Supporting Information

for

Synthesis of constrained analogues of tryptophan

Elisabetta Rossi*, Valentina Pirovano*, Marco Negrato, Giorgio Abbiati and Monica Dell'Acqua

Address: Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy

Email: Elisabetta Rossi - elisabetta.rossi@unimi.it

* Corresponding authors

Experimental procedures and analytical data

Contents

General remarks s2
Preparation and characterization data for compounds ($\mathbf{(}) \mathbf{- 3 a - h},(\pm)-\mathbf{3} \mathbf{\prime} \mathbf{a}, \mathbf{b}$ and $(\mathbf{\pm})-\mathbf{4}$ s3
Preparation and characterization data for compounds $\mathbf{(\pm) - \mathbf { 3 i } , (\pm) - 5 a , (\pm) - 5 b} \mathrm{s} 9$
Preparation and characterization data for compounds ($\mathbf{\pm}$)-5a-d s10
Preparation and characterization data for compounds ($\mathbf{\pm}$)-6a,e s12
2D NMR experiments s15
References s23

General Remarks: All chemicals and solvents are commercially available and were used after distillation or treatment with drying agents. Silica gel F254 thin-layer plates were employed for thin-layer chromatography (TLC). Silica gel 40-63 micron/ $60 \AA$ was employed for flash column chromatography. Melting points were measured with a Perkin-Elmer DSC 6 calorimeter at a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR spectra were determined with a Varian-Gemini 200, a Bruker 300 or 500 Avance spectrometers at room temperature in CDCl_{3}, $\mathrm{DMSO}-d_{6}$ or $\mathrm{D}_{2} \mathrm{O}$ with residual solvent peaks as the internal reference. The APT sequences were used to distinguish the methine and methyl carbon signals from those arising from methylene and quaternary carbon atoms. Two-dimensional NMR experiments were performed, where appropriate, to aid the assignment of structures. Low-resolution MS spectra were recorded with a ThermoFinnigan LCQ advantage AP electrospray/ion trap equipped instrument using a syringe pump device to directly inject sample solutions.
This study was carried out using (E)-2-vinylindoles $\mathbf{1 a - g}, \mathbf{1} \mathbf{j},{ }^{\mathbf{1}} \mathbf{1 h}^{\mathbf{2}}$ and methyl 2-acetamidoacrylate (2), ${ }^{3}$ which are known compounds and were prepared according to standard procedures.
$\operatorname{Mg}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{AuCl}_{3},\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]$ and EtAlCl_{2} were purchased from commercial suppliers and used as received.

Preparation and characterization data for compounds (\pm)-3a-h, (\pm)-3'a,b and (\pm)-4

A N_{2}-flushed solution of ethylaluminium dichloride (1.0 M in hexane, 1.0 equiv) and methyl 2acetamidoacrylate (2) (1.10 equiv) in anhydrous toluene (0.1 M) was stirred at room temperature for 1 h . After this time, (E)-2-vinylindole $\mathbf{1 a - h}$ (1.00 equiv) was added and the mixture was heated at $60^{\circ} \mathrm{C}$ for the required time. Then, the mixture was cooled to room temperature and quenched with $\mathrm{Na}_{2} \mathrm{HCO}_{3}$ sat. sol. The aqueous layer was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under vacuum. The crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $2: 1$).
(\pm)-trans-9-Ethyl 3-methyl 3-acetamido-2-(p-tolyl)-3,4-dihydro-1H-carbazole-3,9(2H)-dicarboxylate (3a)

General procedure was followed using $1 \mathbf{a}(61.1 \mathrm{mg}, 0.2 \mathrm{mmol}), 2(31.5 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{EtAlCl}_{2}(0.2 \mathrm{~mL}$, $0.2 \mathrm{mmol})$ in toluene (2 mL). Product 3a ($85.2 \mathrm{mg}, 94 \%$) was obtained as main reaction product as a white solid (m.p. $191.2-195.6^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.12(\mathrm{bs}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=5.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (dd, $J=6.5$, $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.8$ (C), 170.0 (C), 152.2 (C), 137.6 (C), 136.7 (C), 136.4 (C), 132.5 (C), 129.7 $(\mathrm{C}), 129.5(2 \mathrm{xCH}), 128.1(2 \mathrm{xCH}), 124.4(\mathrm{CH}), 123.2(\mathrm{CH}), 118.4(\mathrm{CH}), 115.8(\mathrm{CH}), 63.2\left(\mathrm{CH}_{2}\right), 62.1(\mathrm{C})$, $52.6\left(\mathrm{CH}_{3}\right), 45.0(\mathrm{CH}), 29.5\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathbf{E S I}(+)-\mathrm{MS}: \mathrm{m} / \mathrm{z}$ $(\%)=435(100)[M+]^{+} ; \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ [448.52]: calcd. for C 69.63, H 6.29, N 6.25; found C 69.93, H 6.44, N 6.45.
(土)-cis-9-Ethyl 3-methyl 3-acetamido-2-(p-tolyl)-3,4-dihydro-1H-carbazole-3,9(2H)-dicarboxylate (3'a)

