Supporting Information

for

An efficient synthesis of N-substituted 3-

nitrothiophen-2-amines

Sundaravel Vivek Kumar¹, Shanmugam Muthusubramanian¹, J. Carlos Menéndez^{2*} and Subbu Perumal^{1*}

Address: ¹Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University,Madurai – 625021, Tamil Nadu, India and ²Departmento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

Email: J. Carlos Menéndez - josecm@farm.ucm.es; Subbu Perumal - subbu.perum@gmail.com

* Corresponding author

Experimental procedures, characterization data, details of the NMR structural determination of **3c** and copies of ¹H NMR, ¹³C NMR and ESI mass spectra of all new compounds **1** and **3**

1. Experimental Section

General experimental information. Melting points were measured in open capillary tubes and are uncorrected. Infrared spectra were obtained on a Shimadzu 8400S FT-IR Spectrophotometer, in a 4000-400 cm⁻¹ spectral window, using neat samples on a KBr disk or KBr pellets. ¹H NMR, ¹³C NMR, DEPT, H,H-COSY, C,H-COSY and HMBC spectra were recorded on a Bruker (Avance) 300 MHz NMR instrument using TMS as internal standard and CDCl₃ as solvent. Standard Bruker software was used throughout. Chemical shifts are given in parts per million (δ scale) and the coupling constants are given in Hertz (Hz). Mass spectra were recorded with a LCQ Fleet mass spectrometer, Thermo Fisher Instruments Limited, US. Electrospray ionization mass spectrometry (ESIMS) analysis was performed in the positive/negative ion mode on a liquid chromatography ion trap. Combustion microanalyses were performed by the CAI de Microanálisis Elemental, Universidad Complutense, using a Leco-932 CHNS microanalyzer. Silica gel-G plates (Merck) were used for TLC analysis with mixtures of petroleum ether (bp 60–80 °C) and ethyl acetate as eluent.

General procedure for the synthesis of α -nitroketene N,S-arylaminoacetals **1a–1r** [1]. A mixture of 1,1-bis(methylthio)-2-nitroethylene (1 mmol) and the suitable aromatic amine in ethanol was magnetically stirred while heated under reflux for 24 h. After completion of the reaction (TLC), the mixture was cooled to room temperature, and the separated solid was filtered and washed with ethanol to afford the pure α -nitroketene *N*,*S*-arylaminoacetals.

General procedure for the synthesis of α -nitroketene N,S-alkylaminoacetals **1s–1z** [2]. A mixture of 1,1-bis(methylthio)-2-nitroethylene (1 mmol) and the

suitable aliphatic amine in ethanol was magnetically stirred while heated under reflux for 24 h. After completion of the reaction (TLC), the solvent was removed under reduced pressure and the resulting crude products were purified by flash chromatography eluting with CHCl₃/MeOH mixtures to afford the pure α -nitroketene N,S-alkylaminoacetals.

Compounds 1d, 1g, 1m, 1q, 1w and 1z are new and their characterization data follow.

(*E*)-4-lodo-*N*-(1-(methylthio)-2-nitrovinyl)aniline (1d): Isolated as a pale green solid. Yield: 85%; mp = 174–175 °C; IR (KBr) ν_{max} : 3145, 3003, 2954, 2926, 2853,1544, 1460, 1344, 1265, 1168 cm ⁻¹; H NMR (300 MHz, CDCl₃) δ_H: 2.40 (s, 3H, SCH₃),6.69 (s, 1H, CH), 7.06 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.75 (d, *J* = 8.7 Hz, 2H, Ar-H), 11.72 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c: 14.7, 93.5, 108.2, 127.6, 135.9, 138.5, 162.8; ESI-MS: m/z. Calcd: 335.94. Found: 334.90 (M-1).

(*E*)-4-Ethyl-*N*-(1-(methylthio)-2-nitrovinyl)aniline (1g): Isolated as a yellow solid. Yield: 88%; mp = 111–112 °C; IR (KBr) ν_{max} : 3157, 2997, 2962, 2929, 1560, 1425, 1346, 1265, 1166 cm ⁻¹; H NMR (300 MHz, CDCl₃) δ_{H} : 2.38 (s, 3H, SCH₃), 6.70 (s, 1H, CH), 7.20 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.25 (d, *J* = 6.9 Hz, 2H, Ar-H), 11.78 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 14.6, 15.2, 28.3, 107.4, 125.8, 128.7, 133.6, 144.5, 163.9; ESI-MS: m/z. Calcd: 238.08. Found: 239.01 (M+1).

(*E*)-3-Bromo-*N*-(1-(methylthio)-2-nitrovinyl)aniline (1m): Isolated as a pale yellow solid. Yield: 83%; mp = 118–119 °C; IR (KBr) ν_{max} : 3152, 3001, 2929, 1547, 1460, 1352, 1247, 1174 cm ⁻¹; H NMR (300 MHz, CDCl₃) δ_{H} : 2.40 (s, 3H, SCH₃), 6.69 (s, 1H, CH), 7.24-7.33 (m, 2H, Ar-H), 7.48-7.51 (m, 2H, Ar-H) 11.74 (br s, 1H, NH); ¹³C NMR (75

MHz, CDCl₃) δ_c: 14.7, 108.3, 122.7, 124.6, 128.9, 130.6, 131.1, 137.4, 162.9; ESI-MS: m/z. Calcd: 287.96. Found: 286.94 (M-1), 288.91(M+1).

