Supporting Information

for

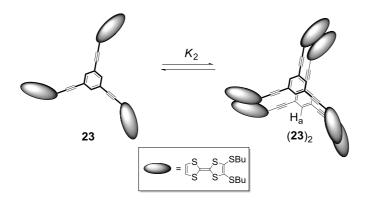
Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly

Masahiko Iyoda^{1*} and Masashi Hasegawa²

Address: ¹Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan and ²Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

Email: MasahikoIyoda - iyoda@tmu.ac.jp

Determination of association constants (K_2) of 23 by NMR and cyclic voltammetry analysis of 23


Contents

S1.	Determination of association constant by NMR technique	S2
S2.	Chemical shifts of H_a and association constants (K_2) of 23	
	in CDCl ₃ (Table S1)	S3
S3.	Chemical shifts of H_a and association constants (K_2) of 23	
	in CDCl ₃ –CD ₃ CN 3:7 (Table S2)	S4
S4.	Cyclic voltammetry analysis of 23 in dilute and concentrated	
	CH ₂ Cl ₂ solutions	S5

^{*}Corresponding author

S1. Determination of association constant by NMR technique

The association constant of **23** was determined by ^{1}H NMR titration experiments. As mentioned in the text, the protons at the central benzene ring clearly shifted to higher field with increasing concentration. Thus, the central H_a (Scheme S1) varied from δ 7.478 to 7.457 as the concentration changed from 0.48 to 48.3 mM in CDCl₃ at 293 K. On the contrary, the chemical shift of H_a in 14.3 mM of **23** varied from δ 7.464 to 7.484 downfield as the temperature changed from 40 to -20 °C.

Scheme S1: Self-association of 23

The association constants (K_2) of **23** were determined by assuming that monomer–dimer equilibrium is the predominant process. The chemical shifts of **23** were plotted against the concentrations and the data were treated by least-square curve-fitting to eq. 2, to determine K_2 , δ_m , and δ_d , where δ_m and δ_d are chemical shifts of the monomer and dimer, and C is the total stoichiometric concentration.

$$K_2 = \frac{[(23)_2]}{[23]^2}$$
 eq. 1

$$\delta = \delta_m + \left(\delta_l - \delta_m\right) \left(1 + \frac{1 - \sqrt{8K_2C + 1}}{4K_2C}\right) \quad \text{eq. 2}$$

The chemical shifts of the H_a proton, which show reasonable concentration and temperature dependence, were applied to the equations. The dilution curve and plotted points are shown in Figures S1 and S2, and the calculated parameters, K_2 , δ_m , and δ_d , are summarized in Tables 1 and 2.

S2. Chemical shifts of H_a and association constants (K₂) of 23 in CDCl₃.

Table S1: Chemical shifts of H_a and calculated δ_d , δ_m , and K_2 in CDCl₃.

Conc	−10 °C	0 °C	10 °C	20 °C	30 °C	40 °C
48.3	7.4616	7.4604	7.4586	7.4567	7.4543	7.4518
32.2	7.4695	7.4677	7.4653	7.4634	7.4598	7.4567
21.5	7.4769	7.4744	7.4708	7.4677	7.4647	7.4610
14.3	7.4811	7.4781	7.4750	7.4714	7.4677	7.4640
9.5	7.4848	7.4811	7.4775	7.4738	7.4701	7.4659
4.8	7.4884	7.4848	7.4799	7.4762	7.4720	7.4683
0.95	7.4921	7.4878	7.4830	7.4787	7.4738	7.4695
0.48	7.4921	-	7.4830	7.4781	7.4744	7.4695
9	7.304	7.2948	7.291	7.291	7.283	7.278
δ_{d}	± 0.026	± 0.033	± 0.035	± 0.028	± 0.051	± 0.061
2	7.493	7.488	7.4835	7.479	7.475	7.470
δ_{m}	± 0.000					
V	2.46	2.05	1.78	1.58	1.38	1.22
K_2	± 0.47	± 0.47	± 0.43	± 0.30	± 0.45	± 0.47

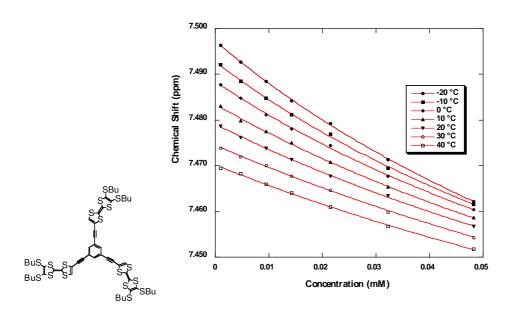


Figure S1: Curve fitting for H_a proton of 23 in CDCl₃ solution.