Product 3'a was isolated in traces following the reported general procedure. In alternative it could be isolated using $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl} / \operatorname{AgOTf}(2 \mathrm{~mol} \%)$ as catalyst (see Table 1).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{dd}, J=1.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 4 \mathrm{H})$, $5.57(\mathrm{bs}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=4.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (dd, $J=4.5,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ C NMR APT ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7$ (C), 170.1 (C), 152.1 (C), 137.7 (C), 137.6 (C), 136.5 (C), 133.2 (C), $129.8(2 \mathrm{xCH}), 129.2(\mathrm{C}), 128.4(2 \mathrm{xCH}), 124.3(\mathrm{CH}), 123.1(\mathrm{CH}), 118.2(\mathrm{CH}), 115.8(\mathrm{CH}), 114.5(\mathrm{C})$, $63.2\left(\mathrm{CH}_{2}\right), 60.9(\mathrm{C}), 52.7\left(\mathrm{CH}_{3}\right), 44.4(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right)$ ppm.
(\pm)-trans-9-Ethyl 3-methyl 3-acetamido-2-methyl-3,4-dihydro-1 H -carbazole-3,9(2H)-dicarboxylate (3b)

General procedure was followed using 1b ($57.3 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathbf{2}(39.4 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.25$ $\mathrm{mL}, 0.25 \mathrm{mmol}$) in toluene (2.5 mL). Product $\mathbf{3 b}(78.2 \mathrm{mg}, 84 \%)$ was obtained as white solid (m.p. $173.0-$ $176.8^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.96$ (bs, 1H), $4.49(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.22(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.0,3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 173.4 (C), 170.1 (C), 152.4 (C), 136.4 (C), 131.4 (C), 129.9 (C), $124.4(\mathrm{CH}), 123.3(\mathrm{CH}), 118.5(\mathrm{CH}), 115.9$ $(\mathrm{CH}), 114.5(\mathrm{C}), 63.4\left(\mathrm{CH}_{2}\right), 61.28(\mathrm{C}), 52.9\left(\mathrm{CH}_{3}\right), 34.2(\mathrm{CH}), 30.1\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right), 16.5$ $\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right) . \mathbf{E S I}(+)$-MS: $\mathrm{m} / \mathrm{z}(\%)=373(100)[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}[372.41]:$ calcd. for C $64.50, \mathrm{H}$ 6.50, N 7.52; found C 64.62, H 6.44, N 7.30 .

(\pm)-cis-9-Ethyl 3-methyl 3-acetamido-2-methyl-3,4-dihydro-1 H -carbazole-3,9(2H)-dicarboxylate ($\mathbf{3}^{\prime}$ b)

Product $\mathbf{3} \mathbf{\prime} \mathbf{b}$ was isolated in 43% yield using CHCl_{3} as solvent (see Table 2).
${ }^{1} \mathbf{H}$ NMR (200 MHz, DMSO- d_{6}) : $\delta=8.45(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=4.2,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT (DMSO- $\left.d_{6}, 50 \mathrm{MHz}\right): \delta=172.2(\mathrm{C}), 169.3(\mathrm{C})$, 151.7 (C), 139.8 (C), 136.1 (C), 127.5 (C), 124.4 (CH), 123.4 (CH), 120.8 (CH), 115.5 (CH), 114.8 (C), 64.0
$\left(\mathrm{CH}_{2}\right), 59.1(\mathrm{C}), 52.7\left(\mathrm{CH}_{3}\right), 34.5\left(\mathrm{CH}_{2}\right), 26.0(\mathrm{CH}), 23.3\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$, $14.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm} .1 \mathrm{CH}_{2}$ is overlapping.
(土)-trans-9-Ethyl 3-methyl 3-acetamido-2-butyl-3,4-dihydro-1H-carbazole-3,9(2H)-dicarboxylate (3c)