(*E*)-2,4-Dimethyl-*N*-(1-(methylthio)-2-nitrovinyl)aniline (1q): Isolated as a yellow solid. Yield: 87%; mp = 132–133 °C; IR (KBr) ν_{max} : 3146, 2995, 2926, 1544,1460, 1325, 1267, 1178 cm ⁻¹; H NMR (300 MHz, CDCl₃) δ_{H} : 2.26 (s, 3H, SCH₃), 2.35 (s, 6H, Ar-(CH₃)₂) 6.70 (s, 1H, CH), 7.05 (d, J = 7.8 Hz, 1H, Ar-H), 7.11-7.13 (m, 2H, Ar-H) 11.53 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 14.4, 17.7, 21.1, 107.1, 127.2, 127.4, 131.8, 132.3, 134.8, 139.0, 165.0; ESI-MS: m/z. Calcd: 238.08. Found: 239.02 (M+1).

(*E*)-*N*-(1-(Methylthio)-2-nitrovinyl)cyclopropanamine (1w): Isolated as a pale yellow solid. Yield: 93%; mp = 85–86 °C; IR (Neat) ν_{max} : 3199, 3169, 3088, 2991, 1564, 1467, 1340, 1230, 1165, 1047 cm ⁻¹; H NMR (300 MHz, CDCl₃) δ_H: 0.81-0.98 (m, 4H, CH₂-CH₂), 2.42 (s, 3H, SCH₃), 2.70-2.73 (m, 1H, CH) 6.55 (s, 1H, CH), 10.34 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c: 8.3, 14.2, 25.7, 106.1, 167.3; ESI-MS: m/z. Calcd: 174.05. Found: 175.01 (M+1).

(*R*,*E*)-1-(Methylthio)-2-nitro-*N*-(1-phenylethyl)ethen-1-amine (1z): Isolated as a yellow solid. Yield: 90%; mp = 41–42 °C; IR (KBr) ν_{max} : 3146, 3022, 2978, 2928, 1557,1464, 1415, 1325, 1215, 1118, 1080 cm ⁻¹; H NMR (300 MHz, CDCl₃) δ_{H} : 1.65 (d, J = 6.6 Hz, 3H, CH₃), 2.36 (s, 3H, SCH₃), 4.89-4.96 (m, 1H, CH), 6.56 (s, 1H, CH), 7.26-7.40 (m, 5H, Ar-H) 10.90 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 14.6, 24.0, 54.7, 106.6, 125.8, 128.0, 129.0, 141.6, 164.0; ESI-MS: m/z. Calcd: 238.08. Found: 237.02 (M-1).

General procedure for the synthesis of 3-nitro-N-arylthiophen-2-amines 3a–r. A mixture of the suitable α -nitroketene N,S-arylaminoacetal (1 mmol), 1,4-dithiane-2,5-diol (0.5 mmol) and K₂CO₃ (25 mol %) in ethanol (6 mL) was heated under reflux for 20–25 min. After completion of the reaction (TLC), the mixture was cooled to room temperature, and the precipitated solid was filtered and washed with ethanol to afford the pure 3-nitro-N-arylthiophen-2-amines **3a–r**.

General procedure for the synthesis of 3-nitro-*N*-alkylthiophen-2-amines 3s–3z. A mixture of the suitable α -nitroketene N,S-alkylaminoacetal (1 mmol), 1,4-dithiane-2,5-diol (0.5 mmol) and K₂CO₃ (25 mol %) in ethanol (6 mL) was heated under reflux for 3–3.4 h. After completion of the reaction (TLC), the mixture was poured into water and extracted with ethyl acetate. After removal of the solvent, the residue was purified by filtration through a pad of silica gel, eluting with a petroleum ether/ethyl acetate mixture (4:1 v/v), which afforded 3-nitro-N-alkylthiophen-2-amines **3s–3z**.

N-(4-Fluorophenyl)-3-nitrothiophen-2-amine (3a). Isolated as a pale yellow solid. Yield: 90%; mp = 129–130 °C; IR (KBr) ν_{max} : 3261,1560,1508, 1490, 1342, 1226, 1192 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.29 (d, *J* = 6.3 Hz, 1H, H-5), 7.12–7.18 (m, 2H, H-3',5'), 7.34–7.39 (m, 3H, H-4, H-2',6'), 10.16 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 107.0 (C-4), 116.8 (d, ²*J*_{C, F} = 22.9 Hz, C-3',5'), 121.9 (C-5), 123.4 (d, ³*J*_{C, F} = 8.3 Hz, C-2',6'), 127.9 (C-1'), 135.2 (C-1), 156.8 (C-3), 160.5 (d, ¹*J*_{C, F} = 245.5 Hz, C4'); ESI-MS: m/z. Calcd: 238.02. Found: 237.08 (M-1). Analysis: Calcd for C₁₀H₇FN₂O₂S: C, 50.41; H, 2.96; N, 11.76. Found: C, 49.91; H, H, 2.98; N, 11.60.

N-(4-Chlorophenyl)-3-nitrothiophen-2-amine (3b). Isolated as a pale yellow solid. Yield: 92%; mp = 161–162 °C. IR (KBr) v_{max} : 3259, 3116, 3099, 1560, 1508, 1491, 1342, 1261, 1203,1091 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.33 (d, *J* = 6.0 Hz, 1H, H-5), 7.31–7.43 (m, 5H, H-4, H-2',3',5',6'), 10.29 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 107.4 (C-4), 121.8 , 121.9 (C-2',6'), 128.4 (C-4'), 130.0 (C-3',5'), 131.1 (C-5), 137.6 (C-1'), 155.2 (C-3); ESI-MS: m/z. Calcd: 253.99. Found: 253.00 (M-1), 255.12 (M+2). Analysis: Calcd for C₁₀H₇ClN₂O₂S: C, 47.16; H, 2.77; N, 11.00. Found: C, 46.87; H, 2.88; N, 10.80.

