Supporting Information

for

Tandem cross enyne metathesis (CEYM)intramolecular Diels-Alder reaction (IMDAR). An easy entry to linear bicyclic scaffolds

Javier Miró ${ }^{1}$, María Sánchez-Roselló ${ }^{1,2}$, Álvaro Sanz ${ }^{1}$, Fernando Rabasa ${ }^{1}$, Carlos del Pozo ${ }^{*, 1}$ and Santos Fustero ${ }^{* 1,1,2}$

Address: ${ }^{1}$ Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain and ${ }^{2}$ Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain

Email: Santos Fustero - santos.fustero@uv.es, Carlos del Pozo - carlos.pozo@uv.es *Corresponding author

Experimental and analytical data

General experimental methods. Reactions were carried out under argon atmosphere unless otherwise indicated. The solvents were purified prior to use: THF, diethyl ether and toluene were distilled from sodium/benzophenone, dichloromethane and acetonitrile were distilled from calcium hydride. The reactions were monitored with the aid of thin-layer chromatography (TLC) on 0.25 mm precoated silica gel plates. Visualization was carried out with UV light and aqueous ceric ammonium molybdate solution or potassium permanganate stain. Flash column chromatography
was performed with the indicated solvents on silica gel 60 (particle size 0.040-0.063 $\mathrm{mm}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 and a 500 MHz spectrometer, respectively. Chemical shifts are given in $\mathrm{ppm}(\delta)$, with reference to the residual proton resonances of the solvents. Coupling constants (\mathcal{J}) are given in Hertz (Hz). The letters $\mathrm{m}, \mathrm{s}, \mathrm{d}, \mathrm{t}$, and q stand for multiplet, singlet, doublet, triplet and quartet, respectively. The letters br indicate that the signal is broad. Starting dienes $\mathbf{2 a}$ [1], $\mathbf{2 b}$ [2], 2c [3], 2d [2] and $\mathbf{2 e}$ [4] were previously described.

Preparation of starting substrates 8, method A. Homoallylbenzylamine 7 (1.0 mmol) was added to a mixture of the corresponding carboxylic acid 5 (1.0 mmol), $\mathrm{EDCI}(1.5 \mathrm{mmol}), \mathrm{HOBt}(2.0 \mathrm{mmol})$ and triethylamine $(2.0 \mathrm{mmol})$ in DCM (0.10 M). The mixture was stirred overnight at rt . The reaction mixture was then hydrolysed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with DCM $(3 \times 15 \mathrm{~mL})$. Collected organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and, after removal of the solvents the crude reaction mixture was purified by flash chromatography.

Method B. Homoallyl benzyl amine 7 (2.3 mmol) was dissolved in DCM (3.6 mL) and pyridine (3.0 mmol) and cooled to $0^{\circ} \mathrm{C}$. A solution of the corresponding acyl chloride 6 (3.0 mmol) in DCM (1.0 mL) was then syringed dropwise into the reaction. The resulting reaction mixture was stirred at room temperature for 3 hours. The reaction was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$, quenched with sat $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, extracted with DCM ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The crude product was purified through flash chromatography to afford the title compound.

(E)-N-Benzyl-N-(3-butenyl)-2-butenamide (8a)

Amide 8a was obtained in 49\% yield (colourless oil) from (E)-2-butenoic acid 5a as a mixture of rotamers following method $\mathrm{A} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.84(\mathrm{~d}, \mathrm{~J}=$
$6.6 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 1.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 2.28-2.39(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.71(\mathrm{~m}, 2 \mathrm{H}), 5.01-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.87(\mathrm{~m}, 1 \mathrm{H}), 6.17$ (d, $J=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), 6.31 (d, $J=14.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), 6.93-7.09 (m, 1H), 7.19-7.37 (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 18.1,18.2,32.1,33.4,46.0,46.5,49.0,51.2$, $116.5,117.3,121.5,121.7,126.3,127.2,127.4,127.9,128.4,128.7,134.2,135.4$, 137.1, 137.7, 142.1, 142.3, 166.5, 167.0; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}$: 230.1539; found: 230.1545 .

