Supporting Information

for

A facile synthesis of functionalized 7,8-diaza[5]helicenes

through an oxidative ring-closure of

1,1'-binaphthalene-2,2'-diamines (BINAMs)

Youhei Takeda*^{1,2}, Masato Okazaki², Yoshiaki Maruoka², and Satoshi Minakata*²

Address: ¹Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan and ²Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

Email: Youhei Takeda - takeda@chem.eng.osaka-u.ac.jp; Satoshi Minakata - minakata@chem.eng.osaka-u.ac.jp

*Corresponding author

Table of contents

General remarks	S2
Materials	S2–S3
Optimization studies of reaction conditions	S3–S6
Oxidative ring-closure of biaryldiamines 1 and 3	S7–S11
Physicochemical properties	S12–S16
¹ H and ¹³ C NMR spectra	S17–S23
References	S24

General remarks

All reactions were carried out under an atmosphere of nitrogen unless otherwise noted. Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System. ¹H and ¹³C NMR spectra were recorded on a JEOL JMTC-400/54/SS spectrometer (¹H NMR, 400 MHz; ¹³C NMR, 100 MHz) using tetramethylsilane as an internal standard. Infrared spectra were acquired on a SHIMADZU IRAffinity-1 FT-IR Spectrometer. Mass spectra were obtained on a JEOL JMS-DX303HF mass spectrometer. High-resolution mass spectra were obtained on a JEOL JMS-DX303HF mass spectrometer. UV/vis spectra were recorded on a Shimadzu UV-2550 spectrophotometer. Emission spectra were recorded on a HAMAMATSU C11347-01 spectrometer with an integrating sphere. Cyclic voltammetry (CV) was performed with ALS-600 (BAS Inc.) system. Thermogravimetric analysis (TGA) was performed with TG/DTA-7200 (SII) system. Products were purified by chromatography on silica gel BW-300 and Chromatorex NH (Fuji Silysia Chemical Ltd.). Analytical thin-layer chromatography (TLC) was performed on pre-coated silica gel glass plates (Merck silica gel 60 F₂₅₄ and Fuji Silysia Chromatorex NH, 0.25 mm thickness). Compounds were visualized with UV lamp. Optical rotations were measured in a thermostated conventional 10 cm cell on a JASCO P-2200 polarimeter using the sodium-D line (589 nm).

Materials

1,1'-Binaphthalene-2,2'-diamine (BINAM) was purchased from Sigma-Aldrich and used as received. DBU, triethylamine, and 2,6-lutidine were distilled with Kugelrohr apparatus, and other commercial reagents were purchased from Sigma-Aldrich, TCI, or Wako Pure Chemical Industries, Ltd. and used as received. Alcohol solvents were dried over activated molecular sieves 3A. THF, CH₃CN, and Et₂O were purchased as dehydrated grade and dried by passing through a glass contour solvent dispensing system (Nikko Hansen & Co., Ltd.). Dehydrated CH₂Cl₂ and toluene were purchased from Kanto Chemical Co., Inc. and used as received. DMF was distilled using CaSO₄ as a dehydrating agent. CH₂Cl₂ (fluorescence spectroscopic grade) was purchased from Kanto Chemical Co., Inc. for the measurement of UV-vis and emission spectra. Biaryldiamines $1b^{S1}$ [360779-01-7], $1c^{S2}$ [1051425-55-8, (*R*)-enantiomer], $1d^{S3}$ [1229013-43-7], $1e^{S4}$ [155855-47-3], $1g^{S5}$ [861890-12-2], and 3^{S6} [1454-80-4] were prepared according to the procedures in literature.

Preparation of 6,6'-di-*n*-butyl-1,1'-binaphthalene-2,2'-diamine (1f)