N-(4-Bromophenyl)-3-nitrothiophen-2-amine (3c). Isolated as a pale yellow solid. Yield: 91%; mp = 173–174 °C. IR (KBr) ν_{max} : 3253, 3116, 3099, 1560,1508, 1483, 1340, 1199, 1085 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.34 (d, *J* = 6.3 Hz, 1H, H-5), 7.26 (d, *J* = 8.7 Hz, 2H, H-3',5'), 7.37 (d, *J* = 6.0 Hz, 1H, H-4), 7.56 (d, *J* = 8.7 Hz, 2H, H-2',6'), 10.30 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 107.4 (C-4), 118.6 (C-2',6'), 121.9 (C-5), 122.0 (C-3',5'), 128.5 (C-4'), 132.9 (C-1'), 138.1 (C-2), 154.9 (C-3); ESI-MS: m/z. Calcd: 297.94. Found: 297.06 (M-1), 299.06 (M+2). Analysis: Calcd for C₁₀H₇BrN₂O₂S: C, 40.15; H, 2.36; N, 9.36. Found: C, 39.93; H, 2.88; N, 10.80.

N-(4-lodophenyl)-3-nitrothiophen-2-amine (3d). Isolated as a yellow solid. Yield: 93%; mp = 185–186 °C. IR (KBr) ν_{max} : 3209, 3120, 3105, 1560, 1350, 1240, 1195 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_H: 6.35 (d, *J* = 6.3 Hz, 1H, H-5), 7.15 (d, *J* = 8.7 Hz, 2H, H-2',6'), 7.37 (d, *J* = 6.0 Hz, 1H, H-4), 7.75 (d, *J* = 8.7 Hz, 2H, H-3',5'), 10.32 (br s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d⁶) δ_c: 90.7 (C-4'), 109.5 (C-4), 121.5 (C-5), 124.7 (C-3',5'), 127.9 (C-1'), 138.6 (C-2',6'), 140.1 (C-2), 156.5 (C-3); ESI-MS: m/z. Calcd: 345.93. Found: 344.91 (M-1). Analysis: Calcd for C₁₀H₇IN₂O₂S: C, 34.70; H, 2.04; N, 8.09. Found: C, 34.73; H, 2.17; N, 8.16. **3-Nitro-***N***-phenylthiophen-2-amine (3e)**. Isolated as a yellow solid. Yield: 94%; mp = 67–68 °C. IR (KBr) ν_{max} : 3190, 3118, 3099, 1571, 1483, 1348, 1230, 1184 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.31 (d, *J* = 6.3 Hz, 1H, H-5), 7.22–7.26 (m, 1H, H-4'), 7.35–7.39 (m, 3H, H-4, H-3',5'), 7.42–4.47 (m, 2H, H-2',6'), 10.38 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 107.1 (C-4), 120.2 (C-2',6'), 121.5 (C-4'), 125.6 (C-5), 128.0 (C-1'), 129.7 (C-3',5'), 138.8 (C-1), 155.5 (C-3); ESI-MS: m/z. Calcd: 220.03. Found: 255.26 (M+Cl³⁵). Analysis: Calcd for C₁₀H₈N₂O₂S: C, 54.53; H, 3.66; N, 12.72. Found: 54.16; H, 3.67; N, 12.61.

3-Nitro-*N*-(*p*-tolyl)thiophen-2-amine (3f). Isolated as a yellow solid. Yield: 94%; mp = 96–97 °C. IR (KBr) ν_{max} : 3244, 3095, 2920, 2853, 1560,1508, 1490, 1390, 1369, 1236,1197 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.38 (s, 3H, Me), 6.27 (d, *J* = 6.0 Hz, 1H, H-5), 7.19–7.25 (m, 4H, H-2',3',5',6'), 7.34 (d, *J* = 6.3 Hz, 1H, H-4), 10.29 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 20.8 (Me), 107.0 (C-4), 120.7 (C-2',6'), 121.5 (C-4'), 127.7 (C-2), 130.2 (C-3',5'), 135.8 (C-1'), 136.4 (C-5), 156.4 (C-3); ESI-MS: m/z. Calcd: 234.05. Found: 235.10 (M+1). Analysis: Calcd for C₁₁H₁₀N₂O₂S: C, 56.39; H, 4.30; N, 11.96. Found: C, 56.01; H, 4.33; N, 11.71.

N-(4-Ethylphenyl)-3-nitrothiophen-2-amine (3g). Isolated as a pale yellow solid. Yield: 95%; mp = 74–75 °C. IR (KBr) ν_{max} : 3231, 3105, 2962, 2926, 2868, 1544, 1475, 1369,1242,1180 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.26 (t, *J* = 7.5 Hz, 3H, CH₂CH₃), 2.68 (q, *J* = 7.5 Hz, 2H, CH₂CH₃), 6.28 (d, *J* = 6.0 Hz, 1H, H-5), 7.26–7.32 (m, 4H, H-2',3',5',6'), 7.35 (d, *J* = 6.3 Hz, 1H, H-4), 10.32 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 15.3 (CH₂CH₃), 28.3 (CH₂CH₃), 107.0 (C-4), 121.0 (C-2',6'), 121.8 (C-5), 127.9 (C-1'), 129.2 (C-3',5'), 136.8 (C-4'), 142.4 (C-2), 156.5 (C-3); ESI-MS: m/z. Calcd: 248.06. Found: 247.12 (M-1). Analysis: Calcd for C₁₂H₁₂N₂O₂S: C, 58.05; H, 4.87; N, 11.28. Found: C, 57.84; H, 4.95; N, 11.08.

