Supporting Information

for

$\mathrm{Cu}(\mathrm{I})$-catalyzed N, N^{\prime}-diarylation of natural diamines and polyamines with aryl iodides

Svetlana P. Panchenko, Alexei D. Averin, Maksim V. Anokhin, Olga A. Maloshitskaya and Irina P. Beletskaya*

Address: Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia

Email: Irina P. Beletskaya* - beletska@org.chem.msu.ru
*Corresponding author

Experimental procedures, characterization and spectral data for synthesized compounds 11-64

General

NMR spectra were recorded with a Bruker Avanve-400 spectrometer $\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100.6 MHz) in CDCl_{3} or DMSO- d_{6} at 298 K . Chemical shifts are given in δ scale in ppm, signals in proton spectra are referenced to residual peaks of CHCl_{3} or CHD_{2} in DMSO ($\delta_{\mathrm{H}} 7.25,2.49$, respectively), signals in ${ }^{13} \mathrm{C}$ spectra are referenced to the centers of multiplets CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ($\delta_{\mathrm{c}} 77.0$, 39.5, respectively). MALDI-TOF mass spectra of positive ions were registered with a Bruker Daltonics Autoflex II spectrometer using 1,8,9-trihydroxyanthracene (dithranol) as a matrix and PEG-200, 300, 400 or 600 as internal standards for a precise calibration. Elemental analysis was done using Vario Micro Cube Elementar device, melting points were measured with Electrothermal device in a open capillary. Preparative column chromatography was carried out using silica gel Merck 40-60 mesh.

Commercially available diamines and polyamines 1-8, copper iodide, cesium carbonate, 2(isobutyryl)cyclohexanone, L-proline and aryl iodides were used without special purification. Dimethylformamide and propionitrile were distilled over CaH_{2}, dichloromethane, petroleum ether and methanol were used freshly distilled.

General method for $\mathbf{C u}(\mathrm{I})$-catalyzed N, N^{\prime}-diarylation of di- and polyamines

A Schlenk tube equipped with a magnetic stirrer and reflux condenser, flushed with dry argon, was charged with CuI (10-20 mol \%), ligand (L-proline (L1) or 2-(isobutyryl)cyclohexanone (L2), $20-40 \mathrm{~mol} \%$), aryl iodide (2.5 mmol), appropriate solvent (DMF or EtCN, 2 mL), and the di- or polyamine (1 mmol). The reaction mixture was stirred for 1 min , then cesium carbonate ($2.5 \mathrm{mmol}, 845 \mathrm{mg}$) was added and the reaction was stirred either under reflux (in the case of EtCN) or at $110{ }^{\circ} \mathrm{C}$ (in the case of DMF). After ca 24 h upon completion of the reaction the mixture was cooled down to ambient temperature, dichloromethane (5 mL) was added, the organic solution was filtered, the residue was washed additionally with dichloromethane (2×5 mL), the combined organic fractions were evaporated in vacuo. To obtain individual compounds, the residue was chromatographed on silica gel using a sequence of eluents: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10: 1,3: 1), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ (100:20:1, 100:20:2, 100:20:3, 100:25:5, 10:4:1) or hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1,3: 1,2: 1,1: 1,1: 2), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (100:1).
N^{1}, N^{3}-diphenylpropane-1,3-diamine (9), N^{1}-phenylpropane-1,3-diamine (10), N^{1}-phenylbutane-1,4-diamine (12) are described in literature (ref. [1-3]) and their yields were estimated in the reaction mixtures from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. These reactions were used for preliminary experiments to compare efficiency of the catalytic systems.
N^{1}, N^{4}-Diphenylbutane-1,4-diamine (11) [1] was obtained from diamine $2(1 \mathrm{mmol}, 101 \mu \mathrm{~L}$), iodobenzene ($2.5 \mathrm{mmol}, 280 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN. Eluent hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1-1:2. Yield $103 \mathrm{mg}(43 \%)$, light-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.72-1.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 3.18\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.54$ (br.s, $2 \mathrm{H}, \mathrm{NH}$), $6.62\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.9 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.73\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=7.3 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right), 7.20\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=\right.$ $\left.7.9 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.1\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 43.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 112.7(4 \mathrm{C}$, C2, C2 ${ }^{\text {(}} \mathrm{Ph}$)), 117.3 (2C, C4(Ph)), 129.2 (4C, C3, C3 ${ }^{\prime}(\mathrm{Ph})$), 148.2 (2C, C1(Ph)); MS (MALDITOF) calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2}: 241.17$, found $241.16[\mathrm{M}+\mathrm{H}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}$-Phenylbutane-1,4-diamine (12) [4] was obtained as the second product in the synthesis of compound $\mathbf{1 1}$ and was identified in the reaction mixture by proton NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 1.60-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right.$), 2.73 (br.s, 2 H , $\left.\mathbf{C H}_{2} \mathrm{NH}_{2}\right), 3.12\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 6.59\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.0 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.69(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right), 7.13-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 3^{\prime}(\mathrm{Ph})\right)$, NH and NH_{2} protons were not unambiguously assigned.
$N^{\mathbf{1}}, N^{\mathbf{3}}$-Di(biphenyl-4-yl)propane-1,3-diamine (13) [5] was obtained from diamine $\mathbf{1}$ (1 mmol , $83 \mu \mathrm{~L}$), 4-iodobiphenyl ($2.5 \mathrm{mmol}, 700 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 100:1. Yield $211 \mathrm{mg}(56 \%)$, pale-brown crystalline powder, m.p. $118-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.98$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $3.33\left(t, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.76 (br.s, $2 \mathrm{H}, \mathrm{NH}$), 6.73 $\left(\mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right), 7.32\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right), 7.45\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{o b s}=7.6 \mathrm{~Hz}\right.$, $\mathrm{H}(\mathrm{Ar})), 7.51\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right), 7.58-7.62(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}(\mathrm{Ar})) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.1$ ($1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}$), $41.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 113.1(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ar})$), $126.0(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ar})), 126.2$ (4 C , $\mathrm{CH}(\mathrm{Ar})$), 127.9 (4C, $\mathrm{CH}(\mathrm{Ar})$), 128.6 (4C, $\mathrm{CH}(\mathrm{Ar})$), 130.3 (2C, C(Ar)), 141.1 (2C, C(Ar)), 147.5 (2C, $\mathrm{NC}(\mathrm{Ar})$). MS (MALDI-TOF) calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2}: 379.22$, found $379.24[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}, N^{3}-Bis(4-chlorophenyl)propane-1,3-diamine (14) was obtained from diamine $\mathbf{1}$ (1 mmol , $83 \mu \mathrm{~L}$), 4-chloroiodobenzene ($2.5 \mathrm{mmol}, 596 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1$. Yield 209 mg (71%), yellow crystalline powder, m.p. $85-87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.89$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7$ $\mathrm{Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $3.20\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.72 (br.s, $2 \mathrm{H}, \mathrm{NH}$), $6.50-6.54$ (m, 4H, H2, $\left.\mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.10-7.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.9\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 41.9(2 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 113.8$ (4C, C2, C2’(Ph)), 121.9 (2C, C4(Ph)), 129.0 (4C, C3, C3’(Ph)), 146.6 (2C, $\mathrm{C} 1(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2}: 295.0769$, found $295.0784[\mathrm{M}+\mathrm{H}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{3}}$-Bis(4-fluorophenyl)propane-1,3-diamine (15) was obtained from diamine $\mathbf{1}$ ($1 \mathrm{mmol}, 83$ $\mu \mathrm{L}$), 4-fluoroiodobenzene ($2.5 \mathrm{mmol}, 288 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 50:1-25:1. Yield 160 $\mathrm{mg}(61 \%)$, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.92$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 3.21 $\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.61 (br.s, $2 \mathrm{H}, \mathrm{NH}$), 6.53-6.57 (m, $4 \mathrm{H},{ }^{4} J_{H F}=4.3 \mathrm{~Hz}, \mathrm{H} 2$, $\left.\mathrm{H}{ }^{\prime}(\mathrm{Ph})\right), 6.86-6.92\left(\mathrm{~m}, 4 \mathrm{H},{ }^{3} J_{H F}=8.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 29.1(1 \mathrm{C}$, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 42.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 113.6\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{C F}=6.8 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right.$), $115.6\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=\right.$ $21.9 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3$ ' (Ph)), 144.5 (2C, C1(Ph)), $155.8\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=235.2 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right.$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{2}$: 263.1360 , found $263.1429[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{\mathbf{1}}, N^{\mathbf{3}}$-Bis(4-(trifluoromethyl)phenyl)propane-1,3-diamine (16) was obtained from diamine $\mathbf{1}$ ($1 \mathrm{mmol}, 83 \mu \mathrm{~L}$), 4-iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19$ mg) and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1. Yield
$147 \mathrm{mg}(42 \%)$, pale-yellow crystalline powder, m.p. $96-98^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.96$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $3.30\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 4.03 (br.s, $2 \mathrm{H}, \mathrm{NH}$), 6.61 (d, 4 H , $\left.{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.41\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.8$ $\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 41.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 111.9\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2^{\prime}(\mathrm{Ph})\right), 118.9\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J_{\mathrm{CF}}=33.2 \mathrm{~Hz}\right.$, $\mathrm{C} 4(\mathrm{Ph})), 125.0\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} J_{\mathrm{CF}}=270.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.7\left(4 \mathrm{C}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 150.5(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})) ;$ HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{2}: 363.1296$, found $363.1328[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{1}, N^{\mathbf{3}}$-Bis(4-methoxyphenyl)propane-1,3-diamine (17) was obtained from diamine $\mathbf{1}$ (1 mmol , $83 \mu \mathrm{~L}$), 4-iodoanisole ($2.5 \mathrm{mmol}, 585 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 25: 1$. Yield 159 mg (56\%), brown crystalline powder, m.p. $81-83^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.89$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.4$ $\mathrm{Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 3.19 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPh}$), $3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.57\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{o b s}=8.7 \mathrm{~Hz}, \mathrm{H} 2\right.$, $\left.\mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.77\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3^{\prime}(\mathrm{Ph})\right)$, NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.3\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 43.0\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 55.7\left(2 \mathrm{C}, \mathrm{OCH}_{3}\right), 114.1$ (4C, $\mathrm{CH}(\mathrm{Ph})), 114.8(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 142.4$ (2C, $\mathrm{C} 1(\mathrm{Ph})$), 152.1 (2C, $\mathrm{C} 4(\mathrm{Ph})$); HRMS (MALDITOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: 287.1760, found $287.1725[\mathrm{M}+\mathrm{H}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{4}$-Di- \boldsymbol{p}-tolylbutane-1,4-diamine (18) was obtained from diamine $\mathbf{2}(1 \mathrm{mmol}, 101 \mu \mathrm{~L})$, 4iodotoluene ($2.5 \mathrm{mmol}, 545 \mathrm{mg}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($67 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1$. Yield $160 \mathrm{mg}(60 \%)$, beige crystalline powder, m.p. $79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.69-1.75(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}$), 2.26 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 3.12-3.18 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPh}$), 3.51 (br.s, $2 \mathrm{H}, \mathrm{NH}$), 6.55 (d, 4 H , $\left.{ }^{3} J_{\text {obs }}=8.3 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.01\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.3 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.4$ $\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 27.1\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 44.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 113.2$ (4C, C2, C2'(Ph)), 126.8 (2C, C4(Ph)), 129.7 (4C, C3, C3'(Ph)), 145.8 (2C, C1(Ph)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2}: 269.2018$, found $269.1983[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{\mathbf{1}}, N^{4}-\mathrm{Di}($ biphenyl-4-yl)butane-1,4-diamine (19) was obtained from diamine $2(1 \mathrm{mmol}, 101$ $\mu \mathrm{L}$), 4-iodobiphenyl ($2.5 \mathrm{mmol}, 700 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN . Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield $106 \mathrm{mg}(46 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.78$ (br.s, $4 \mathrm{H}, \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{C}$), 3.23 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.79 (br.s, $2 \mathrm{H}, \mathrm{NH}$), 6.68 (d, $4 \mathrm{H},{ }^{3} J_{\text {obs }}=$ $8.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})), 7.26\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.39\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\text {obs }}=7.7 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.45(\mathrm{~d}, 4 \mathrm{H}$, $\left.{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.54\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.1(2 \mathrm{C}$, $\left.\mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{C}\right), 43.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 113.0(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 126.0(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 126.3(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph}))$,
128.0 (4C, $\mathrm{CH}(\mathrm{Ph})$), 128.6 (4C, $\mathrm{CH}(\mathrm{Ph})$), 130.3 (2C, $\mathrm{C}(\mathrm{Ph})$), 141.2 (2C, $\mathrm{C}(\mathrm{Ph})$), 147.6 (2C, $\mathrm{NC}(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2}$: 393.2331, found $393.2367[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in dioxane corresponding dihydrochloride was obtained as pale-beige crystalline powder, m.p. $210^{\circ} \mathrm{C}$ (decomp.). Calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ (\%):C 72.25, H 6.50, N 6.02; found C 72.01, H 6.59, N 5.83.