Biaryldiamine **1f** was prepared by modified cross-coupling method^{S7} from biaryldiamine **1g** as follows (Scheme S1): THF was degassed through freeze-pump-thaw cycling for three times before used. To a round-bottomed flask (50 mL) equipped with a

magnetic stir bar, were added biaryldiamine 1g (1.326 g, 3.0 mmol), Pd(OAc)₂ (13.4 mg, 0.06 mmol), and SPhos (49.2 mg, 0.12 mmol) under the air. The tube was capped with a rubber septum, evacuated, and then refilled with N₂ gas for three times. THF (2 mL) and 0.5 M THF solution of *n*-BuZnBr (14.4 mL, 7.2 mmol) were added to the tube through the septum, and the mixture was stirred under N₂ atmosphere at room temperature for 12 h. To the reaction mixture, was added saturated aqueous NH₄Cl solution (10 mL), and the resulting mixture was extracted with EtOAc (20 mL \times 3). The organic extract was dried over Na₂SO₄ and concentrated under vacuum to give the crude product. Purification by flash column chromatography on silica gel (eluent: hexane/EtOAc 8:2) gave biaryldiamine 1f as pale brown solid (1.051 g, 88%). mp 130 °C (dec.); R_f 0.13 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, *J* = 7.2 Hz, 6H), 1.37 (tq, *J* = 7.2, 7.6 Hz, 4H), 1.63 (tt, *J* = 7.6, 7.6 Hz, 4H), 2.68 (t, J = 7.6 Hz, 4H), 3.60 (br, 4 H), 7.01 (d, J = 8.8 Hz, 2H), 7.05 (dd, J = 1.6, 8.8 Hz, 2H), 7.11 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 1.6 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) & 13.9, 22.4, 33.5, 35.4, 112.9, 118.3, 123.9, 126.6, 128.3, 128.6, 128.8, 132.0, 136.8, 141.9; IR (ATR) v 2929, 1606, 1500, 1382, 1282, 824, 810 cm⁻¹; MS (EI): m/z(relative intensity, %) 396 (M⁺, 100), 353 ($[C_{25}H_{25}N_2]^+$, 45); HRMS (EI): m/z calcd for C₂₈H₃₂N₂ (M) 396.2565, found 396.2568.

Scheme S1. Preparation of 1f.

Optimization studies of reaction conditions

A typical procedure for the optimization studies using 1a as substrate

To a two-necked reaction tube (20 mL, entry 2 in Table S1) or a two-necked round-bottomed flask (50 mL, entries 1 and 3–11 in Table S1, Table S2, and Table S3) equipped with a magnetic stir bar, was added 1,1'-binaphthalene-2,2'-diamine (**1a**) (0.2 mmol) under the air. The vessel was capped with a rubber septum and evacuated and refilled with N₂ gas for three times, and an appropriate solvent was added through the septum. To the mixture, were added an additive and an appropriate oxidant under a stream of N₂ gas at the indicated temperature. The resulting solution was stirred for indicated time before quenched with aqueous Na₂S₂O₃ solution (1.0 M, 20 mL), and the resulting mixture was extracted with

CH₂Cl₂ (20 mL \times 3). The combined organic extracts were dried over Na₂SO₄ and concentrated under vacuum to give the crude product. The yields of products were calculated by the integration of ¹H NMR signals of the crude product. Separation by flash column chromatography on silica gel gave product **2a**.

7,8-Diaza[5]helicene (2a) [188-55-6]

Spectroscopic data were in good agreement with those previously reported.^{S8} The spectroscopic data are also available in our previous paper.^{S9} Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc, 99:1 to 5:5) and recrystallization from CHCl₃; Yellow solid; R_f 0.15 (hexane/EtOAc 8:2); MS (EI): m/z (relative intensity, %) 280 (M⁺, 70), 252 ([C₂₀H₁₂]⁺, 100);

HRMS (EI): m/z calcd for $C_{20}H_{12}N_2$ (M) 280.1000, found 280.1002.

Table S1. The effect of solvents.

^{*a* 1}H NMR yields. ^{*b*} isolated yield. ^{*c*} 40 mM.

1a (0.2 mmol)

entry	chlorine-containing oxidant (mmol)	yield (%) ^a	recovery of 1a (%) ^a	
1	NCS (0.8)	0	63	
2	DCH (0.4)	24 ^b	0	
3	DCH (0.8)	57	0	
4	NCPh (0.8)	0	95	
5	TCCA (0.27)	20	0	

^{*a* 1}H NMR yields. ^{*b*} isolated yield.

Structures of chlorine-containing oxidants:

N-CI Me Ò

NCS

DCH N-chlorosuccinimide 1,3-dichloro-5,5-dimethylhydantoin

NCPh N-chlorophthalimide

TCCA trichloroisocyanuric acid

Table S3. The effect of equivalents of *t*-BuOCl and bases.