N-(4-Isopropylphenyl)-3-nitrothiophen-2-amine (3h). Isolated as a pale yellow solid. Yield: 93%. IR (KBr) ν_{max} : 3230, 2956, 1544,1510, 1465, 1369, 1177 cm⁻¹. mp = 90–91 °C; ¹H NMR (300 MHz, CDCl₃) δ_H: 1.27 (d, *J* = 6.9 Hz, 6H, CH(C*H*₃)₂), 2.94 (sept, *J* = 6.9 Hz, 1H, C*H*(CH₃)₂), 6.28 (dd, *J* = 0.7, 6.1 Hz, 1H, H-5), 7.26–7.34 (m, 4H, H-2',3',5',6'), 7.35 (d, *J* = 6.3 Hz, 1H, H-4), 10.33 (br s, 1H, NH);¹³C NMR (75 MHz, CDCl₃) δ_c: 23.8 (CH(CH₃)₂), 33.6 (CH(CH₃)₂), 107.0 (C-4), 120.7 (C-2',6'), 121.6 (C-5), 127.7 (C-1' and C-3',5'), 136.6 (C-4'), 146.8 (C-2), 156.3 (C-3); ESI-MS: m/z. Calcd: 262.08. Found: 261.15 (M-1). Analysis: Calcd for C₁₃H₁₄N₂O₂S: C, 59.52; H, 5.38; N, 10.68. Found: C, 59.40; H, 5.53; N, 10.62.

N-(4-Methoxyphenyl)-3-nitrothiophen-2-amine (3i). Isolated as an orange solid. Yield: 96%; mp = 98–99 °C. IR (KBr) ν_{max} : 3228, 3097, 2839, 1560,1508, 1500, 1388, 1224, 1195 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 3.85 (s, 3H, OMe), 6.24 (d, *J* = 6.0 Hz, 1H, H-5), 6.95–6.98 (m, 2H, H-3',5'), 7.26–7.34 (m, 3H, H-4 and H-2',6'), 10.11 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 55.5 (OMe), 106.9 (C-4), 115.0 (C-3',5'), 121.8 (C-5), 123.5 (C-2',6'), 127.4 (C-1'), 132.1 (C-2), 158.0 (C-4'), 158.1 (C-3); ESI-MS: m/z. Calcd: 250.04. Found: 249.12 (M-1). Analysis: Calcd for C₁₁H₁₀N₂O₃S: C, 52.79; H, 4.03; N, 11.19. Found: C, ; H, 3.95; N, 10.81.

3-Nitro-*N***-(o-tolyl)thiophen-2-amine (3j)**. Isolated as a pale yellow solid. Yield: 93%; mp = 169–170 °C. IR (KBr) ν_{max} : 3236, 3101, 3118,1544,1465, 1375, 1340, 1227, 1180 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\bar{\delta}_{H}$: 2.38 (s, 3H, Me), 6.28 (d, *J* = 6.3 Hz, 1H, H-5), 7.18–7.37 (m, 4H, H-3',4',5',6'), 7.51 (d, *J* = 8.1 Hz, 1H, H-4), 10.22 (br s, 1H, NH); ¹³C

NMR (75 MHz, CDCl₃) δ_c : 17.7 (Me), 107.2 (C-4), 120.9 (C-4'), 121.7 (C-6'), 126.5 (C-5'), 127.3 (C-3'), 127.8 (C-2'), 130.9 (C-1'), 131.4 (C-5), 137.7 (C-2), 157.2 (C-3); ESI-MS: m/z. Calcd: 234.05. Found: 234.99 (M+1). Analysis: Calcd for C₁₁H₁₀N₂O₂S: C, 56.40; H, 4.30; N, 11.96. Found: C, 55.95; H, 4.41; N, 11.75.

N-(2-Methoxyphenyl)-3-nitrothiophen-2-amine (3k). Isolated as a yellow solid. Yield: 91%; mp = 123–124 °C. IR (KBr) v_{max} : 3228, 3103,1560,1490, 1363, 1388, 1221, 1170 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 3.96 (s, 3H, OMe), 6.35 (d, J = 6.0 Hz, 1H, H-5), 6.99 (dd, J = 1.2, 8.1 Hz, 1H, H-3'), 7.05 (td, J = 1.2, 7.8 Hz, 1H, H-5'), 7.16 (td, J = 1.2, 7.8 Hz, 1H, H-4'), 7.40 (d, J = 6.0 Hz, 1H, H-4), 7.55 (dd, J = 1.3, 7.9 Hz, 1H, H-6'), 10.93 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c: 55.9 (OMe), 107.2 (C-4), 111.0 (C-3'), 117.1 (C-6'), 120.6 (C-5'), 120.8 (C-4'), 121.7, 125.1 (C-5 and C-1'), 128.5 (C-2), 149.4 (C-2'), 153.8 (C-3); ESI-MS: m/z. Calcd: 250.04. Found: 249.08 (M-1). Analysis: Calcd for C₁₁H₁₀N₂O₃S: C, 52.79; H, 4.03; N, 11.19. Found: C, 52.27; H, 4.09; N, 10.95. **N-(3-Fluorophenyl)-3-nitrothiophen-2-amine (3I)**. Isolated as a yellow solid. Yield: 94%; mp = 101–102 °C. IR (KBr) v_{max} : 3327,1560,1508, 1458, 1365, 1149, 1240, 1180 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.38 (d, J = 6.3 Hz, 1H, H-5), 6.93 (m, 1H, H-4'), 7.11–7.17 (m, 2H, H-4, H-6'), 7.37–7.44 (m, 2H, H-2', H-5'), 10.39 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c : 107.2 (d, ${}^2J_{C,F}$ = 25.2 Hz, C-2'), 107.6 (C-4), 112.2 (d, ${}^2J_{C,F}$ = 21.1 Hz, C-4'), 115.6 (d, ${}^{4}J_{C,F}$ = 3.0 Hz, C-6'), 121.7 (C-5), 128.6 (C-2), 131.1 (d, ${}^{3}J_{C,F}$ = 9.4 Hz, C-5'), 140.4 (d, ${}^{3}J_{C,F}$ =10.0 Hz, C-1'), 154.3 (C-3), 163.2 (d, ${}^{1}J_{C,F}$ = 246.4 Hz, C-3'); ESI-MS: m/z. Calcd: 238.02. Found: 251.04 (M+2+Na). Analysis: Calcd for C₁₀H₇FN₂O₂S: C, 50.42; H, 2.96; N, 11.76. Found: C, 50.43; H, 3.03; N, 11.71.

