.2, 127.3, 127.6, 127.7, 127.9, 128.1, 128.3, 128.5, 132.1, 133.8, 137.0, 137.6, 140.5, 145.1, 171.6; HRMS (ES) calc. for (M⁺+1) C₃₂H₃₀NO: 444.2322; found: 444.2337.

(8*R**,8a*R**)-2-Benzyl-8-(furan-2-yl)-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2*H*)-one (10d)

Following the general procedure described above, **10d** was obtained in 68% yield (yellow oil) as an inseparable mixture of isomers (*exo:endo* 28:72). ¹H-NMR (CDCl₃, 300 MHz): δ 1.60-1.71 (m, 1/2H), 1.77-1.85 (m, 1H), 1.87-2.07 (m, 3/2H), 2.49-2.70 (m, 4H), 2.75-2.85 (m, 1H), 2.99-3.04 (m, 2H), 3.10-3.20 (m, 3/2H), 3.22-3.38 (m, 1H), 4.18-4.22 (m, 2H), 4.37 (d, *J* = 14.4 Hz, 1/2H), 4.57 (d, *J* = 14.7 Hz, 1/2H), 4.89 (d, *J* = 15.0 Hz, 1H), 5.77 (br s, 1H), 5.87-5.88 (m, 1/2H), 5.95-5.97 (m, 1H), 6.04-6.06 (m, 1/2H), 6.19 (dd, *J*₁ = 3.0 Hz, *J*₂ = 1.8 Hz, 1H), 6.30 (dd, *J*₁ = 3.3 Hz, *J*₂ = 1.8 Hz, 1/2H), 7.30-7.34 (m, 16.5H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 27.2, 27.4, 29.4, 30.2, 33.6, 35.2, 35.7, 37.0, 43.0, 44.6, 44.9, 46.1, 49.6, 50.6, 103.6, 105.2, 110.0, 110.4, 125.0, 125.1, 125.2, 126.0, 127.0, 127.2, 127.2, 127.3, 127.3, 128.1, 128.3, 128.4, 128.5, 128.5, 136.6, 137.0, 137.5, 138.4, 140.1, 140.5, 140.9, 141.5, 157.5, 159.1, 170.1, 170.9; HRMS (ES) calc. for (M⁺+1) C₂₆H₂₆NO₂: 384.1958; found: 384.1958.

(8aR*)-2-Benzyl-8,8-dimethyl-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-

1(2*H*)-one (10e)

Following the general procedure described above, **10e** was obtained in 25% yield (brown oil) as a separable mixture of isomers (*exo:endo* 23:77). *exo isomer:* ¹H-NMR (CDCl₃, 300 MHz): δ 1.02 (s, 3H), 1.49 (s, 3H), 1.53-1.67 (m, 1H), 1.97-2.13 (m, 3H), 2.36-2.51 (m, 2H), 3.19-3.24 (m, 2H), 4.44 (d, *J* = 14.7 Hz, 1H), 4.59 (d, *J* = 14.7 Hz, 1H), 5.79 (t, *J* = 2.3 Hz, 1H), 7.15-7.34 (m, 10H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 21.3, 29.7, 31.1, 32.5, 34.6, 45.3, 45.9, 49.8, 51.7, 125.1, 125.6, 127.1, 127.2, 127.8, 128.3, 128.5, 136.2, 137.7, 141.3, 171.6; HRMS (ES) calc. for (M⁺+1) C₂₄H₂₈NO: 346.2165; found: 346.2163. *endo* isomer: ¹H-NMR (CDCl₃, 300 MHz): δ 1.07 (s, 3H), 1.45 (s, 3H), 1.83-1.91 (m, 2H), 2.08 (d, *J* = 17.4 Hz, 1H), 2.26 (d, *J* = 6.0 Hz, 1H), 2.50 (dt, *J*₁ = 17.4 Hz, *J*₂ = 2.7 Hz, 1H), 2.89 (br s, 1H), 3.01 (dt, *J*₁ = 12.0 Hz, *J*₂ = 4.5 Hz, 1H), 3.12-3.21 (m, 1H), 4.14 (d, *J* = 15.0 Hz, 1H), 4.84 (d, *J* = 15.0 Hz, 1H), 5.82 (s, 1H), 7.01-7.08 (m, 4H), 7.18-7.33 (m, 6H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 27.7, 29.4, 29.7, 33.4, 34.0, 39.1, 45.2, 49.0, 50.6, 124.8, 125.3, 127.0, 127.1, 127.4, 128.3, 128.5, 137.4, 138.9, 141.8, 171.0; HRMS (ES) calc. for (M⁺+1) C₂₄H₂₈NO: 346.2165; found: 346.2167.