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{4}}$-Bis(4-chlorophenyl)butane-1,4-diamine (20) was obtained from diamine $\mathbf{2}$ ($1 \mathbf{m m o l}, 101$ $\mu \mathrm{L})$, 4-chloroiodobenzene ($2.5 \mathrm{mmol}, 596 \mathrm{mg}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg}), \mathrm{Ph}_{3} \mathrm{P}(52 \mathrm{mg})$ and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1-1:4. Yield 212 $\mathrm{mg}(69 \%)$, beige crystalline powder, m.p. $108-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68-1.74(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}$), 3.09-3.15 (m, 4H, CH2N), 3.63 (br.s, $2 \mathrm{H}, \mathrm{NH}$), $6.50\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 2\right.$, $\left.\mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.11\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.9(2 \mathrm{C}$, $\mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}$), $43.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 113.7$ (4C, C2, C2’(Ph)), 121.8 (2C, $\mathrm{C} 4(\mathrm{Ph})$), 129.0 (4C, C3, C3' ${ }^{\prime}(\mathrm{Ph})$), 146.7 (2C, C1(Ph)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2}$: 309.0925, found $309.0901[\mathrm{M}+\mathrm{H}]^{+}$. When carrying out the same reaction in the presence of $\mathrm{CuI}(19 \mathrm{mg}), \mathrm{Ph}_{3} \mathrm{P}$ (26 mg) and 2-(isobutyryl)cyclohexanone ($17 \mu \mathrm{l}$), the yield of compound $\mathbf{2 0}$ was $83 \mathrm{mg}(27 \%)$.
$\boldsymbol{N}^{\mathbf{1}}$-(4-Chlorophenyl)butane-1,4-diamine (21) [4] was obtained as the second product in the synthesis of compound 20 in the presence of $\mathrm{CuI}(19 \mathrm{mg}), \mathrm{Ph}_{3} \mathrm{P}(26 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($17 \mu \mathrm{~L}$). Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1$. Yield 69 mg (35%), brown viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.51-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C C H}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 2.80\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $\mathbf{C H}_{2} \mathrm{NH}_{2}$), $2.98\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 5.79\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=4.9 \mathrm{~Hz}, \mathrm{NHPh}\right), 6.55\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}\right.$ $\left.=8.7 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2^{\prime}(\mathrm{Ph})\right), 7.05\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) \mathrm{NH}_{2}$ protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.7\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 25.4\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right)$, 38.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 42.2 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), 113.2 (2C, C2, C2'(Ph)), 118.6 (1C, $\mathrm{C} 4(\mathrm{Ph})$), 128.5 (2C, C3, C3'(Ph)), 147.7 (1C, C1(Ph)). MS (MALDI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{2}$: 199.10, found $199.08[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{\mathbf{1}}, N^{4}$-Bis(4-fluorophenyl)butane-1,4-diamine (22) was obtained from diamine $\mathbf{2}$ ($1 \mathrm{mmol}, 101$ $\mu \mathrm{L}$), 4-fluoroiodobenzene ($2.5 \mathrm{mmol}, 288 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg}), \mathrm{Ph}_{3} \mathrm{P}(52 \mathrm{mg})$ and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield $144 \mathrm{mg}(52 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.72$ (br.s, $4 \mathrm{H}, \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathrm{C}$), 3.11 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.42 (br.s, $2 \mathrm{H}, \mathrm{NH}$), $6.53\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{H H o b s}=8.5 \mathrm{~Hz},{ }^{4} J_{H F}=4.5 \mathrm{~Hz}, \mathrm{H} 2\right.$, H2 ${ }^{\prime}(\mathrm{Ph})$), $6.88\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{H H o b s}=8.5 \mathrm{~Hz},{ }^{3} J_{H F}=8.5 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6})
$\delta 23.1\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 48.5\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 116.4\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=22.7 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 122.8$ (br.s, 4C, C2, C2'(Ph)), $135.3(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), \mathrm{C} 4(\mathrm{Ph})$ quaternary carbon atom was not unambiguously assigned due to very low intensity caused by line broadening; HRMS (MALDITOF) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{2}$: 277.1516, found $277.1490[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{\mathbf{1}}, N^{\mathbf{4}}$-Bis(4-(trifluoromethyl)phenyl)butane-1,4-diamine (23) was obtained from diamine $\mathbf{2}$ (1 $\mathrm{mmol}, 101 \mu \mathrm{~L}$), 4-iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19$ mg), $\mathrm{Ph}_{3} \mathrm{P}(26 \mathrm{mg})$ and 2-(isobutyryl)cyclohexanone ($17 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1-1:1. Yield $216 \mathrm{mg}(58 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.72$1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right.$), 3.17-3.22 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 4.01 (br.s, $2 \mathrm{H}, \mathrm{NH}$), $6.58\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\text {obs }}=\right.$ $\left.8.5 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.40\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H}{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 26.8(2 \mathrm{C}$, $\left.\mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 43.2\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 111.8\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 118.8\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J_{C F}=32.9 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right)$, $125.0\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} J_{\mathrm{CF}}=270.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $126.6\left(4 \mathrm{C}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right.$), $150.5(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{~N}_{2}$: 377.1452, found $377.1421[\mathrm{M}+\mathrm{H}]^{+}$; calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{~N}_{2}: 357.1390$, found $357.1362[\mathrm{M}-\mathrm{F}]^{+}$. By the treatment with 5 M HCl solution in dioxane corresponding hydrochloride as a solvate with dioxane was obtained as pale-beige crystalline powder, m.p. $163-165^{\circ} \mathrm{C}$. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClF}_{6} \mathrm{~N}_{2} * \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ (\%):C 52.75, H 5.43, N 5.59; found C 53.02, H 5.95, N 5.96 .