N-(3-Bromophenyl)-3-nitrothiophen-2-amine (3m). Isolated as a pale yellow solid. Yield: 90%; mp = 132–133 °C. IR (KBr) ν_{max} : 3253, 3116, 3099, 1560, 1467, 1340, 1259, 1165, 1080 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.37 (d, *J* = 6.3 Hz, 1H, H-5), 7.30–7.36 (m, 3H, H-4',5',6'), 7.38 (d, *J* = 6.3 Hz, 1H, H-4), 7.55 (s, 1H, H-2'), 10.31 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 107.6 (C-4), 118.7 (C-2'), 121.8 (C-6'), 123.1 (C-3'), 123.4 (C-4'), 128.5 (C-2), 128.7 (C-5), 131.1 (C-5'), 140.2 (C-1'), 154.4 (C-3); ESI-MS: m/z. Calcd: 297.94. Found: 296.98 (M-1), 298.99 (M+2). Analysis: Calcd for C₁₀H₇BrN₂O₂S: C, 40.15; H, 2.36; N, 9.36. Found: 40.17; H, 2.37; N, 11.71.

3-Nitro-*N*-(**3**-(trifluoromethyl)phenyl)thiophen-2-amine (**3**n). Isolated as a pale yellow solid. Yield: 89%; mp = 106–107 °C. IR (KBr) ν_{max} : 3257, 3101, 1560,1508, 1491, 1327, 1234, 1205, 1170 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.39 (d, *J* = 6.3 Hz, 1H, H-5), 7.41 (d, *J* = 6.0 Hz, 1H, H-4), 7.44–7.59 (m, 3H, H-4',5',6'), 7.65 (s, 1H, H-2'), 10.41 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 107.6 (C-4), 116.8 (q, ³*J*_{C,F} = 3.8 Hz, C-2'), 121.6 (C-6'), 121.9, 122.0 (q, ³*J*_{C,F} = 3.6 Hz, C-4'), 123.2 (C-1'), 127.1 (q, ¹*J*_{C,F} = 271.5 Hz, CF₃), 130.5 (C-5), 132.1(q, ²*J*_{C,F} = 32.7 Hz, C-3'), 139.6 (C-2), 154.2 (C-3); ESI-MS: m/z. Calcd: 288.02. Found: 287.04 (M-1). Analysis: Calcd for C₁₁H₇F₃N₂O₂S: C, 45.84; H, 2.45; N, 9.72. Found: C, 45.53, H, 2.52; N, 9.88.

3-Nitro-*N***-(***m***-tolyl)thiophen-2-amine (3o)**. Isolated as a yellow solid. Yield: 94%; mp = 83–84 °C. IR (KBr) ν_{max} : 3103, 2918, 2852,1572, 1491, 1391, 1357, 1213, 1171 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.30 (dd, J = 0.6, 6.0 Hz, 1H, H-5), 7.06 (m, 1H, H-4'), 7.19 (m, 2H, H-4, H-5'), 7.30–7.37 (m, 2H, H-2',5'), 10.35 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 21.4 (Me), 107.1 (C-4), 117.4 (C-6'), 121.2 (C-4'), 121.7 (C-2'), 126.6 (C-5'), 128.1 (C-2), 129.6 (C-5), 138.9 (C-1'), 140.0 (C-3'), 155.7 (C-3); ESI-MS: m/z. Calcd: 234.05. Found: 233.13 (M-1). Analysis: Calcd for C₁₁H₁₀N₂O₂S: C, 56.40; H, 4.30; N, 11.96. Found: 56.25; H, 4.42; N, 11.67.

N-(3-Methoxyphenyl)-3-nitrothiophen-2-amine (3p). Isolated as an orange solid. Yield: 95%; mp = 111–112 °C. IR (KBr) ν_{max} : 3157, 3116, 3101,1562, 1508, 1481, 1369, 1355, 1215, 1161 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 3.84 (s, 3H, OMe), 6.32, (d, J = 6.0 Hz, 1H, H-5), 6.78 (dd, J = 2.4, 8.4 Hz, 1H, H-4'), 6.91 (t, J = 2.1 Hz, 1H, H-2'), 6.96 (dd, J = 2.2, 7.9 Hz, 1H, H-6'), 7.33 (t, J = 8.1 Hz, 1H, H-5'), 7.36 (d, J = 6.0 Hz, 1H, H-4), 10.37 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c: 55.3 (OMe), 106.0 (C-2'), 107.4 (C-4), 111.1 (C-6'), 112.3 (C-4'), 121.5 (C-5), 128.1 (C-1'), 130.5 (C-5'), 139.9 (C-2), 155.2 (C-3), 160.6 (C-3'); ESI-MS: m/z. Calcd: 250.04. Found: 249.10 (M-1). Analysis: Calcd for C₁₁H₁₀N₂O₃S: C, 52.79; H, 4.03; N, 11.19. Found: C, 52.63; H, 4.10; N, 11.09. N-(2,4-Dimethylphenyl)-3-nitrothiophen-2-amine (3q). Isolated as a yellow solid. Yield: 92%; mp = 114–115 °C. IR (KBr) ν_{max} : 3186, 3122, 3105, 1560, 1491, 1377, 1354, 1223, 1167 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_H: 2.33 (s, 3H, Me), 2.36 (s, 3H, Me), 6.24 (dd, J = 0.9, 6.3 Hz, 1H, H-5), 7.09–7.14 (m, 2H, H-3' and H-6'), 7.32–7.37 (m, 2H, H-4 and H-5'), 10.08 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c : 17.6 (Me), 20.9 (Me), 107.1 (C-4), 121.8 (C-6'), 127.4 (C-1'), 127.8 (C-5), 131.3 (C-3'), 132.1 (C-2'), 135.2 (C-4'), 136.9 (C-2), 158.3 (C-3); ESI-MS: m/z. Calcd: 248.06. Found: 249.06 (M+1). Analysis: Calcd for C₁₂H₁₂N₂O₂S: C, 58.05; H, 4.87; N, 11.28. Found: C, 58.39; H, 4.63; N, 10.90.