General procedure B was followed using $\mathbf{1 c}(109 \mathrm{mg}, 0.4 \mathrm{mmol}), 2(63.0 \mathrm{mg}, 0.44 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.4$ $\mathrm{mL}, 0.4 \mathrm{mmol})$ in toluene $(4.0 \mathrm{~mL})$. Product $\mathbf{3 c}(116 \mathrm{mg}, 74 \%)$ was obtained as white solid (m.p. 154.9$158.3^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8,08(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 1.21 \mathrm{H}), 7.44-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.03(\mathrm{bs}, 1 \mathrm{H}), 4.49(\mathrm{q}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=16.7,1 \mathrm{H}), 3.29-3.16(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=$ $7.0,3 \mathrm{H}), 1.53-1.12(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6,3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.4(\mathrm{C})$, $169.8(\mathrm{C}), 152.3(\mathrm{C}), 136.2(\mathrm{C}), 131.7(\mathrm{C}), 129.8(\mathrm{C}), 124.3(\mathrm{CH}), 123.2(\mathrm{CH}), 118.3(\mathrm{CH}), 115.7(\mathrm{CH})$, $114.7(\mathrm{C}), 63.2(\mathrm{CH} 2), 61.3(\mathrm{C}), 52.7\left(\mathrm{CH}_{3}\right), 39.3(\mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 23.6$ $\left(\mathrm{CH}_{3}\right), 22.7\left(5 \mathrm{CH}_{2}\right), 14.6\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI $(+)$-MS: m/z $(\%)=415(21)[\mathrm{M}+\mathrm{H}]^{+}, 437(21)[\mathrm{M}+$ $\mathrm{Na}]^{+} ; \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ [414.50]: calcd. for C 66.65, H 7.30, N 6.76; found C 66.78, H 7.42, N 6.82 .
(土)-trans-9-Ethyl 3-methyl 3-acetamido-2-cyclohexyl-3,4-dihydro-1H-carbazole-3,9(2H)-dicarboxylate (3d)

General procedure was followed using $\mathbf{1 d}(100 \mathrm{mg}, 0.34 \mathrm{mmol}), 2(53.0 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.34$ $\mathrm{mL}, 0.34 \mathrm{mmol}$) in toluene (3.4 mL). Product $\mathbf{3 d}(124 \mathrm{mg}, 83 \%)$, was obtained as white solid (m.p. 199.3$205.2^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{bs}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=17.7,1 \mathrm{H}), 3.31(\mathrm{dd}, J=4.4,19.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66-0.84(\mathrm{~m}, 13 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=174.1(\mathrm{C}), 169.7(\mathrm{C}), 152.5(\mathrm{C}), 136.2(\mathrm{C}), 133.5(\mathrm{C}), 129.9(\mathrm{C}), 124.3(\mathrm{CH}), 123.2(\mathrm{CH}), 118.4(\mathrm{CH})$, $115.9(\mathrm{CH}), 115.3(\mathrm{C}), 63.3\left(\mathrm{CH}_{2}\right), 61.8(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 44.7(\mathrm{CH}), 38.1(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 27.5$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \operatorname{ESI}(+)-M S: \mathrm{m} / \mathrm{z}(\%)=$ 441 (100) $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$ [440.54]: calcd. for $\mathrm{C} 68.16, \mathrm{H} 7.32, \mathrm{~N} 6.36$; found C.68.45, H 7.21, N 6.48.

(\pm)-trans-9-Ethyl 3-methyl 3-acetamido-2-(3-fluorophenyl)-3,4-dihydro-1H-carbazole-3,9(2H)dicarboxylate (3e)

General procedure was followed using $\mathbf{1 e}(61.9 \mathrm{mg}, 0.2 \mathrm{mmol}), 2(31.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.2 \mathrm{~mL}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$. Product $3 \mathrm{e}(78.6 \mathrm{mg}, 79 \%)$ was obtained as a white solid (m.p. 193.0-197.5 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.14(\mathrm{dd}, J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.77(\mathrm{~m}$, $3 \mathrm{H}), 6.13(\mathrm{bs}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.45(\mathrm{~m}, 6 \mathrm{H}), 3.13(\mathrm{~d}, J=$ 17.2 Hz, 1 H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR APT $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=172.6(\mathrm{C}), 170.1(\mathrm{C}), 162.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}, \mathrm{C}\right), 152.2(\mathrm{C}), 142.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.2 \mathrm{~Hz}, \mathrm{C}\right), 136.3$ (C), $132.2(\mathrm{C}), 130.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.6(\mathrm{C}), 124.5(\mathrm{CH}), 124.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right)$, $123.3(\mathrm{CH}), 118.4(\mathrm{CH}), 115.9(\mathrm{CH}), 115.6(\mathrm{C}), 115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=14.8 \mathrm{~Hz}, \mathrm{CH}\right), 114.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $13.7 \mathrm{~Hz}, \mathrm{CH}), 63.3\left(\mathrm{CH}_{2}\right), 62.0(\mathrm{C}), 52.7(\mathrm{CH}), 44.9(\mathrm{CH}), 29.4\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{3}\right)$, $14.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathbf{E S I}(+)-\mathbf{M S}: \mathrm{m} / \mathrm{z}(\%)=453(36)[\mathrm{M}+\mathrm{H}]^{+} ; 475(100)[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{5}$ [452.48]: calcd. for C 66.36, H 5.57, N 6.19; found: C 66.48, H 5.61, N 6.02.
(土)-trans-9-Ethyl 3-methyl 3-acetamido-2-(4-methoxyphenyl)-3,4-dihydro-1H-carbazole-3,9(2H)dicarboxylate (3f)