$\boldsymbol{N}^{\mathbf{1}}$-(4-Methoxyphenyl)butane-1,4-diamine ((24) [4] was obtained from diamine $\mathbf{2}$ (1 mmol , $101 \mu \mathrm{~L}$), 4-iodoanisole ($2.5 \mathrm{mmol}, 585 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg}), \mathrm{Ph}{ }_{3} \mathrm{P}(26 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($17 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1$. Yield 112 mg (56%), brown viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.64$ (br.s, $4 \mathrm{H}, \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{C}$), 2.81 (br.s, 2 H , $\mathbf{C H}_{2} \mathrm{NH}_{2}$), 3.04 (br.s, 2H, CH2NHPh), 3.71 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.14 (br.s, $3 \mathrm{H}, \mathrm{NH}, \mathrm{NH}_{2}$), 6.61 (d, $\left.4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.7 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.75\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 26.8\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 28.8\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 41.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 44.8\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NHPh}\right)$, $55.8\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{O}\right), 114.6(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.9(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 142.3(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 152.4(1 \mathrm{C}$, C4(Ph)). MS (MALDI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$: 195.15, found $195.18[\mathrm{M}+\mathrm{H}]^{+}$
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{5}}$-Diphenylpentane-1,5-diamine (25) [6] was obtained from diamine $\mathbf{3}(1 \mathrm{mmol}, 118 \mu \mathrm{l}$), iodobenzene ($2.5 \mathrm{mmol}, 280 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:2. Yield 127 mg (50\%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCCCH}_{2}\right), 1.73$ (quintet, $4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.4 \mathrm{~Hz}, \mathrm{NCCH}_{2}$), $3.19\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.63 (br.s, 2H, NH), 6.68 (dd, 4H,
$\left.{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.79\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right), 7.27$ (dd, $\left.4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.6\left(1 \mathrm{C}, \mathrm{NCCCH}_{2}\right)$, $29.2\left(2 \mathrm{C}, \mathrm{NCCH}_{2}\right), 43.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 112.6\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C}^{\prime}(\mathrm{Ph})\right), 117.1(2 \mathrm{C}, \mathrm{C} 4(\mathrm{Ph})), 129.1(4 \mathrm{C}$, C3, C3' ${ }^{\prime}(\mathrm{Ph})$), $148.3\left(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})\right.$). MS (MALDI-TOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2}: 255.19$, found 255.21 $[\mathrm{M}+\mathrm{H}]^{+}$
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{5}}$-Di(biphenyl-4-yl)pentane-1,5-diamine (26) was obtained from diamine $\mathbf{3}(1 \mathrm{mmol}, 118$ $\mu \mathrm{L}$), iodobiphenyl ($2.5 \mathrm{mmol}, 700 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield $174 \mathrm{mg}(43 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCCCH}_{2}\right), 1.72$ (quintet, $4 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{NCCH}_{2}$), $3.20\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.85 (br.s, $2 \mathrm{H}, \mathrm{NH}$), 6.71 (d, $\left.4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.30\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.43\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.6 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right)$, $7.49\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.58\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.7 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.6$ (1C, NCCCH_{2}), 29.2 (2C, NCCH_{2}), 43.9 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}$), 113.0 ($4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), $126.0(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), $126.2(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 127.9(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph}))$, 128.6 ($4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), 130.2 ($2 \mathrm{C}, \mathrm{C}(\mathrm{Ph})$), 141.2 (2 C , $\mathrm{C}(\mathrm{Ph})), 147.6$ (2C, $\mathrm{NC}(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2}: 407.2487$, found $407.2462[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}, N^{5}-Bis(4-fluorophenyl)pentane-1,5-diamine (27) was obtained from diamine $\mathbf{3}$ (1 mmol , $118 \mu \mathrm{~L}$), 4-iodofluorobenzene ($2.5 \mathrm{mmol}, 288 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield $155 \mathrm{mg}(53 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCCCH}_{2}\right), 1.66$ (quintet, $4 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{NCCH}_{2}$), $3.08\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.81 (br.s, $2 \mathrm{H}, \mathrm{NH}$); 6.56 $\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{\text {HHobs }}=8.7 \mathrm{~Hz},{ }^{4} J_{H F}=4.3 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.88\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{H H o b s}=8.7 \mathrm{~Hz},{ }^{3} J_{H F}=8.7\right.$ $\left.\mathrm{Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.6\left(1 \mathrm{C}, \mathrm{NCCCH}_{2}\right), 29.2\left(2 \mathrm{C}, \mathrm{NCCH}_{2}\right), 44.8(2 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 113.9\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{C F}=6.7 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right.$), $115.7\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=21.9 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3^{\prime}(\mathrm{Ph})\right)$, $144.3(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 155.9\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=235.2 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right.$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2}$: 291.1673 , found $291.1630[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}, N^{5}-Bis(4-(trifluoromethyl)phenyl)pentane-1,5-diamine (28) was obtained from diamine 3 ($1 \mathrm{mmol}, 118 \mu \mathrm{~L}$), 4-iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367 \mu \mathrm{~L}$) in the presence of CuI (19 mg) and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:11:2. Yield 202 mg (51%), beige viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.48-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCCCH}_{2}\right)$, 1.68 (quintet, $4 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{NCCH}_{2}$), 3.16 (t, $4 \mathrm{H},{ }^{3} J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 3.95 (br.s, 2H, NH),
$6.58\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.40\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.5\left(1 \mathrm{C}, \mathrm{NCCCH}_{2}\right), 29.1\left(2 \mathrm{C}, \mathrm{NCCH}_{2}\right), 43.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 111.7\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right.$), $118.5\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J_{C F}=32.6 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right), 125.0\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} J_{C F}=268.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.6(4 \mathrm{C}, \mathrm{C} 3$, C3'(Ph)), 150.7 (2C, $\mathrm{C} 1(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{2}: 391.1609$, found $391.1573[\mathrm{M}+\mathrm{H}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{5}}$-Bis(4-methoxyphenyl)pentane-1,5-diamine (29) was obtained from diamine $\mathbf{3}$ (1 mmol , $118 \mu \mathrm{~L}$), 4-iodoanisole ($2.5 \mathrm{mmol}, 585 \mathrm{mg}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and L-proline (46 mg) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 25: 1$. Yield $165 \mathrm{mg}(52 \%)$, brown viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCCCH}_{2}\right), 1.65$ (quintet, $4 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{NCCH}_{2}$), $3.07(\mathrm{t}$, $4 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.60-6.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 2$ ' (Ph)); 6.75-6.79 (m, 4H, $\mathrm{H} 3, \mathrm{H} 3$ '(Ph)); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.6\left(1 \mathrm{C}, \mathrm{NCCCH}_{2}\right), 29.3\left(2 \mathrm{C}, \mathrm{NCCH}_{2}\right), 44.6\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $55.6\left(2 \mathrm{C}, \mathrm{CH}_{3} \mathrm{O}\right), 113.8(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.7(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 142.6(2 \mathrm{C}, \mathrm{NC}(\mathrm{Ph})), 151.7$ (2C, $\mathrm{OC}(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 315.2073$, found $315.2054[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}, N^{6}-Diphenylhexane-1,6-diamine (30) [7] was obtained from diamine 4 ($1 \mathrm{mmol}, 116 \mathrm{mg}$), iodobenzene $(2.5 \mathrm{mmol}, 280 \mu \mathrm{~L})$ in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1$. Yield $119 \mathrm{mg}(45 \%)$, pale-beige crystalline powder, m.p. $79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45-1.50(\mathrm{~m}$, $4 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CCN}$), 1.66 (quintet, $4 \mathrm{H},{ }^{3} J=6.7 \mathrm{~Hz}, \mathrm{NCCH}_{2}$), $3.14\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.61 (br.s, 2H, NH), 6.61-6.65 (m, 4H, H2, H2'(Ph)), 6.72 (tt, 2H, ${ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})$),
 43.8 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), 112.6 (4C, C2, C2 ${ }^{\prime}(\mathrm{Ph})$), 117.1 (2C, C4(Ph)), 129.2 (4C, C3, C3'(Ph)), 148.4 (2C, C1(Ph)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2}$: 269.2018, found 269.1983 $[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{1}, N^{\mathbf{6}}$ - $\mathbf{D i}($ biphenyl-4-yl)hexane-1,6-diamine (31) was obtained from diamine 4 ($1 \mathrm{mmol}, 116$ mg), 4-iodobiphenyl ($2.5 \mathrm{mmol}, 700 \mathrm{mg}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 100:1-50:1. Yield 152 mg (36%), yellow crystalline powder, m.p. 144-146 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.47-1.53 (m, 4H, $\mathbf{C H}_{2} \mathrm{CCN}$), 1.69 (quintet, $4 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}$), 3.19 (t, $4 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 3.71 (br.s, 2H, NH), 6.68-6.72 (m, 4H, H(Ar)), 7.29 (tt, $2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})$), 7.40-7.45 (m, 4H, H(Ar)), 7.46-7.50 (m, 4H, H(Ar)), 7.56-7.60 (m, 4H, H(Ar)); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.9\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 29.4\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 43.8\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 112.9(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ar}))$,
126.0 (2C, $\mathrm{CH}(\mathrm{Ar})$), 126.2 (4C, $\mathrm{CH}(\mathrm{Ar})$), 127.9 (4C, $\mathrm{CH}(\mathrm{Ar})$), 128.6 (4C, $\mathrm{CH}(\mathrm{Ar})$), 130.0 (2C, $\mathrm{C}(\mathrm{Ar})$), 141.2 (2C, C(Ar)), 147.8 (2C, NC(Ar)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2}$: 421.2644 , found $421.2685[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{\mathbf{1}}, N^{\mathbf{6}}$-Bis(4-fluorophenyl)hexane-1,6-diamine (32) was obtained from diamine $\mathbf{4}$ ($1 \mathrm{mmol}, 116$ mg), 4-fluoroiodobenzene ($2.5 \mathrm{mmol}, 288 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 100:1. Yield $114 \mathrm{mg}(38 \%)$, beige crystalline powder, m.p. $94-96^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42-1.48(\mathrm{~m}, 4 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{CCN}$), 1.62 (quintet, $4 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}$), $3.06\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.48 (br.s, 2H, NH), 6.50-6.55 (m, 4H, ${ }^{4} J_{H F}=4.4 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})$), $6.85-6.91\left(\mathrm{~m}, 4 \mathrm{H},{ }^{3} J_{H F}=8.8 \mathrm{~Hz}\right.$, H3, H3'(Ph)); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.9$ (2C, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 29.4\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 44.5\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right)$, $113.4\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{C F}=7.6 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 115.6\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=21.9 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3\right.$ ' (Ph)), $144.8(2 \mathrm{C}$, $\mathrm{C} 1(\mathrm{Ph})), 155.6\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=235.2 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right)$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2}$: 305.1829 , found $305.1808[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(4-Fluorophenyl)hexane-1,6-diamine (33) was obtained as the second product in the synthesis of compound 32. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3: 1-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:3. Yield 121 mg (58%), brown viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.36-1.41(\mathrm{~m}, 4 \mathrm{H}$, $\mathbf{C H}_{2} \mathbf{C C N}$), 1.59 (quintet, $2 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathbf{C H}_{2} \mathbf{C N H}_{2}$), 1.74 (quintet, $2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CNPh}\right), 2.98-3.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{NH}_{2}\right), 3.03\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 6.61-6.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.{ }^{4} J_{H F}=4.5 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.83-6.87\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} J_{H F}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3^{\prime}(\mathrm{Ph})\right), \mathrm{NH}$ and NH_{2} protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.0\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 26.1$ (1C, $\mathrm{CCH}_{2} \mathrm{C}$), 26.8 ($1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}$), 28.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CNPh}$), 40.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 45.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), $115.3\left(\mathrm{~d}, 2 \mathrm{C},{ }^{3} J_{C F}=6.8 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 115.8\left(\mathrm{~d}, 2 \mathrm{C},{ }^{2} J_{C F}=21.9 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3\right.$ ' (Ph)), 143.1 (1C, $\mathrm{C} 1(\mathrm{Ph})), 156.6\left(\mathrm{~d}, 1 \mathrm{C},{ }^{1} J_{C F}=236.9 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right.$); MS (MALDI-TOF) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{FN}_{2}$: 211.16, found $211.14[\mathrm{M}+\mathrm{H}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{6}}$-Bis(4-(trifluoromethyl)phenyl)hexane-1,6-diamine (34) was obtained from diamine $\mathbf{4}$ (1 $\mathrm{mmol}, 116 \mathrm{mg}$), 1-iodo-4-(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367 \mu \mathrm{~L}$) in the presence of CuI (19 mg) and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 4:11:1. Yield $139 \mathrm{mg}(34 \%)$, beige crystalline powder, m.p. $101-103^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42-$ 1.49 (m, 4H, CH2CCN), 1.65 (quintet, $4 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}$), 3.15 (q, $4 \mathrm{H},{ }^{3} J=6.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{NPh}$), 3.94 (br.s, $2 \mathrm{H}, \mathrm{NH}$), $6.58\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right.$), $7.39\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6\right.$ $\left.\mathrm{Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.8\left(2 \mathrm{C}, \mathbf{C H}_{\mathbf{2}} \mathbf{C C N}\right), 29.2\left(2 \mathrm{C}, \mathbf{C H}_{\mathbf{2}} \mathrm{CN}\right), 43.3$ (2C,
$\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 111.6\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 118.5\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J=32.9 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right), 125.1\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} J_{C F}=\right.$ $270.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 126.6 (4C, C3, C3'(Ph)), 150.8 (2C, C1(Ph)); MS (MALDI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2}$: 405.18, found $405.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{~N}_{2}$: 385.1703 , found $385.1688[\mathrm{M}-\mathrm{F}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}$-(4-(Trifluoromethyl)phenyl)hexane-1,6-diamine (35) was obtained as the second product in the synthesis of compound 34. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3: 1$. Yield 31 mg (12%), yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28-1.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CCN}\right), 1.45-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathrm{CNH}_{2}\right)$, 1.62-1.68 (m, 2H, CH ${ }_{2} \mathrm{CNPh}$), 2.94 (br.s, $2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{NH}_{2}$), 3.13 (t, $2 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 6.65 $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right)$, NH and NH_{2} protons were not unambiguously assigned; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 27.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $28.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 40.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 43.8\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 112.5(2 \mathrm{C}, \mathrm{C} 2$, C2 ${ }^{\prime}(\mathrm{Ph})$), 127.2 (2C, C3, C3’(Ph)), 153.1 (1C, $\mathrm{C} 1(\mathrm{Ph})$), quaternary carbon atoms $\mathrm{C} 4(\mathrm{Ph})$ and CF_{3} were not unambiguously assigned due to very low intensity of corresponding quadruplets. MS (MALDI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2}$: 261.16, found $261.18[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (MALDITOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{2}: 241.1516$, found 241.1537 [M-F] ${ }^{+}$.