N-(Naphthalen-1-yl)-3-nitrothiophen-2-amine (3r). Isolated as a yellow solid. Yield: 91%; mp = 153–154 °C. IR (KBr) v_{max} : 3290, 3109, 3091,1558, 1508, 1458, 1390, 1211, 1182 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 6.28 (d, J = 6.3 Hz, 1H, H- 5), 7.38 (d, J = 6.0 Hz, 1H, H-4), 7.50–7.56 (m, 1H, H-7'), 7.59–7.64 (m, 2H, H-2',6'), 7.71 (d, J = 7.5 Hz, 1H, H-4'), 7.83 (d, J = 8.4 Hz, 1H, H-3'), 7.92–7.95 (m, 1H, H-5'), 8.05–8.06 (m, 1H, H-8'), 10.67 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c : 107.4 (C-4), 118.8 (C-2'), 121.0 (C-4'), 121.7 (C-8'), 125.0 (C-8a'), 125.4 (C-7'), 127.0 (C-1'), 127.2 (C-6'), 127.26 (C-3'), 127.28 (C-5), 128.6 (C-5'), 134.4 (C-4a'), 135.1 (C-2), 158.1 (C-3); ESI-MS: m/z. Calcd: 270.05. Found: 271.07 (M+1). Analysis: Calcd for C₁₄H₁₀N₂O₂S: C, 62.21; H, 3.73; N, 10.36. Found: 62.48; H, 4.05; N, 9.97.

N-Methyl-3-nitrothiophen-2-amine (3s). Isolated as a yellow solid. Yield: 93%; mp = 69–70 °C. IR (KBr) v_{max} : 3327, 2922, 2852, 1560, 1344, 1261, 1195, 1026 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 3.14 (d, *J* = 5.4 Hz, 3H, Me), 6.24 (d, *J* = 6.0 Hz, 1H, H-5), 7.27 (d, *J* = 6.3 Hz, 1H, H-4), 8.41 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 33.7 (Me), 106.5 (C-4), 122.1 (C-5), 125.5 (C-2), 162.5 (C-3); ESI-MS: m/z. Calcd: 158.01. Found: 158.98 (M+1). Analysis: Calcd for C₅H₆N₂O₂S: C, 37.97; H, 3.82; N, 17.71. Found: C, 38.45; H, 3.92; N, 17.37.

3-Nitro-*N***-propylthiophen-2-amine (3t)**. Isolated as a yellow liquid. Yield: 95%. IR (KBr) v_{max} : 3308, 3101, 2964, 2931,2874,1572, 1516, 1400, 1336, 1263, 1186, 1084 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.05 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₂CH₃), 1.80 (sext, J = 7.2 Hz, 2H, CH₂CH₂CH₃), 3.32 (q, J = 6.9 Hz, 2H, CH₂CH₂CH₃), 6.21 (dd, J = 0.9, 6.0 Hz, 1H, H-5), 7.25 (d, J = 6.0 Hz, 1H, H-4), 8.47 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 11.2 (CH₂CH₂CH₃), 22.0 (CH₂CH₂CH₃), 49.7 (CH₂CH₂CH₃), 106.4 (C-4), 122.1 (C-5), 125.7 (C-2), 161.5 (C-3); ESI-MS: m/z. Calcd: 186.05. Found: 187.00 (M+1). Analysis: Calcd for C₇H₁₀N₂O₂S: C, 45.15; H, 5.41; N, 15.04. Found: C, 45.50; H, 5.55; N, 14.86.

N-Butyl-3-nitrothiophen-2-amine (3u). Isolated as a yellow solid. Yield: 92%; mp = 50-51 °C. IR (KBr) ν_{max} : 3331, 2931, 2868, 1570, 1381, 1259, 1055 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 0.98 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₂CH₂CH₃), 1.47 (sext, J = 7.4 Hz, 2H, CH₂CH₂CH₂CH₃), 1.70–1.80 (m, 2H, CH₂CH₂CH₂CH₃), 3.35 (q, J = 6.7 Hz, 2H, CH₂CH₂CH₂CH₃), 6.21 (dd, J = 1.0, 6.1 Hz, 1H, H-5), 7.25 (d, J = 6.3 Hz, 1H, H-4), 8.45 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 13.5 (CH₂CH₂CH₂CH₃), 19.9 (CH₂CH₂CH₂CH₃), 30.6 (CH₂CH₂CH₂CH₃), 47.7 (CH₂CH₂CH₂CH₃), 106.4 (C-4), 122.1 (C-5), 125.6 (C-2), 161.4 (C-3); ESI-MS: m/z. Calcd: 200.06. Found: 201.02 (M+1). Analysis: Calcd for C₈H₁₂N₂O₂S: C, 47.98; H, 6.04; N, 13.99. Found: 48.35; H, 6.01; N, 13.66.

N-IsopropyI-3-nitrothiophen-2-amine (3v). Isolated as a yellow liquid. Yield: 93%. IR (KBr) v_{max} : 3302, 3097, 2974, 2928, 1562, 1400, 1334, 1265, 1153 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.39 (d, J = 6.3 Hz, 6H, CH(CH₃)₂), 3.58–3.67 (m, 1H, CH(CH₃)₂), 6.22 (d, J = 6.3 Hz, 1H, H-5), 7.25 (d, J = 6.0 Hz, 1H, H-4), 8.40 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 22.3 (CH(CH₃)₂), 50.6 (CH(CH₃)₂), 106.4 (C-4), 122.1 (C-5), 125.7 (C-2), 160.1 (C-3); ESI-MS: m/z. Calcd: 186.05. Found: 187.08 (M+1). Analysis: Calcd for C₇H₁₀N₂O₂S: C, 45.15; H, 5.41; N, 15.04. Found: C, 45.54; H, 5.56; N, 14.83.