General procedure was followed using 1f $(64.3 \mathrm{mg}, 0.2 \mathrm{mmol}), 2(31.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.2$ $\mathrm{mL}, 0.2 \mathrm{mmol})$ in toluene (2 mL). Product $\mathbf{3 f}(72.5 \mathrm{mg}, 78 \%)$ was obtained as white wax.
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.16(\mathrm{dd}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{bs}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.50(\mathrm{~m}$, $7 \mathrm{H}), 3.16(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=172.8(\mathrm{C}), 170.1(\mathrm{C}), 159.2(\mathrm{C}), 152.2(\mathrm{C}), 136.4(\mathrm{C}), 132.5(\mathrm{C}), 131.8(\mathrm{C}), 129.7(\mathrm{C}), 129.3$ (2xCH), $124.4(\mathrm{CH}), 123.2(\mathrm{CH}), 118.4(\mathrm{CH}), 115.8(\mathrm{CH}), 115.7(\mathrm{C}), 114.1(2 \mathrm{xCH}), 63.3\left(\mathrm{CH}_{2}\right), 62.1(\mathrm{C}), 55.3$ $\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right), 44.6(\mathrm{CH}), 29.6\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathbf{E S I}(+)-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=$
$463(20)[\mathrm{M} \mathrm{-} \mathrm{H}]^{+}, 405(100)[\mathrm{M}-\mathrm{COOEt}]^{+} . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}[464.52]$: calcd. for C 67.23, H 6.08, N 6.03; found C 67.48, H 6.12, N 5.83 .
(\pm)-trans-9-Ethyl 3-methyl 3-acetamido-6-fluoro-2-(p-tolyl)-3,4-dihydro-1 H -carbazole-3,9(2H)dicarboxylate ($\mathbf{3 g}$)

General procedure was followed using $\mathbf{1 g}(64.3 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{2}(31.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.2$ $\mathrm{mL}, 0.2 \mathrm{mmol})$ in toluene (2 mL). Product $\mathbf{3 g}(46.7 \mathrm{mg}, 50 \%)$ was obtained as white solid (m.p. 225.1-228.5 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{dd}, J=4.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.09(\mathrm{bs}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=6.2,1 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 6 \mathrm{H}), 3.2(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6(\mathrm{C})$, 170.0 (C), 159.7 (d, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}, \mathrm{C}\right), 151.9(\mathrm{C}), 137.7(\mathrm{C}), 136.5(\mathrm{C}), 134.4$ (C), 132.6 (C), 130.7 (d, ${ }^{3} \mathrm{~J}_{\mathrm{C} . \mathrm{F}}=$ $9.5 \mathrm{~Hz}, \mathrm{C}), 129.5(2 \mathrm{xCH}), 128.1(2 \mathrm{xCH}), 116.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}, \mathrm{CH}\right), 115.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 111.7(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}, \mathrm{CH}\right), 104.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}, \mathrm{CH}\right), 63.4\left(\mathrm{CH}_{2}\right), 62.1(\mathrm{C}), 52.6\left(\mathrm{CH}_{3}\right), 44.77(\mathrm{CH}), 29.7$ $\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathbf{E S I}(+)-\mathbf{M S}: \mathrm{m} / \mathrm{z}(\%)=489(100)[\mathrm{M}+\mathrm{Na}]^{+}$. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{5}$ [466.51]: calcd. for C 66.94, H 65.83, N 6.00; found C 67.28, H 65.67, N 6.22.
(\pm)-trans-9-Ethyl 3-methyl 3-acetamido-6-methoxy-2-(p-tolyl)-3,4-dihydro-1H-carbazole-3,9(2H)dicarboxylate (3h)

General procedure was followed using $\mathbf{1 h}(67.1 \mathrm{mg}, 0.2 \mathrm{mmol}), 2(31.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.2$ $\mathrm{mL}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$. Product $3 \mathrm{~h}(43.8 \mathrm{mg}, 46 \%)$ was obtained as white solid (m.p. $251.5-$ $255^{\circ} \mathrm{C}$, dec.).
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=8.14(\mathrm{bs}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-7.15(\mathrm{~m}, 6 \mathrm{H}), 4.39(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathbf{C}$ NMR APT (50 MHz , DMSO- d_{6}): $\delta=172.6$ (C), 170.4 (C), 156.5 (C), 151.7 (C), 138.2 (C), 137.0 (C), 134.6 (C), 130.3 (C), 129.9 (2 xCH),
$128.1(2 \mathrm{xCH}), 116.7(\mathrm{CH}), 114.5(\mathrm{C}), 112.7(\mathrm{CH}), 102.0(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right), 62.6(\mathrm{C}), 56.1\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{3}\right)$, $43.8(\mathrm{CH}), 27.8\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathbf{E S I}(+)$-MS: m/z $(\%)=479$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 501(80)[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$ [478.54]: calcd. for $\mathrm{C} 67.77, \mathrm{H} 6.32$, N 5.85 ; found C 67.85, H 6.15 N 5.99.