1a (0.2 mmol)

entry	t-BuOCI (mmol)	base (mmol)	time (h)	yield (%) ^a	recovery of 1a (%) ^a
1	0.6	-	3	93	0
2	0.4	-	3	54	34
3	0.4	-	24	71	19
4	0.4	K ₂ CO ₃ (0.4)	3	69	20
5	0.4	DABCO (0.4)	3	32	45
6	0.4	DBU (0.4)	3	0	34
7	0.4	NEt ₃ (0.4)	3	0	65
8	0.4	pyridine (0.4)	3	33	40
9	0.4	2,6-di- <i>tert</i> -butylpyridine (0.4)	3	77	19
10	0.4	2,6-lutidine (0.4)	3	90	10
11	0.4	2,6-lutidine (0.4)	7	92	8
12	0.44	2,6-lutidine (0.44)	3	97 ^b	0

^{*a* 1}H NMR yields. ^{*b*} isolated yield.

Structures of bases

DABCO 1,4-diazabicyclo[2.2.2]octane

2a

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

Oxidative ring-closure of biaryldiamines 1 and 3

A typical procedure for the oxidative ring-closure of biaryldiamines 1 and 3

To a two-necked round-bottomed flask (50 mL) equipped with a magnetic stir bar, was added biaryldiamine 1 (or 3) (0.1 mmol) under the air. The flask was capped with a

rubber septum, evacuated, and refilled with N₂ gas for three times. Solvent (10 mL) and 2,6-lutidine (23.5 mg, 0.22 mmol or none) were added to the tube through the septum. To the mixture, was added *t*-BuOCl (23.8 mg, 0.22 mmol or 43.4 mg, 0.40 mmol) through the septum at the indicated temperature. The resulting solution was stirred for the indicated time (Table 2 in the text) before quenched with aqueous Na₂S₂O₃ solution (1.0 M, 20 mL), and the resulting mixture was extracted with CH₂Cl₂ (20 mL × 3). The combined organic extracts were dried over Na₂SO₄ and concentrated under vacuum to give the crude product. Purification by flash column chromatography on silica gel gave the corresponding 7,8-diaza[5]helicene (for example, compound **2a**: 27.2 mg, 97%).

 Table S4. The oxidative ring-closure of biaryldiamine 1b.

^{a 1}H NMR yields. ^b isolated yield.

6,9-Dimethyl-7,8-diaza[5]helicene (2b)

Purified by flash column chromatography on NH silica gel (eluent: hexane/EtOAc 99:1) and recrystallization from hexane; Yellow solid (13.6 mg, 44%); mp 196 °C (dec.); R_f 0.33 (hexane/EtOAc 8:2, NH); ¹H NMR (400 MHz, CDCl₃) δ 3.16 (s, 6H), 7.31 (dd, J = 8.0, 8.0 Hz, 2H), 7.64 (dd, J = 8.0, 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H) , 7.95 (s, 2H), 8.71 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.5, 120.0, 124.5, 127.3, 127.5, 129.2, 129.5, 129.8, 134.0, 134.2, 145.9; IR (ATR) ν 2922, 1734, 1457, 1425, 1261, 1160, 1116, 889, 753 cm⁻¹; MS (EI): m/z (relative intensity, %) 308 (M⁺, 100), 280 ([C₂₂H₁₆]⁺, 31); HRMS (EI): m/z calcd for C₂₂H₁₆N₂ (M) 308.1313, found 308.1312.

		∠Br `NH ₂ _2,6 ∠NH ₂ `Br	BuOCI (2.2 equ 6-lutidine (2.2 ec solvent (10 mM temp., time	iv) juiv)	Br N Br
	1c (44.2 mg, 0.1	mmol)			2c
		(()			
entry	solvent	temp. (°C)	time (h)	yield (%) ^a	recovery of 1c (%) ^a
1	<i>t</i> -BuOH	rt	20	44 ^b	15 ^{<i>b</i>}
2 ^c	<i>t</i> -BuOH	rt	19	77 ^b	0
3	<i>t</i> -BuOH	60	24	36	12
4	MeOH	rt	9	9	28
5	toluene	rt	24	15	0