N^{1}, N^{6}-Bis(4-methoxyphenyl)hexane-1,6-diamine (36) was obtained from diamine 4 (1 mmol , 116 mg), 4-iodoanisole ($2.5 \mathrm{mmol}, 585 \mathrm{mg}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg}$) and 2(isobutyryl)cyclohexanone ($67 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $50: 1$. Yield $265 \mathrm{mg}(81 \%)$, brown crystalline powder, m.p. $96-98^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41-$ 1.47 (m, 4H, $\mathbf{C H}_{2} \mathrm{CCN}$), 1.62 (quintet, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{CN}$), $3.06\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 3.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.55-6.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right.$), 6.75-6.79 (m, 4H, H3, H3'(Ph)), NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.9$ (2C, $\left.\mathbf{C H}_{\mathbf{2}} \mathrm{CCN}\right), 29.5$ (2C, $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 44.8\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 55.7\left(2 \mathrm{C}, \mathrm{OCH}_{3}\right), 113.9(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.8(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph}))$, $142.7(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 151.9(2 \mathrm{C}, \mathrm{C} 4(\mathrm{Ph}))$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$: 329.2229 , found $329.2256[\mathrm{M}+\mathrm{H}]^{+}$.
$\boldsymbol{N}^{\mathbf{1}}$-(2-Fluorophenyl)propane-1,3-diamine (37) [8] was obtained from diamine $\mathbf{1}$ ($1 \mathrm{mmol}, 83$ $\mu \mathrm{L}$), 2-fluoroiodobenzene ($2.5 \mathrm{mmol}, 292 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and 2 (isobutyryl)cyclohexanone ($67 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 3:1. Yield 99 mg (58\%), pale-yellow viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.85$ (quintet, $2 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.87 (br.s, $2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{NH}_{2}$), 3.17 (br.s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPh}$), 5.28 (br.s, $1 \mathrm{H}, \mathrm{NH}$), $6.45-6.52$ (m, 1 H , $\mathrm{H} 4(\mathrm{Ph})), 6.67\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} J_{H F}=8.5 \mathrm{~Hz}, \mathrm{H} 6(\mathrm{Ph})\right), 6.86-6.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 5(\mathrm{Ph})), \mathrm{NH}_{2}$
protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.2\left(1 \mathrm{C}, \mathbf{C C H}_{2} \mathrm{C}\right), 36.8(1 \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{NH}_{2}$), $39.2\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 111.5(1 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.0\left(\mathrm{~d}, 1 \mathrm{C},{ }^{2} J_{C F}=18.5 \mathrm{~Hz}, \mathrm{C} 3(\mathrm{Ph})\right), 115.2$ $\left(\mathrm{d}, 1 \mathrm{C},{ }^{3} J_{C F}=5.9 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph})\right), 124.4(1 \mathrm{C}, \mathrm{C} 5(\mathrm{Ph})), 136.2\left(\mathrm{~d}, 1 \mathrm{C},{ }^{2} J_{C F}=11.0 \mathrm{~Hz}, \mathrm{C} 1(\mathrm{Ph})\right), 150.8$ $\left(\mathrm{d}, 1 \mathrm{C},{ }^{1} J_{\mathrm{CF}}=237.7 \mathrm{~Hz}, \mathrm{C} 2(\mathrm{Ph})\right)$.
N^{1}, N^{5}-Bis(2-fluorophenyl)pentane-1,4-diamine (38) was obtained from diamine $\mathbf{3}$ (1 mmol , $118 \mu \mathrm{~L}$), 2-fluoroiodobenzene ($2.5 \mathrm{mmol}, 292 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($67 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$. Yield 30 mg (10\%), pale-yellow crystalline powder, m.p. $54-56^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.49-1.58(\mathrm{~m}, 2 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{CCN}$), 1.70 (quintet, $4 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}$), $3.16\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.87 (br.s, 2H, NH), $6.60\left(\mathrm{tdd}, 2 \mathrm{H},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz},{ }^{4} J_{H F}=4.9 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right.$), 6.65-6.71 (m, $2 \mathrm{H},{ }^{4} J=1.7 \mathrm{~Hz}, \mathrm{H} 6(\mathrm{Ph})$), $6.96\left(\mathrm{ddd}, 2 \mathrm{H},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz},{ }^{3} J_{H F}=12.0 \mathrm{~Hz}, \mathrm{H} 3(\mathrm{Ph})\right), 6.99$ $\left(\operatorname{tdd}, 2 \mathrm{H},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz},{ }^{5} J_{H F}=0.6 \mathrm{~Hz}, \mathrm{H} 5(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.6(1 \mathrm{C}$, $\mathbf{C H}_{\mathbf{2}} \mathrm{CCN}$), $29.2\left(2 \mathrm{C}, \mathbf{C H}_{\mathbf{2}} \mathrm{CN}\right), 43.4\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 111.9\left(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})\right.$), $114.3\left(\mathrm{~d}, 2 \mathrm{C},{ }^{2} J_{\mathrm{CF}}=\right.$ $18.6 \mathrm{~Hz}, \mathrm{C} 3(\mathrm{Ph})), 116.3\left(\mathrm{~d}, 2 \mathrm{C},{ }^{3} J_{C F}=5.9 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph})\right), 124.5(2 \mathrm{C}, \mathrm{C} 5(\mathrm{Ph})), 136.8\left(\mathrm{~d}, 2 \mathrm{C},{ }^{2} J_{C F}=\right.$ $11.0 \mathrm{~Hz}, \mathrm{C} 1(\mathrm{Ph})$), $151.4\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{\mathrm{CF}}=237.2 \mathrm{~Hz}, \mathrm{C} 2(\mathrm{Ph})\right.$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2}: 291.1673$, found $291.1645[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(2-Fluorophenyl)pentane-1,4-diamine (39) was obtained as the main product in the synthesis of compound 38. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 25: 1-3: 1$. Yield 74 mg (38%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.51-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61-1.69(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.09-3.16 (m, 4H, CH 2 N), 3.90 (br.s, $1 \mathrm{H}, \mathrm{NH}$), 6.55-6.61 (m, 1H, H4(Ph)), 6.63-6.68 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 6(\mathrm{Ph})), 6.90-6.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 5(\mathrm{Ph})), \mathrm{NH}_{2}$ protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 43.3(2 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 111.9(1 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.3\left(\mathrm{~d}, 1 \mathrm{C},{ }^{2} J_{C F}=18.6 \mathrm{~Hz}, \mathrm{C} 3(\mathrm{Ph})\right), 116.3\left(\mathrm{~d}, 1 \mathrm{C},{ }^{3} J_{C F}=6.8 \mathrm{~Hz}\right.$, $\mathrm{CH}(\mathrm{Ph})) ; 124.5$ (1C, C5(Ph)); 138.6 (br.s, 1C, $\mathrm{C} 1(\mathrm{Ph})), 151.5$ (d, 1C, ${ }^{1} J_{C F}=238.6 \mathrm{~Hz}, \mathrm{C} 2(\mathrm{Ph})$); MS (MALDI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{FN}_{2}$ 197.15, found $197.14[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{1}, N^{\mathbf{6}}$-Bis(2-fluorophenyl)hexane-1,6-diamine (40) was obtained from diamine $\mathbf{4}$ ($1 \mathrm{mmol}, 116$ mg), 2-fluoroiodobenzene ($2.5 \mathrm{mmol}, 292 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and 2(isobutyryl)cyclohexanone ($67 \mu \mathrm{~L}$) in 2 mL DMF. Eluent hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1-1:2. Yield 56 mg (18\%), white crystalline powder, m.p. $55-57^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.45-1.50(\mathrm{~m}, 4 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{CCN}$), 1.67 (quintet, $4 \mathrm{H},{ }^{3} J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CN}$), 3.14 (t, $4 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 3.84 (br.s, $2 \mathrm{H}, \mathrm{NH}), 6.56-6.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4(\mathrm{Ph})), 6.68\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{o b s}=8.3 \mathrm{~Hz},{ }^{4} J_{H F}=8.3 \mathrm{~Hz}, \mathrm{H} 6(\mathrm{Ph})\right.$),
$6.95\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.0 \mathrm{~Hz},{ }^{3} J_{H F}=12.1 \mathrm{~Hz}, \mathrm{H} 3(\mathrm{Ph})\right), 6.98\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=7.7 \mathrm{~Hz}, \mathrm{H} 5(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 26.9\left(2 \mathrm{C}, \mathbf{C H}_{2} \mathrm{CCN}\right), 29.4$ ($2 \mathrm{C}, \mathbf{C H}_{2} \mathbf{C N}$), 43.5 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathbf{N P h}$), 112.0 (2 C , $\mathrm{CH}(\mathrm{Ph})), 114.3\left(\mathrm{~d}, 2 \mathrm{C},{ }^{2} J_{C F}=18.6 \mathrm{~Hz}, \mathrm{H} 3(\mathrm{Ph})\right), 116.3\left(\mathrm{~d}, 2 \mathrm{C},{ }^{3} J_{C F}=6.7 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph})\right), 124.6$ (2C, C5(Ph)), $137.0\left(\mathrm{~d}, 2 \mathrm{C},{ }^{2} J_{C F}=11.8 \mathrm{~Hz}, \mathrm{C} 1(\mathrm{Ph})\right), 151.5\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=237.7 \mathrm{~Hz}, \mathrm{C} 2(\mathrm{Ph})\right)$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2} 305.1829$, found $305.1838[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(2-Fluorophenyl)hexane-1,6-diamine (41) was obtained as the main product in the synthesis of compound 40. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1-3: 1$. Yield 66 mg (31%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38-1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CCN}\right.$), 1.62 (quintet, $2 \mathrm{H},{ }^{3} J=6.9 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{CNH}_{2}$), 1.87 (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CNPh}$), 3.07-3.15 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.68 (br.s, $1 \mathrm{H}, \mathrm{NHPh}$), 6.55$6.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4(\mathrm{Ph})), 6.67\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J_{\text {obs }}=8.4 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz},{ }^{4} J_{H F}=8.4 \mathrm{~Hz}, \mathrm{H} 6(\mathrm{Ph})\right), 6.93$ $\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz},{ }^{3} J_{H F}=11.0 \mathrm{~Hz}, \mathrm{H} 3(\mathrm{Ph})\right), 6.96\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\text {obs }}=7.6 \mathrm{~Hz}, \mathrm{H} 5(\mathrm{Ph})\right.$), NH_{2} protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.5(1 \mathrm{C}$, CH_{2}), $28.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 40.