(土)-Ethyl 3-(1-(ethoxycarbonyl)-1H-indol-2-yl)-1,2,3,4-tetrahydro-9H-carbazole-9-carboxylate (4)

General procedure was followed using $\mathbf{1 i}(43.05 \mathrm{mg}, 0.2 \mathrm{mmol}), 2(31.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{EtAlCl}_{2}(0.2$ $\mathrm{mL}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ at room temperature. Product $4(28.4 \mathrm{mg}, 33 \%)$ was obtained as yellow wax.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.15(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.42-4.46(\mathrm{~m}$, $4 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.58(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR APT $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=152.5(\mathrm{C}), 143.8(\mathrm{C}), 137.9(\mathrm{C}), 137.4(\mathrm{C}), 136.4(\mathrm{C}), 129.7(\mathrm{C}), 129.6(\mathrm{C}), 124.1(\mathrm{CH}), 124.0$ $(\mathrm{CH}), 123.3(\mathrm{CH}), 123.1(\mathrm{CH}), 120.6(\mathrm{CH}), 119.1(\mathrm{CH}), 118.2(\mathrm{C}), 116.2(\mathrm{CH}), 115.9(\mathrm{CH}), 111.3(\mathrm{CH})$, $63.6\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2}\right), 32.3(\mathrm{CH}), 29.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{2}\right), 14.9\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathbf{E S I}(+)-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=431(100)[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ [430.50]: calcd. for C 72.54, H 6.09, N 6.51 ; found C 72.86, H 5.80, N 6.23 .

Preparation and characterization data for compounds $(\pm)-3 i,(\pm)-5 a,(\pm)-5 b$

(土)-Methyl 3-acetamido-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (3i)

A N_{2}-flushed solution of ethylaluminium dichloride $(0.70 \mathrm{~mL}, 0.70 \mathrm{mmol})$ and methyl 2-acetamidoacrylate (2) ($110 \mathrm{mg}, 0.77 \mathrm{mmol}$) in anhydrous toluene $(7 \mathrm{~mL})$ was stirred at room temperature for 1 h . After this time $\mathbf{1 j} \mathbf{~ (1 0 0 ~} \mathrm{mg}, 0.70 \mathrm{mmol})$ was added and the mixture was left to stir at room temperature for 5 h .

Then, the mixture was cooled to room temperature and quenched with $\mathrm{Na}_{2} \mathrm{HCO}_{3}$ sat. sol. The aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under vacuum. The crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $1: 1$) to yield $\mathbf{3 i}(48.1 \mathrm{mg}, 44 \%)$ as a white solid (m.p. $68.5-73.0^{\circ} \mathrm{C}$).
${ }^{1}$ H NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=10.72(\mathrm{bs}, 1 \mathrm{H}), 8.12(\mathrm{bs}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H})$ 7.03-6.88 (m, 2H), $3.60(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=175.1$ (C), 170.3 (C), 136.8 (C), 133.6 (C), 128.0 (C), 121.0 (CH), 118.8 $(\mathrm{CH}), 117.9(\mathrm{CH}), 111.3(\mathrm{CH}), 105.3(\mathrm{C}), 57.9(\mathrm{C}), 52.6\left(\mathrm{CH}_{3}\right), 30.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right), 19.7$ $\left(\mathrm{CH}_{2}\right)$ ppm. ESI(+)-MS: $\mathrm{m} / \mathrm{z}(\%)=287(100)[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[286.33], 309(43)[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for C 67.12, H 6.34, N 9.78; found C.67.34, H 6.21, N 9.83.

(\pm)-Methyl 3-acetamido-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (5a, 5b)

and

A N_{2}-flushed solution of ethylaluminium dichloride $(0.43 \mathrm{~mL}, 0.43 \mathrm{mmol})$ and methyl 2-acetamidoacrylate (2) $(61.0 \mathrm{mg}, 0.43 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(4.3 \mathrm{~mL})$ was stirred at room temperature for 1 h . After this time, $\mathbf{1 k}(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was added and the mixture was left to stir at $60^{\circ} \mathrm{C}$ for 2 h .

Then, the mixture was cooled to room temperature and quenched with $\mathrm{Na}_{2} \mathrm{HCO}_{3}$ sat. sol. The aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under vacuum. The crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $1: 1$) to yield respectively $\mathbf{5 b}(61.0 \mathrm{mg}, 37 \%)$ and $\mathbf{5 a}(47.0 \mathrm{mg}, \mathbf{2 9 \%})$.

Characterisation of $\mathbf{5 b}$ and $\mathbf{5 a}$ is reported in the next section.