($($) - N -Benzyl- N -(3-butenyl)cinnamamide (8b)

Amide $\mathbf{8 b}$ was obtained in 76% yield (colourless oil) from (E)-cinnamic acid $\mathbf{5 b}$ as a mixture of rotamers following method $\mathrm{A} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.26-2.38(\mathrm{~m}$, $2 \mathrm{H}), 3.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-$ $5.08(\mathrm{~m}, 2 \mathrm{H}), 5.66-5.84(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.88(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1/2H), 7.18-7.38 (m, 9H), 7.48-7.50(m, 1H), 7.76 (t, J=14.9 Hz, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 31.9,33.4,46.2,46.5,49.1,51.2,116.5,117.0,117.3,117.4$, $126.1,127.1,127.4,127.5,127.8,128.3,128.4,128.6,128.6,129.3,129.4,134.0$, 134.9, 135.0, 135.1, 136.9, 137.4, 142.8, 142.9, 166.2, 166.6; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}:$ 292.1696; found: 292.1703 .

(E)-N-Benzyl-N-(3-butenyl)-3-(2-naphthyl)acrylamide (8c)

Amide 8c was obtained in 76\% yield (colourless oil) from (E)-3-(2-naphthyl)acrylic acid $5 \mathbf{c}$ as a mixture of rotamers following method $\mathrm{A} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ 2.40-2.43 (m, 2H), $3.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.78(\mathrm{~m}, 2 \mathrm{H})$, 5.04-5.17 (m, 2H), 5.75-5.91 (m, 1H), $6.93(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=15.3$ $\mathrm{Hz}, 1 / 2 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.47-8.00(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 32.2$, 33.7, 46.4, 46.8, 49.4, 51.6, 116.8, 117.3, 117.6, 123.5, 123.6, 126.4, 126.5, 126.6, 126.8, 126.9, 127.3, 127.7, 128.1, 128.4, 128.4, 128.5, 128.6, 128.9, 129.3, 129.4,
132.6, 132.7, 133.3, 133.4, 133.9, 134.3, 135.4, 137.2, 137.7, 143.2, 143.3, 166.6, 167.0; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}: 342.1852$; found: 342.1851 .

(E)-N-Benzyl-N-(3-butenyl)-3-(2-furyl)acrylamide (8d)

Amide 8d was obtained in 57\% yield (brown oil) from (E)-3-(2-furyl)acrylic acid 5d as a mixture of rotamers following method $\mathrm{A} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.40(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.76(\mathrm{~m}, 2 \mathrm{H})$, 5.05-5.16 (m, 2H), 5.74-5.91 (m, 1H), $6.47\left(d d d, J_{1}=14.7 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, J_{3}=1.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58\left(\mathrm{dd}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.79(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.87(\mathrm{~d}$, $J=15.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.25-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.60\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 32.0,33.5,46.1,46.5,49.2,51.2,112.0,112.0,113.8$, $113.9,114.6,114.8,116.5,117.4,126.3,127.1,127.4,127.8,128.4,128.7,129.7$, $129.8,134.1,135.2,136.9,137.5,143.7,143.8,151.4,151.5,166.2,166.6$; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}$: 282.1489 ; found: 282.1483 .

(E)-N-Benzyl-N-(3-butenyl)-3-methyl-2-butenamide (8e)

Amide $\mathbf{8 e}$ was obtained in 67% yield (yellowish liquid) from (E)-2-butenoyl chloride 6a as a mixture of rotamers following method $\mathrm{B} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.77$ (s, 3/2H), $1.85(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}$, $1 \mathrm{H})$, 4.97-5.07 (m, 2H), 5.62-5.78 (m, 1H), 5.83 (s, 1/2H), $5.90(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.15-7.36$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 20.1,20.1,26.1,26.3,31.9,32.7,44.4,46.6$, 47.6, 51.6, 116.4, 117.0, 117.7, 117.9, 126.4, 127.0, 127.3, 127.8, 128.3, 128.6, 134.3, 135.4, 137.0, 137.7, 147.0, 147.0, 168.2, 168.5; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right)$ $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}: 244.1696$; found: 244.1709.