Table S5. The oxidative ring-closure of biaryldiamine 1c

^{a 1}H NMR yields. ^b isolated yield. ^ct-BuOCI (4.0 equiv), 2,6-lutidine (0 equiv)

6,9-Dibromo-7,8-diaza[5]helicene (2c)

Parts of spectroscopic data are available in a literature.^{S10} Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 99:1–95:5) and recrystallization from hexane/CHCl₃; Yellow solid (19.3 mg, 44% or 33.7 mg, 77%); mp 307 °C (dec.); R_f 0.40 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.0, 8.0 Hz, 2H), 7.71 (dd, J = 8.0, 8.0 Hz, 2H), 7.94 (d, J = 8.0 Hz, 2H), 8.51 (s, 2H), 8.64 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 121.3, 121.6, 126.0, 127.4, 127.5, 129.5, 130.3, 134.4, 134.5, 143.6; IR (ATR) ν 3053, 1591, 1383, 1250, 1108, 960, 890, 837, 773, 753 cm⁻¹; MS (EI): m/z (relative intensity, %) 438 (M⁺, 50), 357 ([C₂₀H₁₀BrN₂]⁺, 14), 278 ([C₂₀H₁₀N₂]⁺, 23), 250 ([C₂₀H₁₀]⁺, 100); HRMS (EI): m/z calcd for C₂₀H₁₀Br₂N₂ (M) 435.9211, found 435.9210.

	Ph NH ₂ 2	<i>t</i> -BuOCI (2.2 equiv) 2,6-lutidine (2.2 equiv)				
	NH ₂	solvent (10 mM) r.t., 3 h				
1d (43.6 mg, 0	.1 mmol)		2d			
entry	solvent	yield (%) ^a	recovery of 1d (%) ^a			
1	<i>t</i> -BuOH	33 ^b	18 <i>^b</i>			
2	MeOH	28	24			
3	toluono	87 <i>b</i>	0			

Table S6. The oxidative ring-closure of biaryldiamine 1d.

^{*a* 1}H NMR yields. ^{*b*} isolated yield.

6,9-Diphenyl-7,8-diaza[5]helicene (2d)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 97:3) and recrystallization from hexane/CHCl₃; Yellow solid (37.6 mg, 87%); mp 239 °C (dec.); R_f 0.35 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.45 (m, 4H), 7.50 (dd, J = 7.6, 7.6 Hz, 4H), 7.72 (dd, J = 7.6, 7.6 Hz, 2H), 7.82 (d, J = 6.8 Hz, 4H), 8.06 (d, J = 7.6 Hz, 2H), 8.17 (s, 2H), 8.79 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 120.1,

125.4, 127.7, 128.0, 128.1, 128.3, 129.4, 129.5, 130.9, 131.2, 133.8, 137.8, 138.4, 144.6; IR (ATR) ν 3027, 1494, 1445, 898, 766, 754 cm⁻¹; MS (EI): m/z (relative intensity, %) 432 (M⁺, 67), 431 ([C₃₂H₁₉N₂]⁺, 100); HRMS (EI): m/z calcd for C₃₂H₂₀N₂ (M) 432.1626, found 432.1624.

Dimethyl 7,8-diaza[5]helicene-6,9-dicarboxylate (2e)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 8:2–5:5) and recrystallization from hexane/CHCl₃; Yellow solid (33.3 mg, 84%); mp 215 °C (dec.); $R_{\rm f}$ 0.35 (hexane/EtOAc 5:5); ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 6H), 7.48 (dd, J = 8.0, 8.0 Hz, 2H), 7.75 (dd, J = 8.0, 8.0 Hz, 2H), 8.07 (d, J = 8.0

Hz, 2H), 8.45 (s, 2H), 8.69 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 53.1, 119.7,

127.2, 128.8, 129.1, 129.2, 129.4, 130.1, 132.1, 132.6, 143.3, 168.0; IR (ATR) ν 2942, 1724, 1425, 1269, 1220, 1137, 781, 761 cm⁻¹; MS (EI): *m/z* (relative intensity, %) 396 (M⁺, 32), 338 ([C₂₂H₁₄N₂O₂]⁺, 100), 250 ([C₂₀H₁₀]⁺, 18); HRMS (EI): *m/z* calcd for C₂₄H₁₆N₂O₄ (M) 396.1110, found 396.1112.

