Supporting Information
 for

Co-solvation effect on the binding mode of the α-mangostin/ β cyclodextrin inclusion complex

Chompoonut Rungnim ${ }^{1}$, Sarunya Phunpee ${ }^{1}$, Manaschai Kunaseth ${ }^{1}$, Supawadee Namuangruk ${ }^{1}$, Kanin Rungsardthong ${ }^{2}$, Thanyada Rungrotmongkol ${ }^{*}, \ddagger, 3,4, \S$ and Uracha Ruktanonchai ${ }^{*}, \ddagger, 1$,

Address: ${ }^{1}$ National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand, ${ }^{2}$ Faculty of Pharmacy Thammasat University, Rangsit Center, Pathumthani 12120 Thailand, ${ }^{3}$ Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand and ${ }^{4} \mathrm{Ph}$.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Email: Uracha Ruktanonchai - uracha@nanotec.or.th
Email: Uracha Ruktanonchai - t.rungrotmongkol@gmail.com,
*Corresponding Author
${ }^{\dagger}$ These authors contributed equally to this work
${ }^{8}$ Fax:+66(0)2564-6985; Tel.+66(0)2564-6552,
${ }^{\text {II }}$ Fax:+66(0)2218-5418; Tel.+66(0)2218-5426

Additional data

1. Parameters of $\boldsymbol{\alpha}$-mangostin

Table S1: Atom types and partial charges of α-mangostin $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}\right)$

Name	Type	\mathbf{q}	Name	Type	\mathbf{q}	Name	Type	\mathbf{q}
C13	CT	-0.2454	O5	OH	-0.5789	H5	CA	-0.7066
H24	HC	0.0774	H5	HO	0.4428	H1	HA	0.2645
H26	HC	0.0774	C17	CA	-0.3465	O6	OH	-0.6283
H7	HC	0.0774	C18	CT	0.1081	H6	HO	0.4754

Name	Type	\mathbf{q}	Name	Type	\mathbf{q}	Name	Type	\mathbf{q}
C12	CM	0.1632	C19	CM	-0.429	C1	CA	0.5328
C14	CT	-0.2454	C20	CM	0.1938	O1	OS	-0.3212
H8	HC	0.0774	C21	CT	-0.3281	C5	CA	0.4579
H9	HC	0.0774	H17	HC	0.0989	C6	CA	-0.612
H10	HC	0.0774	H18	HC	0.0989	H2	HA	0.2511
C11	CM	-0.4282	H19	HC	0.0989	C7	CA	0.4545
H4	HA	0.1947	C22	CT	-0.3281	O3	OH	-0.6202
C10	CT	0.0641	H20	HC	0.0989	H3	HO	0.4765
H23	HC	0.0763	H21	HC	0.0989	C8	CA	0.0344
H25	HC	0.0763	H22	HC	0.0989	O4	OS	-0.3791
C9	CA	0.0394	H16	HA	0.2054	C15	CT	0.2301
C4	CA	-0.4221	H14	HC	0.068	H11	HC	0.0188
C3	C	0.7764	H15	HC	0.068	H12	HC	0.0188
O2	O	-0.5921	C23	CA	0.548	H13	HC	0.0188
C2	CA	-0.5643	C16	CA	0.4603			

2. Inclusion complex of $\boldsymbol{\alpha}$-MGS/ $\boldsymbol{\beta}$-CD in a water solvation system

To explore the preferential orientation of α-MGS inside the β-CD cavity, two conformations of inclusion complexes in water (complexes I and II in Figure S1) were generated and subjected to MD simulation for 20 ns . For inclusion complex I, the A ring of α MGS was placed close to the narrow rim of $\beta-\mathrm{CD}\left(\mathrm{O}^{6}\right.$ region). On the other hand, the α-MGS in complex II was oriented in the opposite direction.

