Supporting Information
for

Photoinduced 1,2,3,4-tetrahydropyridine ring conversions

Baiba Turovska*1 ${ }^{\text {, Henning Lund }}{ }^{2}$, Viesturs Lūsis ${ }^{1}$, Anna Lielpētere ${ }^{1}$, Edvards Liepiņš ${ }^{1}$, Sergejs Beljakovs ${ }^{1}$, Inguna Goba ${ }^{1}$ and Jānis Stradiņč ${ }^{1}$

Address: ${ }^{1}$ Physical-organic Chemistry Laboratory, Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., Riga LV-1006, Latvia and ${ }^{2}$ Department of Organic Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus, Denmark

Email: Baiba Turovska* - turovska@osi.lv

* Corresponding author

Methods and instruments

The reaction products were analysed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra registered on a Bruker DMX 500 spectrometer. The progress of the photochemical reaction of 1 was monitored by ${ }^{1}$ H NMR spectra on a Bruker WH 90 spectrometer.

Cyclic voltammetry was recorded using Advanced Electrochemical System PARSTAT 2273.

UV spectra were recorded on Camspec M501 Single Beam Scanning UV/Visible Spectrophotometer.
Infrared spectra were recorded on a Perkin-Elmer 580B spectrometer.
GC-MS spectra were obtained by Hewlett-Packard Model GC 6890 gas chromatograph coupled with mass selective detector.

Elemental analyses were performed at EA 1106 (Carlo Erba Instruments).
Melting points were obtained on a BÜCHI 535.
X-ray crystallographic analysis were done on Nonius Kappa CCD.

Experimental section

3,5-Diethoxycarbonyl-2,6-dimethyl-4-phenyl-1,2,3,4-tetrahydropyridine (1) was synthesized from the corresponding 1,4-dihydropyridine according to a general procedure ${ }^{1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 0.71 (t, $J=7.0 \mathrm{~Hz}, 3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.03 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.11 ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}, 3 \mathrm{H}$), $2.30\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6-\mathrm{CH}_{3}, 3 \mathrm{H}\right)$, $2.42(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 3-\mathrm{H}, 1 \mathrm{H}), 3.52(\mathrm{~m}, \mathrm{~J}=10.0 \& 7.0 \& 1.0 \mathrm{~Hz}, 2-\mathrm{H}, 1 \mathrm{H}), 3.71(\mathrm{dq}, \mathrm{J}=7.0$ \& $1.2 \mathrm{~Hz}, 3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}$), 3.94 (broad s, NH, 1H), 3.98 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}$), 4.06 (broad d, J=10.0 Hz, 4-H, 1H), 7.08 (m, ArH, 5H) ppm. Mp 144-146 ${ }^{\circ} \mathrm{C}$.

X-ray structure (CCDC 667862)

[^0]
I Oxidation of 1 in solutions saturated by dioxygen

3,5-Diethoxycarbonyl-2,6-dimethyl-3-hydroperoxy-4-phenyl-3,4,5,6-

tetrahydropyridine (2)

$0.12080 \mathrm{~g} \quad(0.36 \mathrm{mmol})$ of 3,5-diethoxycarbonyl-2,6-dimethyl-4-phenyl-1,2,3,4tetrahydropyridine (1) was dissolved in $20 \mathrm{~mL} \mathrm{CHCl}_{3}$. Oxygen was intensivly blew through the solution, therefore the volumetric flask of bigger volume (50 mL) was prefered. The solution was exposed to direct sunlight. After $35 \mathrm{~min} \mathrm{CHCl}_{3}$ was evaporated due to the continuous flow of dioxygen and crystals of hydroperoxy 2 suitable for X-ray diffraction analysis were obtained.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 0.97 (t, $J=7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.07 (t, J=7.0 Hz, $3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.45 (d, $J=7.0 \mathrm{~Hz}, 6-\mathrm{CH}_{3}, 3 \mathrm{H}$), $2.09\left(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.41$ (dd, $J=13.3 \& 9.8 \mathrm{~Hz}, 5-\mathrm{H}, 1 \mathrm{H}$), $3.85(\mathrm{~m}, \mathrm{~J}=9.8 \& 7.0$ \& $2.1 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}$), 3.95 (AB m, $J=$ $7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}$), 3.98 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}$), 4.06 (d, J= 13.3 Hz , 4-H, 1H), 7.20 (m, ArH, 5H), 9.43 (bs, OOH, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 13.67\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 13.83\left(3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, 21.60 (6$\left.\mathrm{CH}_{3}\right), 21.66\left(2-\mathrm{CH}_{3}\right), 43.71(4-\mathrm{C}), 49.01(5-\mathrm{C}), 56.67(6-\mathrm{C}), 60.64\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, $62.00\left(3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 87.85(3-\mathrm{C}), 127.58 \& 127.99 \& 128.86 \& 135.92$ (ArC), 163.78 (2C), $166.28\left(3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 172.63\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 62.80; H, 6.93; N, 3.85. Found: C, 62.87; H, 6.87; N, 3.86. Mp 126-127 ${ }^{\circ} \mathrm{C}$.