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 113.5(1 \mathrm{C}$, $\mathrm{CH}(\mathrm{Ph})), 115.1\left(\mathrm{~d}, 1 \mathrm{C},{ }^{2} J_{C F}=19.4 \mathrm{~Hz}, \mathrm{C} 3(\mathrm{Ph})\right), 117.1\left(\mathrm{~d}, 1 \mathrm{C},{ }^{3} J_{C F}=5.9 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph})\right), 125.6(1 \mathrm{C}$, C5(Ph)), $138.2\left(\mathrm{~d}, 1 \mathrm{C},{ }^{2} J_{C F}=11.8 \mathrm{~Hz}, \mathrm{C} 1(\mathrm{Ph})\right), 153.0\left(\mathrm{~d}, 1 \mathrm{C},{ }^{1} J_{C F}=237.7 \mathrm{~Hz}, \mathrm{C} 2(\mathrm{Ph})\right) ;$ HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{FN}_{2} 211.1611$, found $211.1569[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-Phenyl- \boldsymbol{N}^{3}-(3-(phenylamino)propyl)propane-1,3-diamine (42) was obtained in two reactions: a) from triamine $5(0.5 \mathrm{mmol}, 72 \mu \mathrm{~L})$, iodobenzene $(1.25 \mathrm{mmol}, 140 \mu \mathrm{~L})$ in the presence of $\mathrm{CuI}(9.5 \mathrm{mg})$ and L-proline (11.5 mg) in 1 mL EtCN ; b) from triamine $5(0.5 \mathrm{mmol}$, $72 \mu \mathrm{~L}$), iodobenzene ($1.25 \mathrm{mmol}, 140 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(9.5 \mathrm{mg})$ and L-proline (11.5 mg) in 1 mL DMF. Chromatographic isolation of combined reaction mixtures: eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3: 1-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:1. Yield 116 mg (41%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.90$ (quintet, $4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.84\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{NCH}_{2}$), 3.21 (t, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 4.09 (br.s, $2 \mathrm{H}, \mathrm{NHPh}$), $6.61\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5\right.$ $\left.\mathrm{Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.71\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right), 7.17\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz},{ }^{3} J_{o b s}=7.3 \mathrm{~Hz}\right.$, $\mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})$), NH proton of the dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.2\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 42.2\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 47.8\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 112.8(4 \mathrm{C}, \mathrm{C} 2$, C2'(Ph)), 117.3 (2C, C4(Ph)), 129.2 (4C, C3, C3'(Ph)), 148.2 (2C, C1(Ph)); HRMS (MALDITOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} 284.2127$, found $284.2093[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(Biphenyl-4-yl)- $N^{\mathbf{3}}$-(3-(biphenyl-4-ylamino)propyl)propane-1,3-diamine
(43) was obtained from triamine $5(1 \mathrm{mmol}, 143 \mu \mathrm{~L})$, 4-iodobiphenyl ($2.5 \mathrm{mmol}, 700 \mathrm{mg}$) in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and L-proline (46 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3: 1$. Yield 326 mg
(75\%), pale-yellow viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.84$ (quintet, $4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.79 (t, 4H, ${ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 3.26 (t, $4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 4.28 (br.s, 2H, NHPh); 6.65-6.69 (m, 4H, H(Ph)), $7.24\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.35-7.40(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}(\mathrm{Ph})), 7.41-7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}(\mathrm{Ph})), 7.50-7.54(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}(\mathrm{Ph}))$, NH proton of the dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.6$ (2C, $\left.\mathbf{C C H}_{2} \mathrm{C}\right), 42.9$ (2C, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 48.4\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 113.0(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 126.0(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 126.2(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph}))$, 127.9 (4C, $\mathrm{CH}(\mathrm{Ph})$), 128.6 (4C, $\mathrm{CH}(\mathrm{Ph})$), 130.0 (2C, C(Ph)), 141.3 (2C, C(Ph)), 147.9 (2C, $\mathrm{NC}(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{3} 436.2753$, found $436.2776[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(3-Aminopropyl)- \boldsymbol{N}^{3}-(biphenyl-4-yl)propane-1,3-diamine (44) was obtained as the second product in the synthesis of compound $\mathbf{4 3}$ in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq}) 10: 4: 1$. Yield 51 mg (18%), brown viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.74$ (quintet, $2 \mathrm{H},{ }^{3} J=5.8 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 1.87 (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}$, $\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{NHPh}$), .2.75-2.89 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.22\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHPh}\right.$), 3.58 (br.s, 4 H , $\left.\mathrm{NH}, \mathrm{NH}_{2}\right), 6.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.22\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.36\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}\right.$ $=7.6 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})), 7.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right), 7.50\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.1 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.9\left(1 \mathrm{C}, \mathbf{C H}_{\mathbf{2}} \mathrm{CH}_{2} \mathbf{N P h}\right), 32.3\left(1 \mathrm{C}, \mathbf{C H}_{\mathbf{2}} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 40.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 42.7$ ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), 48.2 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}$), 112.9 ($2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), 126.0 ($1 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), 126.2 (2 C , $\mathrm{CH}(\mathrm{Ph})$), 127.9 (2C, $\mathrm{CH}(\mathrm{Ph})$), 128.6 (2C, $\mathrm{CH}(\mathrm{Ph})$), 129.9 (1C, C(Ph)), 141.2 (1C, C(Ph)), 147.9 (1C, $\mathrm{NC}(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} 284.2122$, found 284.2157 [M+H] ${ }^{+}$.
$\boldsymbol{N}^{\mathbf{1}}$-(4-Fluorophenyl)- $\boldsymbol{N}^{\mathbf{3}}$-(3-(4-fluorophenylamino)propyl)propane-1,3-diamine (45) was obtained in two reactions: a) from triamine $5(0.5 \mathrm{mmol}, 72 \mu \mathrm{~L})$, 4-fluoroiodobenzene (1.25 $\mathrm{mmol}, 144 \mu \mathrm{~L})$ in the presence of $\mathrm{CuI}(9.5 \mathrm{mg})$ and L-proline (11.5 mg) in 1 mL EtCN; b) from triamine $5(0.5 \mathrm{mmol}, 72 \mu \mathrm{~L})$, 4-fluoroiodobenzene ($1.25 \mathrm{mmol}, 144 \mu \mathrm{~L}$) in the presence of CuI $(19 \mathrm{mg})$ and L-proline (23 mg) in 1 mL EtCN. Chromatographic isolation of combined reaction mixtures: eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3: 1-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq}) 100: 20: 2$. Yield 164 mg (50%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.92$ (quintet, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.87(\mathrm{t}, 4 \mathrm{H}$, ${ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), $3.17\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 4.35 (br.s, $2 \mathrm{H}, \mathrm{NHPh}$), 6.52 (dd, 4 H , $\left.{ }^{3} J_{\text {obs }}=8.7 \mathrm{~Hz},{ }^{4} J_{H F}=4.4 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.85\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}={ }^{3} J_{H F}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right)$, NH proton of the dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 27.9\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 42.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 47.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 113.6\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{C F}=6.8 \mathrm{~Hz}, \mathrm{C} 2\right.$, $\left.\mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 115.7\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=22.8 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 144.5(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 155.7\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=\right.$
$234.4 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3}$ 320.1938, found 320.1915 $[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(4-(Trifluoromethyl)phenyl)- $N^{\mathbf{3}}$-(3-(4-(trifluoromethyl)phenylamino)propyl)propane-1,3-diamine (46) was obtained from triamine 5 (1 mmol, $143 \quad \mu \mathrm{~L})$, 4iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:1. Yield 225 $\mathrm{mg}(53 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.81$ (quintet, $4 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.76\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$), $3.23\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 4.59 (br.s, 2H, NHPh); $6.56\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.37\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right)$, NH proton of the dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.2$ (2C, $\mathrm{CCH}_{2} \mathrm{C}$), $42.4\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 48.2\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 111.7\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 118.5\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J_{C F}\right.$ $=32.2 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})), 125.1\left(2 \mathrm{C},{ }^{1} J_{\mathrm{CF}}=281.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.6$ (4C, C3, C3'(Ph)), 150.9 (2C, $\mathrm{C} 1(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{3} 420.1874$, found $420.1898[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding hydrochloride as dihydrate was obtained as white crystalline powder, m.p. $178-180^{\circ} \mathrm{C}$. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClF}_{6} \mathrm{~N}_{3} * 2 \mathrm{H}_{2} \mathrm{O}$ (\%): C 48.83, H 5.74, N 8.54; found C 48.69, H 6.20, N 8.80.