S3. Chemical shifts of H_a and association constants (K_2) of 23 in CDCl₃-CD₃CN (3:7)

Table S2: Chemical shifts of H_a and calculated δ_d , δ_m , and K_2 in CDCl₃–CD₃CN (3:7).

Conc. (mM)	−30 °C	−20 °C	−10 °C	0°C	10 °C	20 °C	30 °C
10.00	_	7.4161	7.4381	7.4522	7.4626	7.4699	7.4729
8.44	7.4039	7.4320	7.4534	7.4656	7.4717	7.4766	_
6.49	7.4284	7.4510	7.4668	7.4760	7.4821	7.4845	7.4858
5.00	7.4461	7.4656	7.4778	7.4851	7.4888	7.4906	7.4909
4.33	7.4601	7.4760	7.4858	7.4913	7.4937	7.4943	7.4931
2.79	7.4802	7.4937	7.4979	7.5004	7.5004	7.5004	7.4992
2.50	7.4858	7.4968	7.5016	7.5029	7.5047	7.5022	7.4992
1.85	7.5029	7.5084	7.5102	7.5102	7.5084	7.5053	7.5022
1.39	7.5114	7.5145	7.5151	7.5132	7.5108	7.5077	7.5041
0.923	7.5218	7.5212	7.5193	7.5169	7.5139	7.5102	7.5065
0.723	7.5267	7.5248	7.5224	7.5187	7.5151	7.5114	_
0.462	7.5315	7.5285	7.5254	7.5211	7.5169	7.5130	7.5077
c	6.9021	6.9137	6.9238	6.9599	6.9743	6.9815	6.9846
δ_{d}	± 0.075	± 0.062	± 0.107	± 0.179	± 0.154	± 0.089	± 0.208
c	7.5445	7.5370	7.5310	7.5253	7.5203	7.5151	7.5100
δ_{m}	± 0.002	± 0.001	± 0.001	± 0.001	± 0.001	± 0.000	± 0.000
	21.1	14.5	10.4	7.98	6.40	5.01	4.04
K_2	± 3.85	± 2.10	± 2.46	± 3.24	± 2.21	± 0.98	± 1.84

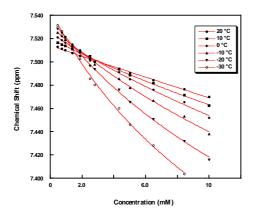
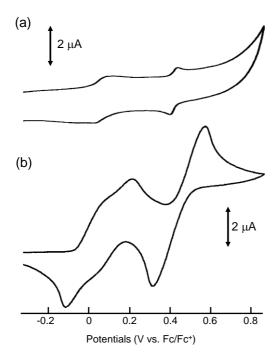



Figure S2: Curve fitting for H_a proton of 23 in CD₃CN–CDCl₃ solution.

S3. Cyclic voltammetry analysis of 23 in dilute and concentrated CH₂Cl₂ solutions.

The redox potentials of **23** were measured by cyclic voltammetry using 0.1 M n-Bu₄NClO₄, Pt as working electrode, Ag/Ag⁺ as reference electrode, and Pt wire as counter electrode at 100 mV/sec. Potentials were referred to Fc/Fc⁺. As shown in Figure S2, CV analysis of **23** in a dilute CH₂Cl₂ solution (1.9 × 10⁻⁵ M) showed two three-electron redox waves at 0.05 and 0.40 V vs Fc/Fc⁺ corresponding to the formation of **23**³⁺ and **23**⁶⁺, whereas a similar CV analysis of **23** in a concentrated CH₂Cl₂ solution (1.2 × 10⁻³ M) displayed three reversible waves at -0.04, 0.14, and 0.47 V vs Fc/Fc⁺ corresponding to the formation of (**23**)₂³⁺, (**23**)₂⁶⁺, and (**23**)₂¹²⁺

Figure S2: Cyclic voltammograms of **23**. (a) Dilute ($c = 1.9 \times 10^{-5}$ M) solution in CH₂Cl₂. (b) Concentrated ($c = 1.2 \times 10^{-3}$ M) solution in CH₂Cl₂.