(E)-N-Benzyl-N-(but-3-en-1-yl)-3-(1 H-indol-3-yl)acrylamide (8f)

Amide 8 f was obtained in 67% yield (yellow solid) from (E)-3-(1H-3-indolyl)acrylic acid 5 e as a mixture of rotamers following method A. m.p. 173-175 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 5.03-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.91(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=$ $15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), $6.98(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.18-7.52(\mathrm{~m}, 10 \mathrm{H}), 7.96-8.07(\mathrm{~m}, 1 \mathrm{H})$, $8.76(\mathrm{br} \mathrm{s}, 1 / 2 \mathrm{H}), 8.84(\mathrm{br} \mathrm{s}, 1 / 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 32.5,33.7,46.8$, 47.1, 49.5, 51.8, 111.8, 111.9, 112.5, 113.1, 114.1, 116.7, 117.5, 120.2, 121.1, 121.2, 123.0, 123.1, 125.2, 126.5, 127.2, 127.5, 128.0, 128.4, 128.6, 128.7, 128.9, 134.5, 135.5, 136.7, 137.1, 137.2, 137.7, 138.0, 167.8, 168.2; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 331.1805$; found: 331.1807.

(E)-N-Benzyl-N-(3-butenyl)-3-(1-methyl-1 H-3-indolyl)acrylamide (8g)

Indole $8 \mathbf{f}(0.9 \mathrm{mmol})$ was dissolved in freshly distilled THF (0.05 M) and at $0{ }^{\circ} \mathrm{C}$ NaH (60\% dispersion in mineral oil, 1.4 mmol) was added. After 15 min , Mel (1.2 mmol) was added slowly, and the mixture was stirred at rt for 1 hour. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$, sat aq $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{M} \mathrm{KHSO}_{4}(3$ x 50 mL), sat aq $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated to dryness, and the crude product was purified by column chromatography (n-hexanes:ethyl acetate). Amide $\mathbf{8 g}$ was obtained in 89% yield (yellow solid) as a mixture of rotamers. m.p. $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 / 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 / 2 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 5.03-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.91$ (m, 1H), $6.76(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.92(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.09-7.41(\mathrm{~m}, 9 \mathrm{H})$, $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.99(\mathrm{t}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$

NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 32.0,32.5,33.2,46.3,46.5,48.9,51.3,109.3,109.5$, $111.4,111.9,112.2,116.1,116.9,119.8,120.4,120.4,122.1,122.2,125.5,126.0$, 126.7, 127.0, 127.6, 128.0, 128.3, 132.0, 132.3, 134.2, 135.2, 135.8, 136.2, 137.3, 137.4, 137.5, 137.7, 167.2, 167.6; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 345.1961$; found: 345.1965.

General procedure for the tandem protocol. A solution of Hoveyda-Grubbs 2nd generation ($5 \mathrm{~mol} \%$), diene 2 or 8 (3.0 equiv) and alkyne 1 (0.5 mmol) in dry toluene 0.05 M was heated at $90{ }^{\circ} \mathrm{C}$ in a sealed tube. The reaction mixture was stirred at this temperature for 48 h . The solvents were then removed under reduced pressure and the crude mixture was purified by flash chromatography in n-hexanes:ethyl acetate.

(4a ${ }^{\star}, 8 a S^{\star}$)-6-Phenyl-3,4,4a,7,8,8a-hexahydro-1H-isochromen-1-one (3a).