N^{1}-(4-Methoxyphenyl)- $N^{\mathbf{3}}$-(3-(4-methoxyphenylamino)propyl)propane-1,3-diamine (47) was obtained from triamine $5(1 \mathrm{mmol}, 143 \mu \mathrm{~L})$, 4-iodoanisole $(2.5 \mathrm{mmol}, 585 \mathrm{mg})$ in the presence of $\mathrm{CuI}(38 \mathrm{mg})$ and L-proline (46 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1-3: 1$. Yield 73 mg (21%), pale-beige crystalline powder, m.p. $195-197^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.86$ (quintet, 4H, ${ }^{3} J=7.1 \mathrm{~Hz}, \mathbf{C C H}_{2} \mathrm{C}$), $2.97\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{NHCH}_{2}\right), 3.04\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right)$, $3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.50-6.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.67-6.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3, \mathrm{H}^{\prime}(\mathrm{Ph})\right)$, NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right) \delta 25.2\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 40.7(2 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 45.1\left(2 \mathrm{C}, \mathbf{C H}_{2} \mathrm{NHCH}_{2}\right), 55.2\left(2 \mathrm{C}, \mathrm{OCH}_{3}\right), 113.1(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph}))$, $114.5(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), 142.7 (2C, $\mathrm{C} 1(\mathrm{Ph})$), 150.8 (2C, $\mathrm{C} 4(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}$ 344.2338 , found $344.2307[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(3-Aminopropyl)- N^{3}-(4-methoxyphenyl)propane-1,3-diamine (48) was obtained as the second product in the synthesis of compound 47. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:1 100:20:2, 10:4:1. Yield $82 \mathrm{mg}(35 \%)$, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.81$ (quintet, $2 \mathrm{H},{ }^{3} J=6.9 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{CNH}_{2}$), 1.87 (quintet, $2 \mathrm{H},{ }^{3} J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CNPh}$), $2.80-2.87(\mathrm{~m}, 4 \mathrm{H}$, $\mathbf{C H}_{\mathbf{2}} \mathrm{NHCH}_{\mathbf{2}}$), $2.88\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}, \mathbf{C H}_{\mathbf{2}} \mathrm{NH}_{2}\right.$), $3.02\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), $3.62(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.48-6.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 2^{\prime}(\mathrm{Ph})\right), 6.65-6.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 3^{\prime}(\mathrm{Ph})\right)$, NH and NH_{2}
protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 24.9$ (1C, $\mathbf{C H}_{\mathbf{2}} \mathbf{C N P h}$), 26.5 (1C, $\mathbf{C H}_{2} \mathrm{CNH}_{2}$), $36.9\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 41.2\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 44.9\left(1 \mathrm{C}, \mathbf{C H}_{2} \mathrm{NHCH}_{2}\right), 45.8(1 \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{NHCH}_{2}$), $55.2\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 113.0(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.4(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 142.9(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph}))$, 150.6 (1C, $\mathrm{C} 4(\mathrm{Ph})$); MS (MALDI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O} 238.19$, found $238.21[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-Phenyl- N^{4}-(3-(phenylamino)propyl)butane-1,4-diamine (49) was obtained from triamine 6 ($1 \mathrm{mmol}, 152 \mu \mathrm{~L}$), iodobenzene ($2.5 \mathrm{mmol}, 280 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L proline (23 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 3: 1-\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 10:4:1. Yield 108 mg (36%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.63-1.70(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 1.86 (quintet, $2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.67-2.73 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.80\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J\right.$ $=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 3.08-3.13 (m, 2H, CH ${ }_{2} \mathrm{NPh}$), $3.20\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.55 (br.s, 2 H , NHPh), 6.57-6.62 (m, 4H, H2, H2 ${ }^{\text {(}} \mathrm{Ph}$)), 6.69 (t, 2H, ${ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})$), 7.13-7.19 (m, 4H, $\mathrm{H} 3, \mathrm{H} 3$ ' (Ph)), NH proton of the dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.0\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 27.1\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 28.7\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 42.5(1 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 43.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right) ; 48.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 49.3\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 112.7\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C}^{2}(\mathrm{Ph})\right.$), 117.2 (2C, C4(Ph)), 129.2 (4C, C3, C3’(Ph)), 148.4 (2C, C1(Ph)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{3} 298.2283$, found $298.2315[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding trihydrochloride as hydrate was obtained as white crystalline powder, m.p. $210^{\circ} \mathrm{C}$ (decomp.). Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{~N}_{3} * \mathrm{H}_{2} \mathrm{O}$ (\%):C 53.72, H 7.59, N 9.89; found C 54.40, H 7.46, N 9.86.
N^{1}-(Biphenyl-4-yl)- N^{4}-(3-(biphenyl-4-ylamino)propyl)butane-1,4-diamine (50) was obtained from triamine $6(1 \mathrm{mmol}, 152 \mu \mathrm{~L})$, 4-iodobiphenyl $(2.5 \mathrm{mmol}, 700 \mathrm{mg})$ in the presence of CuI (38 mg) and L-proline (46 mg) in 2 mL EtCN . Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:1. Yield $157 \mathrm{mg}(35 \%)$, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.60-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 1.84$ (quintet, $2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.69\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.79\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.18\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 3.25\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.64-6.70(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}(\mathrm{Ar})$), $7.24\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right)$, 7.35-7.41 (m, 4H, H(Ar)), 7.42-7.45 (m, 4H, H(Ar)); 7.51-7.55 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}(\mathrm{Ar})$), NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 27.2\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 27.5\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 29.2\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 43.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 48.3$ ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}$), $49.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 112.9(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ar})$), $125.9(2 \mathrm{C}, \mathrm{CH}(\mathrm{Ar})$), $126.2(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ar})$), 127.9 (4C, $\mathrm{CH}(\mathrm{Ar})$), 128.6 (4C, $\mathrm{CH}(\mathrm{Ar})$), 129.9 (2C, C(Ar)), 141.2 (2C, C(Ar)), 147.8 (1C, $\mathrm{NC}(\mathrm{Ar})$), 147.9 (1C, NC(Ar)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{3} 450.2909$, found $450.2946[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(4-Fluorophenyl)- N^{4}-(3-(4-fluorophenylamino)propyl)butane-1,4-diamine (51) was obtained from triamine $6(1 \mathrm{mmol}, 152 \mu \mathrm{~L})$, 4-fluoroiodobenzene ($2.5 \mathrm{mmol}, 288 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN . Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:3-100:25:5. Yield 118 mg (35\%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.58-1.69 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 1.81 (quintet, $2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.67\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.77\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.07\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 3.14\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{~N}$), 3.20 (br.s, 2H, NHPh), $6.50\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=9.0 \mathrm{~Hz},{ }^{4} J_{H F}=4.4 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.51$ $\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=9.0 \mathrm{~Hz},{ }^{4} J_{H F}=4.4 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2^{\prime}(\mathrm{Ph})\right), 6.83-6.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right)$, NH proton of dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.2$ (2C, $\mathrm{CCH}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{C}$), 27.4 ($1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}$), 43.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), 44.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), 48.2 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}$), $49.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 113.4\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 115.6\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=15.2 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 144.8$ (1C, $\mathrm{C} 1(\mathrm{Ph})), 144.9(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 155.7\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=234.4 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right)$; HRMS (MALDITOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{3} 334.2095$, found $334.2077[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(4-(Trifluoromethyl)phenyl)- N^{4}-(3-(4-(trifluoromethyl)phenylamino)propyl)butane-1,4diamine (52) was obtained from triamine 6 ($1 \mathrm{mmol}, 152 \mu \mathrm{l}$), 4-iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:1-100:20:2. Yield 230 mg (51%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.64-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right.$), 1.88 (quintet, $2 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.73 $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.83\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.12\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right)$, $3.22\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 6.56\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.36\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{o b s}=\right.$ $8.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3$ ' (Ph)), NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.6$ ($2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), $28.0\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right) ; 42.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 42.9\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right) ; 47.6(1 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 49.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 111.5\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 118.0\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=32.3 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right), 125.5$ (q, 2C, ${ }^{1} J_{C F}=270.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), $126.4(4 \mathrm{C}, \mathrm{C} 3, \mathrm{C} 3 '(\mathrm{Ph})), 150.7(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 150.8(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph}))$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{3} 434.2031$, found $434.2055[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding trihydrochloride was obtained as pale-beige crystalline powder, m.p. $162-164^{\circ} \mathrm{C}$ (decomp.). Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{~F}_{6} \mathrm{~N}_{3}$ (\%): C 46.47, H 5.20, N 7.74; found C 45.88, H 5.18, N 7.65.
N^{1}-(4-Methoxyphenyl)- N^{4}-(3-(4-methoxyphenylamino)propyl)butane-1,4-diamine (53) was obtained from triamine $6(1 \mathrm{mmol}, 152 \mu \mathrm{~L})$, 4-iodoanisole ($2.5 \mathrm{mmol}, 585 \mathrm{mg}$) in the presence of CuI (38 mg) and 2-(isobutyryl)cyclohexanone (67 $\mu \mathrm{L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:2-100:20:3. Yield 163 mg (46\%), yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 1.60-1.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{C}\right), 1.82$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathbf{C C H}_{2} \mathrm{C}$), 2.65-2.70 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$); $2.77\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.03-3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPh}\right), 3.13\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 3.31 (br.s, 2H, NHPh), 3.72 (s, 6H, OCH_{3}), 6.54-6.58 (m, 4H, H2, H2'(Ph)), 6.73-6.78 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H} 3, \mathrm{H}^{\prime}(\mathrm{Ph})$), NH proton of dialkylamino group was not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.1\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 27.2\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 43.5(1 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 44.7$ ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), $48.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 49.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}$), $55.8\left(2 \mathrm{C}, \mathrm{CH}_{3} \mathrm{O}\right), 114.0(4 \mathrm{C}$, $\mathrm{CH}(\mathrm{Ph})$), $114.8(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 142.6(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 142.7$ ($1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})$), 152.0 (2C, $\mathrm{C} 4(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} 358.2495$, found $358.2481[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{1}, N^{1^{\prime}}$-(Propane-1,3-diyl)bis(N^{3}-phenylpropane-1,3-diamine) (54) was obtained from tetraamine $7(1 \mathrm{mmol}, 204 \mu \mathrm{~L})$, iodobenzene ($2.5 \mathrm{mmol}, 280 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:25:5. Yield 124 mg (37\%), yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.83$ (quintet, $4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 1.88 (quintet, $2 \mathrm{H},{ }^{3} J=5.9 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.79\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.88\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=5.9 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{~N}$), 3.13 (t, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 4.63 (br.s, 2H, NHPh), $6.62\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.67\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right), 7.41\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.8 \mathrm{~Hz},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{H} 3\right.$, H3' (Ph)), two NH protons of dialkylamino groups were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.8\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 27.9\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 41.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 47.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 49.1$ (2C, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 112.8\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right.$), 117.3 (2C, C4(Ph)), 129.2 (4C, C3, C3'(Ph)), 148.2 (2C, $\mathrm{C} 1(\mathrm{Ph})$). MS (MALDI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{4} 341.2705$, found $341.2663[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding tetrahydrochloride was obtained as pale-beige crystalline powder, m.p. $>240^{\circ} \mathrm{C}$ (decomp.). Calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{Cl}_{4} \mathrm{~N}_{4}$ (\%): C 51.86, H 7.46, N 11.52; found C 52.39, H 7.84, N 10.99.