Table S7. The oxidative ring-closure of biaryldiamine 1f.

^{*a* 1}H NMR yields. ^{*b*} isolated yield.

3,12-Di-n-butyl-7,8-diaza[5]helicene (2f)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 9:1–8:2) and recrystallization from hexane; Pale yellow solid (28.2 mg, 72%); mp 161 °C (dec.); R_f 0.18 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 0.99 (t, J = 7.6 Hz, 6H), 1.44 (tq, J = 7.6, 7.6 Hz, 4H), 1.76 (tt, J = 7.6, 7.6 Hz, 4H), 2.86 (t, J = 7.6 Hz, 4H),

7.28 (dd, J = 1.6, 8.4 Hz, 2H), 7.80 (d, J = 1.6 Hz, 2H), 8.09 (d, J = 8.8 Hz, 2H), 8.49 (d, J = 8.8 Hz, 2H), 8.75 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 22.5, 33.3, 35.7, 120.0, 126.1, 126.5, 126.9, 129.1, 130.5, 134.4, 144.6, 146.6 (one carbon is unsatisfied, probably due to the overlap of signals.); IR (ATR) ν 2930, 1618, 1464, 1259, 1105, 891, 827, 810 cm⁻¹; MS (EI): m/z (relative intensity, %) 392 (M⁺, 100), 364 ([C₂₈H₂₈]⁺, 15), 349 ([C₂₇H₂₅]⁺, 12), 335 ([C₂₆H₂₃]⁺, 31), 321 ([C₂₅H₂₁]⁺, 17), 307 ([C₂₄H₁₉]⁺, 47); HRMS (EI): m/z calcd for C₂₈H₂₈N₂ (M) 392.2252, found 392.2251.

3,12-Dibromo-7,8-diaza[5]helicene (2g)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 9:1–7:3) and recrystallization from CHCl₃; Brown solid (39.9 mg, 91%); mp 205 °C (dec.); R_f 0.18 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 2.0, 8.8 Hz, 2H), 8.09 (d, J = 8.8 Hz, 2H), 8.20 (d, J = 2.0 Hz, 2H), 8.58 (d, J = 8.8 Hz, 2H), 8.61 (d, J

= 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 119.4, 123.8, 126.4, 127.9, 129.0, 129.8, 130.4, 130.5, 135.6, 146.5; IR (ATR) ν 3061, 1591, 1495, 1436, 1263, 1086, 876, 852, 833, 820, 803 cm⁻¹; MS (EI): *m/z* (relative intensity, %) 438 (M⁺, 69), 278 ([C₂₀H₁₀N₂]⁺, 79), 250 ([C₂₀H₁₀]⁺, 100); HRMS (EI): *m/z* calcd for C₂₀H₁₀N₂Br₂ (M) 435.9211, found 435.9208.

Table S8. The oxidative ring-closure of biaryldiamine 3.

^{*a* 1}H NMR yields. ^{*b*} isolated yields.

Benzo[*c*]cinnoline (4) [230-17-1]

Spectroscopic data were in agreement with those previously reported.^{S11} The spectroscopic data are also available in our previous paper.^{S9} Purified by flash column chromatography on silica gel (hexane/EtOAc 95:5 to 8:2); Yellow solid; $R_{\rm f}$ 0.18 (hexane/EtOAc 8:2).

Physicochemical properties

	Abs	Emission (solution)		CV (vs. Fc/Fc ⁺)			TGA		
	λ_{max} (nm)	ε (M ⁻¹ cm ⁻¹)	λ _{ex} (nm)	$\Phi_{\rm FL}$	redEpc (V)	^{red} E _{pa} (V)	$^{\rm red}E_{1/2}\left(V ight)$	LUMO level (eV)	T _d (5wt% loss) (°C)
2a	306, 398, 421	27672, 2294, 2509	300	0.02	-1.92	-1.83	-1.88	-2.92	251
2b	312, 408, 431	25282, 2403, 2403	300	< 0.01	-	-	-		268
2c	318, 410, 434	30326, 2580, 2688	300	<0.01	-1.70	-1.62	-1.66	-3.13	306
2d	316, 413, 436	31470, 3157, 3266	300	<0.01	-1.93	-1.80	-1.86	-2.93	222
2e	309, 397, 419	33950, 3223, 3223	300	< 0.01	-1.74	-1.61	-1.67	-3.12	315
2f	311, 392, 418	40513, 2715, 2280	300	<0.01	-	-	-	-	300
2g	310, 395, 418, 445	31106, 3635, 4342, 2524	300	<0.01	-1.80	-1.72	-1.76	-3.03	277
4	298,308,351, 357	8990,9192, 1515, 1313	300	0.15	-	-	-	-	172