N-Cyclopropyl-3-nitrothiophen-2-amine (3w). Isolated as a yellow liquid. Yield: 94%. IR (KBr) ν_{max} : 3321, 3100, 3009, 2872, 1562, 1516, 1400, 1332, 1259, 1188, 1084 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\bar{\delta}_{H}$: 0.79–1.02 (m, 4H, H-2',3'), 2.69–2.76 (m, 1H, H-1'), 6.27 (d, *J* = 6.0 Hz, 1H, H-5), 7.27 (d, *J* = 6.0 Hz, 1H, H-4), 8.38 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c : 7.7 (C-2',3'), 28.3 (C-1'), 107.6 (C-4), 121.9 (C-5), 125.9 (C-2), 162.3 (C-3); ESI-MS: m/z. Calcd: 184.03. Found: 183.06 (M-1). Analysis: Calcd for $C_7H_8N_2O_2S$: C, 45.64; H, 4.38; N, 15.21. Found: C, 45.29; H, 4.49; N, 14.85.

N-Cyclohexyl-3-nitrothiophen-2-amine (3x). Isolated as a yellow solid. Yield: 95%; mp = 130–131 °C. IR (KBr) ν_{max} : 3285, 3115, 3096, 2931, 2852, 1570, 1389, 1240, 1076 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.29–1.50 (m, 5H, H-3',5',6'), 1.65–1.68 (m, 1H, H-4'), 1.80–1.83 (m, 2H, H-2',6'), 2.09–2.14 (m, 2H, H2',6'), 3.23–3.31 (m, 1H, H-1'), 6.20 (d, *J* = 6.3 Hz, 1H, H-5), 7.24 (d, *J* = 6.0 Hz, 1H, H-4), 8.52 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 24.3 (C-3',5'), 25.1 (C-4'), 32.1 (C-2',6'), 57.4 (C-1'), 106.3 (C-4), 122.0 (C-5), 125.6 (C-2), 160.0 (C-3); ESI-MS: m/z. Calcd: 226.08. Found: 227.10 (M+1). Analysis: Calcd for C₁₀H₁₄N₂O₂S: C, 53.08; H, 6.24; N, 12.38. Found: C, 53.33; H, 6.24; N, 12.30.

N-Benzyl-3-nitrothiophen-2-amine (3y). Isolated as a yellow solid. Yield: 92 %; mp = 55-56 °C; IR (KBr) ν_{max} : 3287, 3115, 3093, 2922, 2954, 1560, 1386, 1219, 1066 cm ⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 4.53 (d, J = 5.7 Hz, 2H, CH₂Ph), 6.22 (d, J = 6.0 Hz, 1H, H-5), 7.28 (d, J = 6.0 Hz, 1H, H-4), 7.37–7.42 (m, 5H, CH₂Ph), 8.72 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} : 51.7 (CH₂Ph), 106.7 (C-4), 122.3 (C-2 and C-5), 127.6 (C-2',6'), 128.4 (C-4'), 129.0 (C-3',5'), 135.2 (C-1'), 160.8 (C-3); ESI-MS: m/z. Calcd: 234.05. Found: 235.07 (M+1). Analysis: Calcd for C₁₁H₁₀N₂O₂S: C, 56.40; H, 4.30; N, 11.96. Found: C, 56.89; H, 4.79; N, 11.83.

(*R*)-3-Nitro-*N*-(1-phenylethyl)thiophen-2-amine (3z). Isolated as a yellow solid. Yield: 96 %; mp = 71–72 °C. IR (KBr) ν_{max} : 3319, 3120, 3100, 2974, 2926, 1545, 1342, 1254, 1068 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.70 (d, *J* = 6.9 Hz, 3H, Me), 4.52 (q, *J* = 6.7 Hz, 1H, C*H*Me), 6.13 (dd, J = 0.9, 6.0 Hz, 1H, H-5), 7.23 (d, J = 6.0 Hz, 1H, H-4), 8.80 (br s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c : 23.9 (Me), 57.9 (CHMe), 107.2 (C-4), 121.7 (C-2 and C-5), 126.1 (C-2',6'), 128.1 (C-4'), 128.9 (C-3',5'), 140.9 (C-1'), 159.8 (C-3); ESI-MS: m/z. Calcd: 248.06. Found: 249.04 (M+1). Analysis: Calcd for $C_{12}H_{12}N_2O_2S$: C, 58.05; H, 4.87; N, 11.28. Found: C, 58.19; H, 4.91; N, 11.29.

2. Structure determination of 3c using NMR spectroscopic data

The structure of *N*-(4-bromophenyl)-3-nitrothiophen-2-amine (**3c**) was deduced from one- and two-dimensional NMR spectroscopic data. The structural elucidation of **3c** using NMR spectroscopy is discussed below.

The H-4 appears as a doublet at 7.37 ppm (J = 6.0 Hz), which shows HMBCs with C-2, C-3 and C-5 at 154.9, 128.5 and 107.4 ppm, respectively. Likewise, the H-5 appears as a doublet at 6.34 ppm (J = 6.3 Hz), which shows HMBCs with C-2, C-3, C-4 at 154.9, 128.5 and 122.0 ppm, respectively. The NH peak appears as a broad singlet at 10.30 ppm.