Following the general procedure described above, 3a was obtained in 57% yield as a brown oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.68-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 2 \mathrm{H}), 4.22\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}\right.$, $2 \mathrm{H})$, 5.81-5.83 (m, 1H), 7.13-7.29 (m, 5H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{CDCl} 3,75.5 \mathrm{MHz}): \delta 24.1$, 24.7, 28.5, 32.5, 38.9, 67.3, 124.8, 125.1, 127.3, 128.3, 139.4, 141.2, 173.4; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}$: 229.1223; found: 229.1233.

(4a $R^{\star}, 8 \mathrm{a} S^{\star}$)-6-Phenyl-3,4,4a,7,8,8a-hexahydronaphthalen-1(2H)-one (3b)

Following the general procedure described above, 3b was obtained in 38% yield as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.63-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 3 \mathrm{H})$, 1.93-2.01 (m, 1H), 2.24-2.44 (m, 4H), 2.56-2.68 (m, 2H), 2.90-2.94 (m, 1H), 5.92-5.94 (m, 1H), 7.28-7.39 (m, 5H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 22.8,23.4,25.1,29.9$, 38.0, 40.8, 47.5, 125.1, 127.0, 127.1, 128.2, 138.0, 141.6, 212.9; HRMS (ES) calc. for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: 226.1358$; found: 226.1309 .

(4a $\left.R^{\star}, 8 a S^{*}\right)$-2-Benzyl-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one

 (3c).Following the general procedure described above, 3c was obtained in 62% yield as a brown oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $\delta 1.77-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.35-$ $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.26(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.95(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.40(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 24.5,25.5,27.5,33.9,40.0,45.4,50.4,125.1,125.5$, 127.1, 127.1, 127.5, 128.3, 128.5, 137.2, 139.5, 141.6, 171.8; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}: 318.1852$; found: 318.1866
(4a $\left.R^{\star}, 8 a S^{*}\right)$-2-Benzyl-6-(4-fluorophenyl)-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (3d)

Following the general procedure described above, 3 e was obtained in 45% yield as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.76-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 2 \mathrm{H})$, 2.33-2.52 (m, 3H), 2.72-2.82 (m, 2H), 3.10-3.24 (m, 2H), $4.31(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.92(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.87(\mathrm{~m}, 1 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.21(\mathrm{~m}, 5 \mathrm{H})$, 7.29-7.34 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 24.5,25.7,27.5,33.9,39.9,45.4$, $50.4,115.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right), 125.4,126.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=7.8 \mathrm{~Hz}\right), 127.1,127.5,128.5$, 137.2, $137.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.9 \mathrm{~Hz}\right), 138.6,162.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=246.0 \mathrm{~Hz}\right), 171.7 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right): \delta-116.1$; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NOF}: 336.1758$; found: 336.1749.
(4a $R^{\star}, 8 \mathrm{aS}{ }^{\star}$)-2-Benzyl-6-(4-methoxyphenyl)-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (3e).

Following the general procedure described above, $3 \mathbf{d}$ was obtained in 35% yield as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.76-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 2 \mathrm{H})$, 2.30-2.49 (m, 3H), 2.71-2.82 (m, 2H), 3.09-3.25 (m, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=$
$14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.85(\mathrm{~m}, 1 \mathrm{H}), 6.86\left(\mathrm{~d}, \mathrm{~J}_{0}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.12-7.21 (m, 5H), 7.30-7.33 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 24.6,25.6$, $27.6,33.9,40.1,45.4,50.4,55.3,113.6,123.9,126.2,127.1,127.5,128.5,129.9$, 134.2, 137.2, 149.7, 166.4; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2}: 348.1958$; found: 348.1943.
(3a $R^{*}, 7 a S^{*}$)-2-Benzyl-5-phenyl-2,3,3a,6,7,7a-hexahydro-1 H-isoindol-1-one (3f)
Following the general procedure described above, 3 f was obtained in 50% yield as a brown oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): ~ \delta 1.87-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (ddd, $\mathrm{J}_{1}=13.2 \mathrm{~Hz}$, $\left.J_{2}=10.5 \mathrm{~Hz}, J_{3}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.35-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.81\left(\mathrm{dt}, J_{1}=7.5\right.$ $\left.\mathrm{Hz}, J_{2}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.97\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.02-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.51$ (dd, $\left.J_{1}=9.3 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.38(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.83-5.85 (m, 1H), 7.14-7.34 (m, 10H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 21.4,24.4$, 32.7, 40.1, 46.3, 51.4, 124.1, 125.2, 127.2, 127.4, 127.7, 128.3, 128.6, 136.4, 139.9, 141.8, 175.4; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}$: 304.1696; found: 304.1702.
(5a ${ }^{*}, 9 \mathrm{aS}{ }^{\star}$)-2-Benzyl-7-phenyl-2,3,4,5,5a,8,9,9a-octahydro-1 H-benzo[c]azepin-1one (3 g)