(8R*,8aR*)-2-Benzyl-8-(1-methyl-1H-indol-3-yl)-6-phenyl-3,4,4a,7,8,8a-

hexahydroisoquinolin-1(2H)-one (10f)

Following the general procedure described above, **10f** was obtained in 33% yield (yellow oil) as a separable mixture of isomers (*exo:endo* 50:50). <u>*exo isomer:*</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.86-1.91 (m, 2H), 2.58 (br s, 1H), 2.73 (d, *J* = 18.0 Hz, 1H), 2.96-3.12 (m, 3H), 3.21-3.31 (m, 1H), 3.70 (s, 3H), 4.30 (d, *J* = 15.0 Hz, 1H), 4.59-4.62 (m, 1H), 5.04 (d, *J* = 15.0 Hz, 1H), 5.97 (s, 1H), 6.83 (s, 1H), 7.13-7.18 (m, 5H), 7.23-7.45 (m, 6H), 7.49-7.53 (m, 2H), 7.83 (dt, *J*₁ = 7.8 Hz, *J*₂ = 1.1 Hz, 1H); ¹³C-S12

NMR (CDCl₃, 75.5 MHz): δ 27.5, 29.3, 30.0, 30.5, 32.6, 44.0, 44.8, 50.6, 109.1, 117.2, 118.7, 119.2, 121.5, 125.2, 125.2, 126.4, 127.0, 127.0, 127.3, 127.4, 128.4, 128.5, 136.8, 137.2, 139.2, 141.5, 171.0; HRMS (ES) calc. for (M⁺+1) C₃₁H₃₁N₂O: 447.2431; found: 447.2437. <u>endo isomer:</u> ¹H-NMR (CDCl₃, 300 MHz): δ 1.68-1.81 (m, 1H), 2.12-2.23 (m, 1H), 2.61-2.73 (m 1H), 2.84-2.92 (m, 3H), 3.22-3.31 (m, 1H), 3.39-3.48 (m, 1H), 3.66-3.75 (m, 1H), 3.77 (s, 3H), 4.31 (d, *J* = 14.7 Hz, 1H), 4.71 (d, *J* = 14.7 Hz, 1H), 6.06 (d, *J* = 2.1 Hz, 1H), 6.99 (s, 1H), 7.04-7.10 (m, 1H), 7.17-7.34 (m, 10H), 7.37-7.41 (m, 2H), 7.71 (d, *J* = 8.1 Hz, 1H); ¹³C-NMR (CDCl₃, 75.5 MHz): δ 29.4, 32.7, 32.8, 37.0, 37.2, 44.2, 46.7, 49.5, 109.5, 118.3, 119.5, 120.1, 121.0, 125.2, 125.6, 126.1, 126.6, 127.1, 127.2, 128.0, 128.3, 128.5, 137.2, 137.8, 140.8, 172.3; HRMS (ES) calc. for (M⁺+1) C₃₁H₃₁N₂O: 447.2431; found: 447.2439.

References

- 1. D'Annibale, A.; Ciaralli, L. J. Org. Chem. 2007, 72, 6067.
- 2. Qian, M.; Covey, D. F. Adv. Synth. Cat. 2010, 352, 2057.

3. Takeaki, N.; Yuko, H.; Okiko, M.; Ichiya, N. *J. Chem. Soc., Perkin Trans. 1,* **1995**, 19.

4. Petersen, M. T.; Nielsen, T. E. Org. Lett. 2013, 15, 1986.