$N^{\mathbf{1}}, N^{I^{\prime}}$-(Propane-1,3-diyl)bis($\boldsymbol{N}^{\mathbf{3}}$-(biphenyl-4-yl)propane-1,3-diamine) (55) was obtained from tetraamine $7(1 \mathrm{mmol}, 150 \mu \mathrm{~L})$, 4-iodobiphenyl $(2.5 \mathrm{mmol}, 700 \mathrm{mg})$ in the presence of $\mathrm{CuI}(19$ mg) and L-proline (23 mg) in 2 mL EtCN . Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:3. Yield 119 $\mathrm{mg}(32 \%)$, pale-yellow crystalline powder, m.p. $108-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.51$ (br.s, 2 H , NH), 1.71 (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 1.82 (quintet, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.71 (t, $4 \mathrm{H},{ }^{3} J=6.9 \mathrm{~Hz}, \mathbf{C H}_{\mathbf{2}} \mathrm{NHCH}_{2}$), $2.77\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 3.23\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{NPh}$), 4.38 (br.s, 2H, NHPh), 6.65-6.68 (m, 4H, H(Ar)), $7.25\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.0\right.$ $\mathrm{Hz}, \mathrm{H}(\mathrm{Ar})$), 7.36-7.41 (m, 4H, H(Ar)), 7.42-7.46 (m, 4H, H(Ar)), 7.52-7.56 (m, 4H, H(Ar)); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 29.4\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 30.3\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 42.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 48.4(2 \mathrm{C}$, $\mathbf{C H}_{2} \mathrm{NHCH}_{2}$), $48.5\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 112.9$ (4C, $\mathrm{CH}(\mathrm{Ar})$), 125.9 (2C, $\mathrm{CH}(\mathrm{Ar})$), 126.2 (4C,
$\mathrm{CH}(\mathrm{Ar})$), 127.8 (4C, $\mathrm{CH}(\mathrm{Ar})), 128.6$ (4C, CH(Ar)), 129.9 (2C, C(Ar)), 141.3 (2C, C(Ar)), 148.0 (2C, NC(Ar)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{4} 493.3331$, found $493.3359[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{1}, N^{I^{\prime}}$-(propane-1,3-diyl)bis(N^{3}-(4-fluorophenyl)propane-1,3-diamine) (56) was obtained from tetraamine $7(0.74 \mathrm{mmol}, 204 \mu \mathrm{~L})$, 4-fluoroiodobenzene ($2.5 \mathrm{mmol}, 288 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$, 2-(isobutyryl)cyclohexanone ($17 \mu \mathrm{~L}$) and triphenylphosphine (26 mg) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:25:5. Yield 139 mg (37\%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.70$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 1.77 (quintet, $4 \mathrm{H},{ }^{3} \mathrm{~J}=$ $6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.70\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.7 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{NHCH}_{2}\right), 2.73\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right.$), $3.11\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 6.48-6.53\left(\mathrm{~m}, 4 \mathrm{H},{ }^{4} J_{H F}=4.4 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.82-6.88(\mathrm{~m}$, $4 \mathrm{H},{ }^{3} J_{H F}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})$), NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.2$ ($2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}$), 29.6 ($1 \mathrm{C}, \mathbf{C C H}_{2} \mathrm{C}$), 43.5 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), 48.3 ($2 \mathrm{C}, \mathbf{C H}_{2} \mathrm{NHCH}_{2}$), $48.6\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 113.5\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{C F}=6.8 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right.$), $115.6\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}=21.9 \mathrm{~Hz}\right.$, C3, C3 ${ }^{\prime}(\mathrm{Ph})$), $144.9(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 155.6\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=234.4 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right.$); HRMS (MALDITOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{~N}_{4} 377.2517$, found $377.2476[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}-(3-aminopropyl)- N^{3}-(3-(4-fluorophenylamino)propyl)propane-1,3-diamine (57) was obtained as the main product in the synthesis of compound 56 in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg). Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq}) 10: 4: 1$. Yield $87 \mathrm{mg}(31 \%)$, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.59-1.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 1.77$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{NPh}$), 2.64-2.80 (m, 10H, $\mathbf{C H}_{2} \mathrm{NHCH}_{2}$), 3.11 (t, $2 \mathrm{H},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 6.50 (dd, 2 H , $\left.{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz},{ }^{4} J_{H F}=4.2 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.84\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz},{ }^{4} J_{H F}=8.6 \mathrm{~Hz}, \mathrm{H} 3\right.$, $\mathrm{H} 3^{\prime}(\mathrm{Ph})$), NH and NH_{2} were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.1$ (2C, $\mathrm{CCH}_{2} \mathrm{C}$), $32.9\left(1 \mathrm{C}, \mathbf{C H}_{2} \mathrm{CNH}_{2}\right), 40.3\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 43.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 47.8(1 \mathrm{C}$, $\mathbf{C H}_{\mathbf{2}} \mathrm{NHCH}_{2}$), $48.3\left(3 \mathrm{C}, \mathbf{C H}_{\mathbf{2}} \mathrm{NHCH}_{\mathbf{2}}\right.$), $113.4\left(\mathrm{~d}, 2 \mathrm{C},{ }^{3} J_{C F}=7.6 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right.$), $115.5(\mathrm{~d}, 2 \mathrm{C}$, $\left.{ }^{2} J_{C F}=22.8 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 144.9(1 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})) ; 155.6\left(\mathrm{~d}, 1 \mathrm{C},{ }^{1} J_{C F}=234.4 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right)$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{FN}_{4} 283.2298$, found $283.2270[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{\mathbf{1}}, N^{\mathbf{1}^{\mathbf{1}}}$-(Propane-1,3-diyl)bis($\boldsymbol{N}^{\mathbf{3}}$-(4-(trifluoromethyl)phenyl)propane-1,3-diamine) (58) was obtained from tetraamine $7(1 \mathrm{mmol}, 204 \mu \mathrm{~L}$), 4-iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367$ $\mu \mathrm{L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and L-proline (23 mg) in 2 mL EtCN . Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq}) 100: 20: 3$. Yield $180 \mathrm{mg}(38 \%)$, brown viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.82$ (quintet, $6 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), $2.80\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.84\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.3\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 3.18 (t, $4 \mathrm{H},{ }^{3} J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}$), 4.43 (br.s, 2 H NH); 4.96 (br.s, $2 \mathrm{H}, \mathrm{NHPh}$), 6.59
$\left(\mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.35\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.9\left(1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 27.9\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 41.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 47.4\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 49.0$ $\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 111.7\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 118.4\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J_{C F}=32.0 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right), 125.0\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} J_{C F}\right.$ $=270.3 \mathrm{~Hz}, \mathrm{CF}_{3}$), 126.5 (4C, C3, C3'(Ph)), 150.8 (2C, C1(Ph)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{4} 477.2453$, found $477.2443[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding trihydrochloride as solvate with methanol was obtained as beige crystalline powder, m.p. $180^{\circ} \mathrm{C}$ (decomp.). Calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{~F}_{6} \mathrm{~N}_{4}{ }^{*} \mathrm{CH}_{3} \mathrm{OH}$ (\%): C 46.65, H 6.04, N 9.07; found C 46.27, H 5.97, N 8.49.
N^{1}, N^{1}-(Propane-1,3-diyl)bis(N^{3}-(4-methoxyphenyl)propane-1,3-diamine) (59) was obtained from tetraamine $7(0.5 \mathrm{mmol}, 102 \mu \mathrm{~L}$), 4-iodoanisole ($5 \mathrm{mmol}, 1170 \mathrm{mg}$) in the presence of CuI (19 mg) and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 3 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:25:5. Yield 33 mg (17%), brown viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.76-1.85(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{C}$), 2.77 (t, 4H, ${ }^{3} J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $2.82\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.00 (br.s, 2H, NH), $3.08\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) 4.55$ (br.s, $2 \mathrm{H}, \mathrm{NHPh}$), $6.59\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}\right.$ $\left.=8.8 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.75\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.8 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.4(2 \mathrm{C}$, $\mathrm{CCH}_{2} \mathrm{C}$), 31.4 ($1 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}$), 43.2 ($2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}$), $47.7\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 48.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 55.8 (2 C , $\mathrm{CH}_{3} \mathrm{O}$), 114.2 ($4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), 114.9 ($4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})$), 142.5 (2C, $\mathrm{C}(\mathrm{Ph})$), 152.1 (2C, $\mathrm{C} 4(\mathrm{Ph})$); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{2} 401.2917$, found $401.2944[\mathrm{M}+\mathrm{H}]^{+}$.