Following the general procedure described above, 3 g was obtained in 44% yield as a yellowish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.31$ (q, $\left.J=10.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.68-1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.95-2.56(\mathrm{~m}, 7 \mathrm{H}), 3.17\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.45\left(\mathrm{dd}, J_{1}=15.3\right.$ $\left.\mathrm{Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.44(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}$, $1 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 25.4,26.4,28.0,37.4,38.2$, 44.2, 48.0, 51.3, 125.1, 126.9, 127.3, 128.3, 128.3, 128.5, 128.6, 136.7, 138.1, 141.8, 176.5; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}$: 332.2009; found: 332.2012.
($8 R^{*}, 8 \mathrm{aS}{ }^{\star}$)-2-Benzyl-8-methyl-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (10a)

Following the general procedure described above, 10a was obtained in 85% yield (endo:exo 93:7) as a yellow oil. endo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.12(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-$ $2.70(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.95-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.22\left(\mathrm{td}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.27(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.17(\mathrm{~m}$, $5 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 18.8,27.5,28.0,29.9,31.2$, 44.6, 45.1, 50.6, 124.3, 125.2, 127.0, 127.1, 127.3, 128.3, 128.5, 137.2, 138.4, 141.9, 171.2; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}$: 332.2009; found: 332.1995.

N-Benzyl- N-[(Z)-5-phenylhexa-3,5-dien-1-yl]cinnamamide (9b-cis)

Intermediate $\mathbf{9 b}$-cis was detected as a mixture of rotamers in 15% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.42-2.50(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.66$ (ddd, $\left.J_{1}=J_{\text {cis }}=11.4 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, J_{3}=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}\right), 5.77\left(\mathrm{ddd}, J_{1}=J_{\text {cis }}=11.4 \mathrm{~Hz}, J_{2}=\right.$ $\left.7.5 \mathrm{~Hz}, J_{3}=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}\right), 6.26\left(\mathrm{~d}, J_{\text {cis }}=10.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}\right), 6.30\left(\mathrm{~d}, J_{\text {cis }}=10.7 \mathrm{~Hz}\right.$, $1 / 2 \mathrm{H}), 6.75(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.84(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.15-7.46(\mathrm{~m}, 15 \mathrm{H})$, $7.75(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.77(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right)$: $\delta 27.0,28.3,46.1,46.9,49.1,51.0,115.0,115.1,117.1,117.5,126.3,126.4,126.5$, 126.9, 127.3, 127.6, 127.8, 127.8, 128.0, 128.3, 128.4, 128.5, 128.5, 128.7, 128.7, $128.8,129.6,130.3,131.0,132.1,135.2,135.2,137.0,137.5,140.0,140.9,143.1$, 143.2, 144.0, 144.1, 166.5, 166.9; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}: 394.2165$; found: 394.2150.
($8 R^{*}, 8 \mathrm{a} R^{\star}$)-2-Benzyl-6,8-diphenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (10b)