X-ray structure (CCDC 667861)

${ }^{1} \mathrm{H}$ NMR spectra in CDCl_{3} of $\mathbf{2}$

${ }^{13} \mathrm{C}$ NMR specta in CDCl_{3} of $\mathbf{2}$

II Oxidation of 1 in air saturated solutions

$1.13955 \mathrm{~g} \quad(3.44 \mathrm{mmol})$ of 3,5-diethoxycarbonyl-2,6-dimethyl-4-phenyl-1,2,3,4tetrahydropyridine (1) was dissolved in $50 \mathrm{~mL} \mathrm{CDCl}_{3}$. The solution was stirred in a opened glass flask exposed to the direct sunlight. The reaction was controlled by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After completion of the reaction ($t \sim 1 \mathrm{~h}$) the solvent was evaporated, the crude product was charged on a silicia gel ($0.035-0.07 \mathrm{~mm}$ Acros Organics) column ($\mathrm{h}=$ $28 \mathrm{~cm}, \mathrm{~d}=2 \mathrm{~cm}$) and eluted using chloroform/petrolium ether/acetone (9:7:1); 10 mL fractions were collected. Combined fractions $12-18$ following after the dead volume (110 mL) contained $0.29315 \mathrm{~g}(0.81 \mathrm{mmol})$ of pure 3,5 -diethoxycarbonyl-2,6-dimethyl-3-hydroxy-4-phenyl-1,2-epoxypiperidine (4) which was concentrated in vacuum to obtain a white solid. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a hexane solution.

Fractions 21-30 that contained a mixture of 3,5-diethoxycarbonyl-2,6-dimethyl-3-hydroxy-4-phenyl-3,4,5,6-tetrahydropyridine (3) and N -acetyl-2,4-diethoxycarbonyl-2-hydroxy-4-methyl-3-phenylpyrolidine (5) were combined and after solvent removal (rotary evaporator) a pale yellow oil (0.8377 g) was obtained. Pure 5 was isolated from the oil by crystalization from diethyl ether/hexane. The white precipitate $0.44530 \mathrm{~g}(1.23 \mathrm{mmol})$ was removed by filtration. Crystals for X-ray diffraction analysis were grown from hexane.

The filtrate containing a mixture of 3,5-diethoxycarbonyl-2,6-dimethyl-3-hydroxy-4-phenyl-3,4,5,6-tetrahydropyridine (3) and N -acetyl-2,4-diethoxycarbonyl-2-hydroxy-4-methyl-3phenylpyrolidine (5) was concentrated in vacuum and analysed by 1D and 2D NMR spectra.
The isolation of the products is the same if ethyl acetate/hexane (1:1) was used as an eluent ($4 R_{f} 0.48 ; \mathbf{3} R_{f} 0.16 ; 5 R_{f} 0.15$) for column chromatography.

3,5-Diethoxycarbonyl-2,6-dimethyl-3-hydroxy-4-phenyl-3,4,5,6-tetrahydropyridine (3)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 0.94 (t, $J=7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.36 (t, J=7.0 Hz, $3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), $1.46\left(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 6-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.95\left(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}, 3 \mathrm{H}\right)$, 3.43 (dd, $J=13.4$ \& $9.5 \mathrm{~Hz}, 5-\mathrm{H}, 1 \mathrm{H}$), 3.51 (d, $J=13.4 \mathrm{~Hz}, 4-\mathrm{H}, 1 \mathrm{H}$), 3.78 (s, OH, 1H), $3.94(\mathrm{~m}, \mathrm{~J}=9.5$ \& 7.3 \& $2.1 \mathrm{~Hz}, 6-\mathrm{H}, \mathrm{IH}), 3.96\left(\mathrm{AB} \mathrm{m}, \mathrm{J}=7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right)$, 4.20 (AB m, $J=7.0 \mathrm{~Hz}, 3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}$), 7.20 (m, ArH, 5H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 13.6\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 13.8\left(3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, $21.7\left(6-\mathrm{CH}_{3}\right)$, $21.9\left(2-\mathrm{CH}_{3}\right), 49.3(5-\mathrm{C}), 49.8(4-\mathrm{C}), 56.8(6-\mathrm{C}), 60.4\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 63.2$ (3$\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $77.3(3-\mathrm{C}), 129.0$ \& 129.5 \& 135 (ArC), 162.8 (2-C), 170.8 (3$\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 171.9\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$ ppm.