$N^{1}, N^{1^{1}}$-(Butane-1,4-diyl)bis(N^{3}-phenylpropane-1,3-diamine) (60) was obtained from tetraamine $\mathbf{8}(1 \mathrm{mmol}, 202 \mathrm{mg})$, iodobenzene ($2.5 \mathrm{mmol}, 280 \mu \mathrm{~L}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 10:4:1. Yield 245 mg (69%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.60$ (br.s, $4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 1.81 (quintet, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.64 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.75\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.15\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.76 (br.s, $4 \mathrm{H}, \mathrm{NH}, \mathrm{NHPh}$), $6.60\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{o b s}=7.8 \mathrm{~Hz}, \mathrm{H} 2\right.$, $\left.\mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.67\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{H} 4(\mathrm{Ph})\right), 7.14\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.6 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}(\mathrm{Ph})\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.3\left(2 \mathrm{C}, \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{C}\right), 28.5\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 42.2\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 47.4\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 49.1 (2C, $\mathrm{CH}_{2} \mathrm{~N}$), 112.7 (4C, C2, C2’(Ph)), 117.1 (2C, C4(Ph)), 129.1 (4C, C3, C3 ${ }^{\prime}(\mathrm{Ph})$), 148.3 (2C, C1(Ph)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{4} 355.2862$, found $355.2873[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding tetrahydrochloride was obtained as pale-beige crystalline powder, t. decomp. $230^{\circ} \mathrm{C}$. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{~N}_{4}$ (\%): C 52.81, H 7.65, N 11.20; found 53.04, H 7.59, N 11.51.
N^{1}, N^{1}-(Butane-1,4-diyl)bis(N^{3}-(biphenyl-4-yl)propane-1,3-diamine) (61) was obtained from tetraamine 8 ($1 \mathrm{mmol}, 202 \mathrm{mg}$), 4-iodobiphenyl ($2.5 \mathrm{mmol}, 700 \mathrm{mg}$) in the presence of CuI (19 mg) and L-proline (23 mg) in 2 mL EtCN. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:20:2 - 100:20:3. Yield $183 \mathrm{mg}(36 \%)$, yellow viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.53-1.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right)$, 1.81 (quintet, $\left.4 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}\right), 2.61-2.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.23\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 4.41$ (br.s, $2 \mathrm{H}, \mathrm{NHPh}$), $6.67\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.5 \mathrm{~Hz}\right.$, $\mathrm{H}(\mathrm{Ar})), 7.25\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right), 7.39\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{o b s}=7.6 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right), 7.44\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{o b s}=\right.$ 8.6 Hz, $\mathrm{H}(\mathrm{Ar})), 7.54\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=7.5 \mathrm{~Hz}, \mathrm{H}(\mathrm{Ar})\right)$, two NH protons of dialkylamino groups were not unambiguously assigned; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 27.9\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 29.4\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right)$, $42.9\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 48.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 49.8\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 112.9(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ar})), 125.9$ (2C, $\mathrm{CH}(\mathrm{Ar})), 126.2$ (4C, $\mathrm{CH}(\mathrm{Ar})$), 127.9 (4C, $\mathrm{CH}(\mathrm{Ar})$), 128.6 (4C, $\mathrm{CH}(\mathrm{Ar})$), 129.9 (2C, $\mathrm{C}(\mathrm{Ar})$), 141.3 (2C, $\mathrm{C}(\mathrm{Ar})$), 148.0 (2C, NC(Ar)); HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{4}$ 507.3488, found $507.3445[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding tetrahydrochloride was obtained as yellow crystalline powder, m.p. $>240^{\circ}$ C. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{Cl}_{4} \mathrm{~N}_{4}(\%)$: C 62.58, H 7.11, N 8.59; found C 62.35, H7.09, N 8.25.
$N^{1}, N^{1^{\prime}}$-(Butane-1,4-diyl)bis($\boldsymbol{N}^{\mathbf{3}}$-(4-fluorophenyl)propane-1,3-diamine) (62) was obtained from tetraamine $8(1 \mathrm{mmol}, 202 \mathrm{mg})$, 4-fluoroiodobenzene $(2.5 \mathrm{mmol}, 288 \mu \mathrm{~L})$ in the presence of CuI (19 mg) and 2-(isobutyryl)cyclohexanone ($33 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 10:4:1. Yield $175 \mathrm{mg}(45 \%)$, pale-yellow viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.56$ (br.s, 4 H , $\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 1.79 (quintet, $4 \mathrm{H},{ }^{3} J=6.4 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.63 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.74\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=\right.$ 6.6 Hz, $\mathrm{CH}_{2} \mathrm{~N}$), $3.11\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right.$), 3.31 (br.s, $4 \mathrm{H}, \mathrm{NH}, \mathrm{NHPh}$), 6.51 (dd, 4 H , $\left.{ }^{3} J_{o b s}=8.7 \mathrm{~Hz},{ }^{4} J_{H F}=4.3 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.84\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{o b s}=8.7 \mathrm{~Hz},{ }^{3} J_{H F}=8.7 \mathrm{~Hz}, \mathrm{H} 3\right.$, H3' $(\mathrm{Ph})) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.4\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 28.8\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 43.2\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right)$, $47.8\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 49.3\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 113.4\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{C F}=6.7 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 115.5\left(\mathrm{~d}, 4 \mathrm{C},{ }^{2} J_{C F}\right.$ $\left.=21.9 \mathrm{~Hz}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 144.8(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph})), 155.7\left(\mathrm{~d}, 2 \mathrm{C},{ }^{1} J_{C F}=234.4 \mathrm{~Hz}, \mathrm{C} 4(\mathrm{Ph})\right)$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{4}$ 391.2673, found $391.2696[\mathrm{M}+\mathrm{H}]^{+}$.
N^{1}, N^{1}-(Butane-1,4-diyl)bis(\boldsymbol{N}^{3}-(4-(trifluoromethyl)phenyl)propane-1,3-diamine) (63) was obtained from tetraamine $\mathbf{8}(1 \mathrm{mmol}, 202 \mathrm{mg})$, 4-iodo(trifluoromethyl)benzene ($2.5 \mathrm{mmol}, 367$ $\mu \mathrm{l}$) in the presence of $\mathrm{CuI}(19 \mathrm{mg})$ and 2-(isobutyryl)cyclohexanone $(33 \mu \mathrm{~L})$ in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ (aq) 10:4:1. Yield 202 mg (41%), pale-yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53-1.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right.$), 1.79 (quintet, $4 \mathrm{H},{ }^{3} J=6.1 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.59-2.65 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 2.75\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 3.20\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right)$, 5.02 (br.s, 2H, NH), $6.56\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.3 \mathrm{~Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 7.35\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.3 \mathrm{~Hz}, \mathrm{H} 3\right.$,

H3'(Ph)), two NH protons of dialkylamino groups were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.8\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 28.7\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 42.6\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NPh}\right), 48.2$ (2C, $\left.\mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 49.6\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 111.6\left(4 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 2{ }^{\prime}(\mathrm{Ph})\right), 118.2\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} J_{C F}=32.3 \mathrm{~Hz}\right.$, $\mathrm{C} 4(\mathrm{Ph})), 125.0\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} J_{C F}=270.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.5\left(4 \mathrm{C}, \mathrm{C} 3, \mathrm{C} 3{ }^{\prime}(\mathrm{Ph})\right), 151.0(2 \mathrm{C}, \mathrm{C} 1(\mathrm{Ph}))$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{4} 491.2619$, found $491.2588[\mathrm{M}+\mathrm{H}]^{+}$. By the treatment with 5 M HCl solution in aqueous dioxane-methanol solution corresponding trihydrochloride as a solvate with methanol was obtained as beige crystalline powder, m.p. $200^{\circ} \mathrm{C}$ (decomp.). Calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{Cl}_{3} \mathrm{~F}_{6} \mathrm{~N}_{4} * \mathrm{CH}_{3} \mathrm{OH}$ (\%): $\mathrm{C} 47.51, \mathrm{H} 6.22, \mathrm{~N} 8.87$; found C 48.16, H 6.59, N 8.80.
N^{1}, N^{1}-(Butane-1,4-diyl)bis(N^{3}-(4-methoxyphenyl)propane-1,3-diamine) (64) was obtained from tetraamine $\mathbf{8}(1 \mathrm{mmol}, 202 \mathrm{mg})$, 4-iodoanisole ($2.5 \mathrm{mmol}, 585 \mathrm{mg}$) in the presence of CuI (38 mg) and 2-(isobutyryl)cyclohexanone ($67 \mu \mathrm{~L}$) in 2 mL DMF. Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}(\mathrm{aq})$ 100:25:1-10:4:1. Yield 95mg (23\%), yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.58-1.63(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 1.80 (quintet, $4 \mathrm{H},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{C}$), 2.62-2.67 (m, 4H, CH2N); $2.75\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}\right.$ $\left.=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.11\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NPh}\right), 3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.57\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.7\right.$ $\left.\mathrm{Hz}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}(\mathrm{Ph})\right), 6.74\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\text {obs }}=8.7 \mathrm{~Hz}, \mathrm{H} 3, \mathrm{H} 3^{\prime}(\mathrm{Ph})\right)$, NH protons were not unambiguously assigned; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.5\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathbf{C H}_{2} \mathrm{C}\right), 28.7\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right), 43.4$ (2C, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 47.6\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 49.1\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 55.8\left(2 \mathrm{C}, \mathrm{CH}_{3} \mathrm{O}\right), 114.0(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 114.8$ $(4 \mathrm{C}, \mathrm{CH}(\mathrm{Ph})), 142.8(2 \mathrm{C}, \mathrm{C}(\mathrm{Ph})), 152.0(2 \mathrm{C}, \mathrm{C} 4(\mathrm{Ph}))$; HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{2} 415.3073$, found $415.3052[\mathrm{M}+\mathrm{H}]^{+}$.

References

1. Zhang, C.; Zhan, Z.; Lei, M.; Hu, L. Tetrahedron. 2014, 70, 8817-8821.
2. Liu, S.; Rebros, M.; Stephens, G.; Marr, A.C. Chem. Commun. 2009, 2308-2310.
3. Maruoka, K.; Banno, H.; Nonoshita, K.; Yamamoto, H. Tetrahedron Lett. 1989, 30, 12651266.
4. Ramirez, M. A.; Corona, M. V.; Blanco, M. M.; Perillo, I. A.; Porcal, W.; Salerno, A. Tetrahedron Lett. 2010, 51, 5000-5002.
5. Beletskaya, I. P.; Bessmertnykh, A. G.; Averin, A. D.; Denat, F.; Guilard, R. Eur. J. Org. Chem. 2005, 261-280.
6. Vaultier, M.; Carboni, B.; Martinez-Fresneda, P. Synth. Commun. 1992, 22, 665-671.
7. Lang, F.; Zewge, D.; Houpis, I. N.; Volante, R. P. Tetrahedron Lett. 2001, 42, 3251-3254.
8. Blank, B.; Michlik, S.; Kempe, R. Adv. Synth. Catal. 2009, 351, 2903-2911.