Following the general procedure described above, 10b was obtained in 78% overall yield (yellow oil) as a separable mixture of isomers (exo:endo 47:53). exo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.67-1.80(\mathrm{~m}, 1 \mathrm{H})$, 2.10-2.20(m, 1H), 2.53-2.84(m, $4 \mathrm{H}), 3.21-3.44(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}$, $1 \mathrm{H}), 7.18-7.40(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 29.4,37.2,38.9,41.7,44.5$, 46.9, 49.5, 125.1, 125.7, 126.0, 126.8, 127.2, 127.3, 128.1, 128.3, 128.4, 128.5, 136.9, 137.6, 140.6, 147.5, 171.6; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}: 394.2165$; found: 394.2145. endo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.89-1.95(\mathrm{~m}, 2 \mathrm{H})$, $2.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.32$ (m, 1H), 4.26-4.31 (m, 2H), $5.02(\mathrm{~d}, ~ J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.52(\mathrm{~m}$, $15 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 27.4,27.7,29.2,38.3,44.7,46.5,50.6,125.3$, $125.8,126.1,127.0,127.2,127.4,127.4,128.3,128.4,128.5,137.0,139.5,141.2$, 144.5, 170.6; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}$: 394.2165; found: 394.2186.
$\left(8 R^{\star}, 8 a R^{*}\right)$-2-Benzyl-8-(naphthalen-2-yl)-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (10c)

Following the general procedure described above, 10c was obtained in 47% overall yield (yellow oil) as a separable mixture of isomers (exo:endo 34:66). exo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.87-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.85-2.91(\mathrm{~m}, 2 \mathrm{H})$, 3.01-3.14 (m, 2H), 3.28 (td, $\left.J_{1}=12.0 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.30(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.46-4.48 (m, 1H), $5.05(\mathrm{~d}, ~ J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.36-$ $7.49(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ $27.4,27.8,29.3,38.5,44.7,46.3,50.6,125.3,125.4,125.8,126.3,127.0,127.2$, 127.4, 127.5, 127.7, 127.9, 128.5, 128.5, 132.0, 133.3, 137.0, 139.4, 141.2, 141.8,
170.5; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NO}: 444.2322$; found: 444.2338. endo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.69-1.86(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.63$2.77(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.29\left(\mathrm{dt}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39-3.53$ $(\mathrm{m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.54$ (m, 13H), 7.76-7.87 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 29.5,37.2,38.9,41.9$, 44.6, 47.0, 49.5, 124.8, 125.1, 125.6, 125.7, 126.1, 127.2, 127.3, 127.6, 127.7, 127.9, 128.1, 128.3, 128.5, 132.1, 133.8, 137.0, 137.6, 140.5, 145.1, 171.6; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NO}: 444.2322$; found: 444.2337.
(8R*,8aR*)-2-Benzyl-8-(furan-2-yl)-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (10d)

Following the general procedure described above, 10d was obtained in 68% yield (yellow oil) as an inseparable mixture of isomers (exo:endo 28:72). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 1.60-1.71(\mathrm{~m}, 1 / 2 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.07(\mathrm{~m}, 3 / 2 \mathrm{H}), 2.49-2.70$ $(\mathrm{m}, 4 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.20(\mathrm{~m}, 3 / 2 \mathrm{H}), 3.22-3.38(\mathrm{~m}$, $1 \mathrm{H}), 4.18-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.57(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.89$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.87-5.88(\mathrm{~m}, 1 / 2 \mathrm{H}), 5.95-5.97(\mathrm{~m}, 1 \mathrm{H}), 6.04-$ $6.06(\mathrm{~m}, 1 / 2 \mathrm{H}), 6.19\left(\mathrm{dd}, J_{1}=3.0 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.30\left(\mathrm{dd}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=1.8\right.$ $\mathrm{Hz}, 1 / 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 16.5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 27.2,27.4,29.4$, $30.2,33.6,35.2,35.7,37.0,43.0,44.6,44.9,46.1,49.6,50.6,103.6,105.2,110.0$, $110.4,125.0,125.1,125.2,126.0,127.0,127.2,127.2,127.3,127.3,128.1,128.3$, $128.4,128.5,128.5,136.6,137.0,137.5,138.4,140.1,140.5,140.9,141.5,157.5$, 159.1, 170.1, 170.9; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{2}$: 384.1958; found: 384.1958.