Preparation and characterization data for compounds (\pm)-5a-d

To a N_{2}-flushed stirring solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.05 equiv) in methanol (0.05 M), the corresponding ethyl 3,4-dihydro- $1 H$-carbazole- $9(2 H)$-carboxylate 3a, 3'a, 3b, 3d (1.00 equiv) was added and the mixture was heated at $65{ }^{\circ} \mathrm{C}$ for 2 h . After that time the mixture was cooled to room temperature and solvent was evaporated. The residue was dissolved in ethyl acetate and water and the aqueous phase was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under vacuum.
(土)-trans-Methyl 3-acetamido-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (5a)

General procedure was followed using 3a ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(65 \mathrm{mg}, 0.47 \mathrm{mmol})$. Product 5a ($163 \mathrm{mg}, 97 \%$) was obtained as pink solid (m.p. 258.7-262.3 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.95(\mathrm{bs}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.07$ (m, 2H), 7.02-6.96 (m, 4H), 6.16 (bs, 1H), $3.85(\mathrm{dd}, J=3.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}$, $3 \mathrm{H}), 3.35$ (dd, $J=5.2,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=3.8,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.4$ (C), 170.5 (C), 137.7 (C), 137.2 (C), 137.0 (C), $131.3(\mathrm{C}), 129.5(2 \mathrm{xCH}), 128.2(2 \mathrm{xCH}), 128.0(\mathrm{C}), 121.9(\mathrm{CH}), 119.7(\mathrm{CH}), 118.5(\mathrm{CH}), 111.0(\mathrm{CH})$, $108.6(\mathrm{C}), 63.0(\mathrm{C}), 52.6(\mathrm{CH}), 44.4\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI (+)MS: $\mathrm{m} / \mathrm{z}(\%)=399(100)[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ [376.46]: calcd. for C 73.38, H 6.43, N 7.34 .; found C 73.45, H 6.32, N 7.48.

(土)-cis-Methyl 3-acetamido-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (5b)

General procedure was followed using 3'a ($128 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(40.0 \mathrm{mg}, 0.29 \mathrm{mmol})$. Product $\mathbf{5 b}(90.0 \mathrm{mg}, 87 \%)$ was obtained as pink solid (m.p. $262.4-269.2^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89(\mathrm{bs}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.00$ (m, 6H), $5.39(\mathrm{bs}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=1.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=7.7,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=1.8,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (s, 3H), 1.89 (s, 3H) ppm.
${ }^{13}$ C NMR APT ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$ (C), 170.1 (C), 138.9 (C), 137.6 (C), 137.0 (C), 132.9 (C), $129.8(2 \mathrm{xCH}), 128.7(2 \mathrm{xCH}), 127.5(\mathrm{C}), 122.0(\mathrm{CH}), 119.8(\mathrm{CH}), 118.2(\mathrm{CH}), 111.1(\mathrm{CH}), 106.8(\mathrm{C}), 61.4$ (C), $52.9\left(\mathrm{CH}_{3}\right), 42.6(\mathrm{CH}), 28.5\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI (+)-MS: m/z $(\%)=$ $399(100)[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ [376.45]: calcd. for C 73.38, H 6.43, N 7.34 .
(\pm-trans-Methyl 3-acetamido-2-methyl-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (5c)

General procedure was followed using 3b ($226 \mathrm{mg}, 0.61 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(89 \mathrm{mg}, 0.64 \mathrm{mmol})$. Product 5c ($130 \mathrm{mg}, 71 \%$) was obtained as brown solid (m.p. 225.4-233.7 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{bs}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.08(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{bs}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=8.4,2 \mathrm{H}), 3.01(\mathrm{dd}, J=5.9,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.7$ (C), 170.2 (C), 136.7 (C), 130.3 (C), 127.8 (C), 121.8 (CH), 119.6 (CH), 118.1 (CH), 111.0 (CH), 106.4 (C), 61.9 (C), $52.6\left(\mathrm{CH}_{3}\right), 33.4(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathbf{E S I}(+)-\mathbf{M S}: \mathrm{m} / \mathrm{z}(\%)=$ $301(60)[\mathrm{M}+\mathrm{H}]^{+} ; 323(100)[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[300.36]$: calcd. for C 67.98, H 6.71, N 9.33 ; C 68.25, H 6.88, N 9.21.
(\pm)-trans-Methyl 3-acetamido-2-cyclohexyl-2,3,4,9-tetrahydro-1 H -carbazole-3-carboxylate (5d)

General procedure was followed using 3d ($520 \mathrm{mg}, 1.18 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(171 \mathrm{mg}, 1.24 \mathrm{mmol})$. Product $\mathbf{5 d}(423 \mathrm{mg}, 98 \%)$ was obtained as yellow solid (m.p. $254.4-261.6^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80(\mathrm{bs}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=0.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=0.7,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.10-0.60(\mathrm{~m}, 11 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=174.3(\mathrm{C}), 169.8(\mathrm{C}), 136.8(\mathrm{C}), 133.0(\mathrm{C}), 128.1(\mathrm{C}), 120.7(\mathrm{CH}), 118.7(\mathrm{CH}), 117.7(\mathrm{CH})$, $111.3(\mathrm{CH}), 106.1(\mathrm{C}), 62.4(\mathrm{C}), 52.4\left(\mathrm{CH}_{3}\right), 45.0(\mathrm{CH}), 38.4(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.8$ $\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{2}\right) \mathrm{ppm} . \operatorname{ESI}(+)-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=369(100)[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ [368.48]: calcd. for C 71.71, H 7.66, N 7.60; found C 71.43, H 7.78, N 7.52.