IR (dry film, cm^{-1}): 3490 (br), 1730 (s), 1670 (m).

GC-MS spectrum of $\mathbf{3}$ and $\mathbf{5}$

GC-MS spectrum of $\mathbf{3}$ and $\mathbf{5}$

3,5-Diethoxycarbonyl-2,6-dimethyl-3-hydroxy-4-phenyl-1,2-epoxypiperidine (4)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 0.87 (t, $J=7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), $1.39(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.45 (s, 2-CH3, 3H), 1.49 (d, J=7.3 Hz, 6-CH3,3H), 3.28 (s, 3-OH, $1 \mathrm{H}), 3.36(\mathrm{dd}, J=13.4 \& 10.0 \mathrm{~Hz}, 5-\mathrm{H}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 4-\mathrm{H}, 1 \mathrm{H}), 3.70(\mathrm{dq}, J=$ $10.0 \& 7.3 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}$), $3.86\left(\mathrm{AB} \mathrm{m}, J=7.0 \mathrm{~Hz}, 5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 4.34$ (q, J=7.0 Hz, $3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}$), 7.12 (d, J= $8.0 \mathrm{~Hz}, \mathrm{ArH}, 2 \mathrm{H}$), 7.26 (m, ArH, 3H), 7.25 (m, 5H, Harom) ppm.
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 13.5\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 13.9\left(3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 19.0\left(2-\mathrm{CH}_{3}\right)$, $20.2\left(6-\mathrm{CH}_{3}\right), 45.4(4-\mathrm{C}), 50.0(5-\mathrm{C}), 56.5(6-\mathrm{C}), 60.5\left(5-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 62.9$ (3$\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 78.4 (3-C), 83.4 (2-C), 127.8 \& $128.0 \& 128.8 \& 134.8$ (ArC), 170.5 (5$\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 170.6\left(3-\mathrm{COCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

IR (dry film, cm^{-1}): 3500 (br), 1740 (br).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 62.80; H, 6.93; N, 3.85. Found: C, 62.39; H, 6.89; N, 3.74. Mp 76-78 ${ }^{\circ} \mathrm{C}$.

GC-MS spectrum of 4

${ }^{15} \mathrm{~N}$ NMR spectrum in CDCl_{3} of 4

NOESY spectrum in CDCl_{3} of 4

HMBC spectrum in CDCl_{3} of 4

N-Acetyl-2,4-diethoxycarbonyl-2-hydroxy-4-methyl-3-phenylpyrolidine (5)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 1.08 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.33 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), 1.63 (d, J= $6.1 \mathrm{~Hz}, 5-\mathrm{CH}_{3}, 3 \mathrm{H}$), 2.12 ($\mathrm{s}, \mathrm{COCH}_{3}, 3 \mathrm{H}$), 3.46 (dd, $J=12.8$ \& $7.9 \mathrm{~Hz}, 4-\mathrm{H}, 1 \mathrm{H}$), $3.99(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 3-\mathrm{H}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.4-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 4.17(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 4.27(\mathrm{dq}, J=7.9 \& 6.1 \mathrm{~Hz}, 5-\mathrm{H}, 1 \mathrm{H}), 4.28(\mathrm{AB} \mathrm{m}$, $\left.J=7.0 \mathrm{~Hz}, 2-\mathrm{COOCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 7.20(\mathrm{~m}, \mathrm{ArH}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $13.81\left(4-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 13.90\left(2-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 21.03$ $\left(\mathrm{COCH}_{3}\right), 22.94\left(5-\mathrm{CH}_{3}\right), 54.72(4-\mathrm{C}), 55.05(3-\mathrm{C}), 56.62(5-\mathrm{C}), 61.10\left(4-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, $62.63\left(2-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 89.34(2-\mathrm{C}), 129.03 \& 129.21 \& 132.91$ (ArC), $169.10\left(\mathrm{COCH}_{3}\right)$, $169.62\left(2-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 171.31\left(4-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
IR (Nujol, cm ${ }^{-1}$): 3200 (br), 1750 (s), 1725 (s), 1635 (s).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 62.80; H, 6.93; N, 3.85. Found: C, 62.54; H 6.90; N, 3.72. Mp 82-84 ${ }^{\circ}$ C.

X-ray structure (CCDC 1420767)

GC-MS spectrum of 5

[^0]: ${ }^{1}$ Rosentreter, U. Synthesis 1985, 2, 210.