(8a R^{*})-2-Benzyl-8,8-dimethyl-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-

 1(2H)-one (10e)Following the general procedure described above, $\mathbf{1 0 e}$ was obtained in 25% yield (brown oil) as a separable mixture of isomers (exo:endo 23:77). exo isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.13(\mathrm{~m}$, $3 H), 2.36-2.51(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ 21.3, 29.7, 31.1, 32.5, 34.6, 45.3, 45.9, 49.8, 51.7, 125.1, 125.6, 127.1, 127.2, 127.8, 128.3, 128.5, 136.2, 137.7, 141.3, 171.6; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}$: 346.2165; found: 346.2163. endo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.07$ (s, $3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 1 H), $2.50\left(\mathrm{dt}, J_{1}=17.4 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.01\left(\mathrm{dt}, J_{1}=12.0 \mathrm{~Hz}, J_{2}\right.$ $=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.21(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ $27.7,29.4,29.7,33.4,34.0,39.1,45.2,49.0,50.6,124.8,125.3,127.0,127.1,127.4$, 128.3, 128.5, 137.4, 138.9, 141.8, 171.0; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}$: 346.2165; found: 346.2167.
($8 R^{*}, 8 \mathrm{a} R^{*}$)-2-Benzyl-8-(1-methyl-1H-indol-3-yl)-6-phenyl-3,4,4a,7,8,8a-hexahydroisoquinolin-1(2H)-one (10f)

Following the general procedure described above, 10 fas obtained in 33% yield (yellow oil) as a separable mixture of isomers (exo:endo 50:50). exo isomer: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.86-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96-3.12(\mathrm{~m}, 3 \mathrm{H}), 3.21-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.59-4.62 (m, 1H), $5.04(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}$, $5 \mathrm{H}), 7.23-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.83\left(\mathrm{dt}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-$

NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 27.5,29.3,30.0,30.5,32.6,44.0,44.8,50.6,109.1$, 117.2, 118.7, 119.2, 121.5, 125.2, 125.2, 126.4, 127.0, 127.0, 127.3, 127.4, 128.4, $128.5,136.8,137.2,139.2,141.5,171.0$; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}$: 447.2431; found: 447.2437. endo isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.68-1.81$ $(m, 1 H), 2.12-2.23(m, 1 H), 2.61-2.73(m 1 H), 2.84-2.92(m, 3 H), 3.22-3.31(m, 1 H)$, 3.39-3.48 (m, 1H), 3.66-3.75 (m, 1H), 3.77 (s, 3H), $4.31(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.34$ (m, 10H), 7.37-7.41 (m, 2H), $7.71(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta$ 29.4, 32.7, 32.8, 37.0, 37.2, 44.2, 46.7, 49.5, 109.5, 118.3, 119.5, 120.1, 121.0, 125.2, 125.6, 126.1, 126.6, 127.1, 127.2, 128.0, 128.3, 128.5, 137.2, 137.8, 140.8, 172.3; HRMS (ES) calc. for $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}$: 447.2431 ; found: 447.2439 .

References

1. D'Annibale, A.; Ciaralli, L. J. Org. Chem. 2007, 72, 6067.
2. Qian, M.; Covey, D. F. Adv. Synth. Cat. 2010, 352, 2057.
3. Takeaki, N.; Yuko, H.; Okiko, M.; Ichiya, N. J. Chem. Soc., Perkin Trans. 1, 1995, 19.
4. Petersen, M. T.; Nielsen, T. E. Org. Lett. 2013, 15, 1986.