Preparation and characterization data for compounds (\pm)-6a-e

In a microwave vial the corresponding methyl 3 -acetamido-2,3,4,9-tetrahydro-1 H -carbazole-3-carboxylate $\mathbf{5 a - d}, \mathbf{3 i}$ (1.00 equiv) was dissolved in $\mathrm{HCl} 37 \%$ (115 equiv). The vial was then introduced in a microwave (500W) and heated at $120^{\circ} \mathrm{C}$ for 2 h . After that time solvent was removed under reduced pressure. The crude thus obtained was treated with propylene oxide (50 equiv) in ethanol at $80^{\circ} \mathrm{C}$ for 1 h . Solvent was then removed and the crude purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate/methanol $\left.=8: 2\right)$ to yield the corresponding product 6 as a solid.
(土)-trans-3-Ammonio-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (6a)

General procedure was followed using 5a $(250 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathrm{HCl} 37 \%(6.3 \mathrm{~mL})$ and propylene oxide $(2.27 \mathrm{~mL}, 32.3 \mathrm{mmol})$ to yield product $\mathbf{6 a}(126.8 \mathrm{mg}, 60 \%)$ as white solid (m.p. $221.8-222.3^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-1.06 (m, 5H), $3.53(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13}$ C NMR APT ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=173.5$ (C), 137.6 (C), 135.7 (C), 135.4 (C), 132.5 (C), 128.7 $(2 \mathrm{xCH}), 127.6(2 \mathrm{xCH}), 126.0(\mathrm{C}), 120.9(\mathrm{CH}), 118.6(\mathrm{CH}), 116.9(\mathrm{CH}), 110.6(\mathrm{CH}), 104.5(\mathrm{C}), 63.2(\mathrm{C})$, $44.5(\mathrm{CH}), 26.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \operatorname{ESI}(+)-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=321(100)[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ [320.39]: calcd. for C 74.98, H 6.29, N 8.74; found: 75.11, H 6.33, N 8.68.
(土)-cis-3-Ammonio-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (6b)

General procedure was followed using $\mathbf{5 b}(90.4 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{HCl} 37 \%(2.8 \mathrm{~mL})$ and propylene oxide $(0.82 \mathrm{~mL}, 11.8 \mathrm{mmol})$ to yield product $\mathbf{6 b}(47.7 \mathrm{mg}, 62 \%)$ as white solid (m.p. $220.2-221^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=6.5,11.01 \mathrm{H}), 3.47(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=6.5,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=173.3$ (C), 138.0 (C), 135.8 (C), 133.4 (C), $131.7(\mathrm{C}), 129.0(2 \mathrm{xCH}), 127.8(2 \mathrm{xCH}), 125.7(\mathrm{C}), 121.1(\mathrm{CH}), 118.7(\mathrm{CH}), 116.9(\mathrm{CH}), 110.7(\mathrm{CH}), 102.7$ $(\mathrm{C}), 63.7(\mathrm{C}), 43.2(\mathrm{CH}), 28.8\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

General procedure was followed using $5 \mathbf{c}(106 \mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{HCl} 37 \%(3.30 \mathrm{~mL})$ and propylene oxide $(1.20 \mathrm{~mL}, 17.2 \mathrm{mmol})$ to yield product $\mathbf{6 c}(48.7 \mathrm{mg}, 57 \%)$ as white solid (m.p. $217.7-218^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{dd}$, $J=4.1,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=3.75,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.4,3 \mathrm{H})$ ppm. ${ }^{13}$ C NMR APT ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=173.7$ (C), 136.8 (C), 132.2 (C), 126.9 (C), 122.0 (CH), 119.7 $(\mathrm{CH}), 117.9(\mathrm{CH}), 111.7(\mathrm{CH}), 103.4(\mathrm{C}), 71.2(\mathrm{C}) 34.2(\mathrm{CH}), 27.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 15.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI(+)-MS: m/z (\%) = $245(100)[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[244.29]:$ calcd. for C 68.83, H 6.60, N 11.47; C 68.54, H 6.72, N 11.61.
(土)- trans-3-Ammonio-2-cyclohexyl-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (6d)