Table S9. Summary of physicochemical properties of diazahelicenes 2 and cinnoline 4.

UV-vis and emission spectra

 CH_2Cl_2 (fluorescence spectroscopic grade) was purged with N₂ for 30 min before the measurements. UV-vis and emission spectra of diazahelicenes 2 and cinnoline 4 were measured at room temperature using CH_2Cl_2 solutions (1.0×10^{-5} M).

Cyclic voltammetry

Cyclic voltammetry experiments were conducted at room temperature with CH_2Cl_2 solutions of diazahelicenes **2** and cinnoline **4** (5.0 × 10⁻⁴ M) containing 0.1 M tetrabutylammonium hexafluorophosphate as a supporting electrolyte in a cell equipped with a Pt as the working electrode (scanning rate: 100 m/V). A Pt wire and an Ag wire were applied as the counter and the reference electrode, respectively. All the potentials were corrected against the Fc/Fc⁺ (Fc = ferrocene) couple and the values of LUMO levels were calculated with the equation S1.

LUMO =
$$-(4.8 + {}^{\text{red}}E_{1/2} \text{ vs. Fc/Fc}^+)$$
 (S1)

Thermogravimetric analysis (TGA)

All the TGA profiles of diazahelicenes **2** and cinnoline **4** were measured under the nitrogen flow (200 mL/min), starting from 40 °C to 600 °C at the ramp rate of 10 °C/min.

¹H and ¹³C NMR spectra

¹H NMR: (400 MHz, CDCl₃)

S22

References

- S1 Mikami, K.; Korenaga, T.; Yusa, Y.; Yamanaka, M. Adv. Synth. Catal. 2003, 345, 246.
- S2 Kano, T.; Tanaka, Y.; Osawa, K.; Yurino, T.; Maruoka, K. J. Org. Chem. 2008, 73, 7387.
- Scarborough, C. C.; McDonald, R. I.; Hartmann, C.; Sazama, G. T.; Bergant, A.; Stahl,
 S. S. J. Org. Chem. 2009, 74, 2613.
- S4 (a) Taffarel, E.; Chirayil, S.; Thummel, R. P. J. Org. Chem. 1994, 59, 823. (b) Smrcina,
 M.; Vyskocil, S.; Maca, B.; Polasek, M.; Claxton, T. A.; Abbott, A. P.; Kocovsky, P. J.
 Org. Chem. 1994, 59, 2156.
- S5 (a) Vilches-Herrera, M.; Miranda-Sepúlveda, J.; Rebolledo-Fuentes, M.; Fierro, A.; Lühr, S.; Iturriaga-Vasquez, P.; Cassels, B. K.; Reyes-Parada, M. *Bioorg. Med. Chem.* 2009, *17*, 2452. (b) Yan, P.; Millard, A. C.; Wei, M.; Loew, L. M. *J. Am. Chem. Soc.* 2006, *128*, 11030.
- S6 Dehghanpour, S.; Afshariazar, F.; Assoud, J. Polyhedron 2012, 35, 69.
- S7 Manolikakes, G.; Hernandez, C. M.; Schade, M. A.; Metzger, A.; Knochel, P. J. Org. Chem. 2008, 73, 8422.
- S8 Caronna, T.; Fontana, F.; Mele, A.; Sora, I. N.; Panzeri, W.; Viganò, L. Synthesis 2008, 413.
- S9 Takeda, Y.; Okazaki, M.; Minakata, S. Chem. Commun. 2014, 50, 10291.
- S10 Holt, P. F.; Smith, A. E. J. Chem. Soc. 1965, 7088.
- S11 Bjørsvik, H. R.; González, R. R.; Liguori, L. J. Org. Chem. 2004, 69, 7720.