3. Copies of spectra

No.	List of Figures	Page
1	¹ H NMR Spectrum 1d	S20
2	¹³ C NMR Spectrum of 1d	S20
3	ESI mass spectrum of Spectrum of 1d	S21
4	¹ H NMR Spectrum 1 g	S21
5	¹³ C NMR Spectrum of 1g	S22
6	ESI mass spectrum of Spectrum of 1g	S22
7	¹ H NMR Spectrum 1m	S23
8	¹³ C NMR Spectrum of 1m	S23
9	ESI mass spectrum of Spectrum of 1m	S24
10	¹ H NMR Spectrum 1 q	S24
11	¹³ C NMR Spectrum of 1 q	S25
12	ESI mass spectrum of Spectrum of 1q	S25
13	¹ H NMR Spectrum 1 w	S26
14	¹³ C NMR Spectrum of 1w	S26
15	ESI mass spectrum of Spectrum of 1w	S27
16	¹ H NMR Spectrum 1 z	S27
17	¹³ C NMR Spectrum of 1 z	S28
18	ESI mass spectrum of Spectrum of 1z	S28
19	¹ H NMR Spectrum 3a	S29
20	¹³ C NMR Spectrum of 3a	S29
21	ESI mass spectrum of Spectrum of 3a	S30
22	¹ H NMR Spectrum 3b	S30
23	¹³ C NMR Spectrum of 3b	S31
24	ESI mass spectrum of Spectrum of 3b	S31
25	¹ H NMR Spectrum 3 c	S32
26	¹³ C NMR Spectrum of 3c	S32
27	DEPT Spectrum of 3c	S33
28	H, H-COSY Spectrum of 3c	S33
29	HMBC Spectrum of 3c	S 34
30	ESI mass spectrum of Spectrum of 3c	S34
31	¹ H NMR Spectrum 3d	\$35
32	¹³ C NMR Spectrum of 3d	\$35
33	ESI mass spectrum of Spectrum of 3d	\$36

34	¹ H NMR Spectrum 3e	S 36
35	¹³ C NMR Spectrum of 3e	S37
36	ESI mass spectrum of Spectrum of 3e	S37
37	¹ H NMR Spectrum 3f	S38
38	¹³ C NMR Spectrum of 3f	S38
39	ESI mass spectrum of Spectrum of 3f	S39
40	¹ H NMR Spectrum 3 g	S39
41	¹³ C NMR Spectrum of 3g	S40
42	ESI mass spectrum of Spectrum of 3g	S40
43	¹ H NMR Spectrum 3h	S41
44	¹³ C NMR Spectrum of 3h	S41
45	ESI mass spectrum of Spectrum of 3h	S42
46	¹ H NMR Spectrum 3i	S42
47	¹³ C NMR Spectrum of 3i	S43
48	ESI mass spectrum of Spectrum of 3i	S43
49	¹ H NMR Spectrum 3 j	S44
50	¹³ C NMR Spectrum of 3j	S44
51	ESI mass spectrum of Spectrum of 3 j	S45
52	¹ H NMR Spectrum 3 k	S45
53	¹³ C NMR Spectrum of 3k	S46
54	ESI mass spectrum of Spectrum of 3k	S46
55	¹ H NMR Spectrum 3 I	S47
56	¹³ C NMR Spectrum of 3 I	S47
57	ESI mass spectrum of Spectrum of 31	S48
58	¹ H NMR Spectrum 3m	S48

59	¹³ C NMR Spectrum of 3m	S49
60	ESI mass spectrum of Spectrum of 3m	S49
61	¹ H NMR Spectrum 3n	S50
62	¹³ C NMR Spectrum of 3n	S50
63	ESI mass spectrum of Spectrum of 3n	S51
64	¹ H NMR Spectrum 30	S51
65	¹³ C NMR Spectrum of 30	S52
66	ESI mass spectrum of Spectrum of 30	S52
67	¹ H NMR Spectrum 3p	S53
68	¹³ C NMR Spectrum of 3p	S53
69	ESI mass spectrum of Spectrum of 3p	S54
70	¹ H NMR Spectrum 3 q	S54
71	¹³ C NMR Spectrum of 3 q	S55
72	ESI mass spectrum of Spectrum of 3q	S55
73	¹ H NMR Spectrum 3r	S56
74	¹³ C NMR Spectrum of 3r	S56
75	ESI mass spectrum of Spectrum of 3r	S57
76	¹ H NMR Spectrum 3 s	S57
77	¹³ C NMR Spectrum of 3s	S58
78	ESI mass spectrum of Spectrum of 3s	S58
79	¹ H NMR Spectrum 3t	S59
80	¹³ C NMR Spectrum of 3t	S59
81	ESI mass spectrum of Spectrum of 3 t	S60
82	¹ H NMR Spectrum 3u	S60
83	¹³ C NMR Spectrum of 3u	S61

84	ESI mass spectrum of Spectrum of 3u	S61
85	¹ H NMR Spectrum 3v	S62
86	¹³ C NMR Spectrum of 3v	S62
87	ESI mass spectrum of Spectrum of 3v	\$63
88	¹ H NMR Spectrum 3 w	\$63
89	¹³ C NMR Spectrum of 3w	S64
90	ESI mass spectrum of Spectrum of 3w	S64
91	¹ H NMR Spectrum $3x$	\$65
92	¹³ C NMR Spectrum of $3x$	S65
93	ESI mass spectrum of Spectrum of 3x	S66
94	¹ H NMR Spectrum 3 y	\$66
95	¹³ C NMR Spectrum of 3y	S67
96	ESI mass spectrum of Spectrum of 3 y	S67
97	¹ H NMR Spectrum 3z	S68
98	¹³ C NMR Spectrum of 3z	S68
99	ESI mass spectrum of Spectrum of 3z	S69

References

- Venkatesh, C.; Singh, B.; Mahata, P. K.; Ila, H.; Junjappa, H. Org. Lett. 2005, 7, 2169–2172. doi:10.1021/ol0505095
- Buchholz, M.; Hamann, A.; Aust, S.; Brandt, W.; Bohme, L.; Hoffmann, T.; Schilling, S.; Demuth, H.-U.; Heiser, U. *J. Med. Chem.* 2009, *52*, 7069–7080. doi:10.1021/jm900969p