General procedure was followed using $\mathbf{5 d}(50.0 \mathrm{mg}, 0.13 \mathrm{mmol}), \mathrm{HCl} 37 \%(1.23 \mathrm{~mL})$ and propylene oxide $(0.50 \mathrm{~mL}, 7.14 \mathrm{mmol})$ to yield product $\mathbf{6 d}(30.0 \mathrm{mg}, 64 \%)$ as brown solid (m.p. $213.4-214{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dt}, J=1.1,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{dt}, J=1.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=4.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=7.2,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.61-0.60(\mathrm{~m}, 11 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR APT $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=175.1(\mathrm{C}), 135.6(\mathrm{C}), 132.8(\mathrm{C}), 126.0(\mathrm{C}), 120.7(\mathrm{CH}), 118.5(\mathrm{CH}), 116.7(\mathrm{CH}), 110.5$ $(\mathrm{CH}), 103.7(\mathrm{C}), 63.3(\mathrm{C}), 44.0(\mathrm{CH}), 37.0(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.4$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 19.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. ESI(+)-MS: m/z $(\%)=313(100)[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[312.41]:$ calcd. for C 73.05, H 7.74, N 8.97; C 73.36, H 7.59, N 9.06.
(土)-3-Ammonio-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (6e)

General procedure was followed using $\mathbf{3 i}(440 \mathrm{mg}, 1.53 \mathrm{mmol})$, $\mathrm{HCl} 37 \%(11 \mathrm{~mL})$ and propylene oxide (4 $\mathrm{mL}, 57.1 \mathrm{mmol}$) to yield product $\mathbf{6 e}\left(218 \mathrm{mg}, 62 \%\right.$) as yellow solid (m.p. 219.4-220 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=7.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}$, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.15(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13}$ C NMR APT ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=177.1$ (C), 136.5 (C), 132.6 (C), 126.9 (C), 121.8 (CH), 119.4 $(\mathrm{CH}), 117.7(\mathrm{CH}), 111.5(\mathrm{CH}), 104.2(\mathrm{C}), 61.9(\mathrm{C}), 28.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{2}\right)$ ppm. ESI(-)-MS: $\mathrm{m} / \mathrm{z}(\%)=229(100)[\mathrm{M}-\mathrm{H}]^{+} ; \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ [230.27]: calcd. for C 67.81, H 6.13, N 12.17; found C 67.69, H 6.28, N 12.02.

2D NMR EXPERIMENTS

Representative NOESY experiments performed on compounds 3a and 3'a

For clarity chemical shift of proper protons, assigned via COSY and HSQC experiments, are reported. The regiochemistry of both DA adducts was usefully assigned on the basis of nOe interactions between H5 and the hydrogens at C 4 , see figure A and A ' for $\mathbf{3 a}$ and $\mathbf{3} \mathbf{\prime} \mathbf{a}$, respectively. The exolendo geometries were assigned on the basis of diagnostic nOe interactions as reported in figures B and B '. Due to signals overlapping the most useful interactions were detected, for both compounds, between the NH group and the hydrogens in cis to this group on carbons 1, 2 and 4 . NOE interactions between the hydrogens bonded at C 1 , C 2 and C 4 are difficult to detect due to signals overlapping. The sole information that can be unambiguously noticed refers to the benzylic proton at C2. In both 3a and 3' \mathbf{a}, the hydrogen at C 2 do not interact with the trans hydrogen at C 4 , figure C and figure C^{\prime}, respectively.

Compound 3a

($\mathbf{\pm}$-3a, 2,3-trans

Regiochemistry 3a

Stereochemistry 3a Diagnostic NOE interactions

NOESY experiements

FIGURE A

FIGURE B

FIGURE C

Compound 3'a

(土)-3'a, 2,3-cis

Regiochemistry 3'a

Stereochemistry 3'a Diagnostic NOE interactions

NOESY experiements

cis = cis to NH
trans = trans to NH
FIGURE A'

FIGURE B'

FIGURE C ${ }^{\prime}$

Representative NMR experiments $\left({ }^{1} \mathbf{H},{ }^{13} \mathrm{C}\right.$, COSY, HSQC) performed on compounds $\mathbf{6 a}$ and $\mathbf{6 b}$

compound 6a
${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$)

compound $6 \mathbf{a}$
compound 6a
COSYNMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right)$

compound 6 a
HSQC NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right)$

References

${ }^{1}$ a) Rossi, E.; Abbiati, G.; Canevari, V.; Celentano, G. Synthesis 2006, 299-304; b) Abbiati, G.; Canevari, V.; Facoetti, D.; Rossi, E. Eur. J. Org. Chem. 2007, 517-525; c) Pirovano, V.; Decataldo, L.; Vicente, R.; Rossi, E. Chem. Commun. 2013, 49, 3594-3596.
${ }^{2}$ Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693-11712.
${ }^{3}$ Crestey, F.; Collot, V.; Stiebing, S.; Rault, S. Synthesis 2006, 3506-3014.