2.1 System stability

The RMSDs of the α-MGS and $\beta-C D$, relative to their initial coordinates, were monitored along the 20 ns of MD simulation and are shown in Figure S1 (a,b). During the first

15 ns , the α-MGS in complex I was positioned closer to the starting structure ($0.79 \pm 0.31 \AA$) than that of complex II (1.2 $3 \pm 0.28 \dot{\mathrm{~A}})$. Meanwhile, the RMSD of $\beta-\mathrm{CD}$ in both complexes was steady at $\approx 1.3 \AA$. Since two systems apparently reached their equilibration states after 15 ns , the trajectories from the last 5 ns were extracted for structural and binding energy analysis.

Complex I

Complex II

Figure S1: (a, b) RMSD plots of α-MGS and $\beta-\mathrm{CD}$ with respect to their initial structures, and (c,d) displacement plots of the $\alpha-$ MGS rings A-C versus simulation time for the inclusion complexes I and II. The last snapshot structures are depicted above the graphs, where the light blue shade represents the β-CD cavity.

2.2 Displacement of α-mangostin

From the displacement analysis in Figure S1 (c-d), the α-MGS in complex I fluctuated inside the β-CD cavity while its inclusion in complex II is more stable with only slight oscillation. The α-MGS in complex II is also located deeper in the cavity and more towards the narrow rim of $\beta-\mathrm{CD}$, as seen by the displacements of the A - and C -rings (approximately at 0.9 and $-4.7 \AA$, respectively).

2.3 Binding energy analysis

MM-PBSA binding free energies of the $\alpha-$ MGS/ β-CD complexes I and II are presented in Table S1. It can be seen that the binding affinities of the two forms are likely comparable ($\Delta G_{\text {bind }}$ of $\approx 9 \mathrm{kcal} / \mathrm{mol}$).

Table S2: MM-PBSA binding free energy and the energy components ($\mathrm{kcal} / \mathrm{mol}$) for the α MGS/ β-CD complexes I and II

	Complex I	Complex II
$\Delta E_{\text {ele }}$	-5.33 ± 3.34	-4.61 ± 2.67
$\Delta E_{\text {vdW }}$	-38.96 ± 2.86	-37.04 ± 1.93
$\Delta E_{\text {MM }}$	-44.29 ± 4.16	-41.65 ± 3.22
$\Delta G_{\text {nsolv }}$	-4.68 ± 0.19	-4.53 ± 0.17
$\Delta G_{\text {psolv }}$	27.55 ± 4.26	23.83 ± 3.80
$\Delta G_{\text {solv }}$	22.87 ± 4.22	19.30 ± 3.72
$\Delta G_{\text {psolv }}+\mathrm{E}_{\text {ele }}$	18.94 ± 2.14	19.22 ± 3.00
$\Delta G_{\text {nsolv }}+\mathrm{E}_{\text {vdW }}$	-43.64 ± 1.53	-41.57 ± 2.10
-T ΔS	12.56 ± 2.72	13.29 ± 2.72
$\Delta G_{\text {bind (1)+(2) + (3) }}$	-8.86 ± 3.25	-9.06 ± 2.87

3. Solvation accessibility

3.1 Solvation accessibility in pure water or ethanol

The RDF plots of the oxygen atoms of α-MGS complexed with $\beta-\mathrm{CD}$ in pure water, and ethanol, are presented in Figure S2. The first solvation shell in water solvation system appears around $2 \AA$ from oxygen atoms $\left(\mathrm{O}^{2}, \mathrm{O}^{3}, \mathrm{O}^{4}\right.$ and $\left.\mathrm{O}^{6}\right)$ of the encapsulated α-MGS. Differentially, a much lower accessibility of ethanol is observed in the same solvation shell around the O^{3} and O^{2} atoms.

Figure S2: Radial distribution function (RDF, $g(r)$) of (a) ethanol, and (b) water oxygens towards the ligand oxygens $\left(\mathrm{O}^{1}-\mathrm{O}^{6}\right)$ of $\alpha-\mathrm{MGS} / \beta-\mathrm{CD}$ complex.

3.2 Solvation accessibility in co-solvent

Table S3: Integration number, $n(r)$, of the first $(2.2 \AA)$ and second solvation shells $(3.1 \AA)$ around the heteroatoms of α-MGS in each system

System	$n(r)$ of water molecules		$n(r)$ of ethanol molecules	
	$\begin{gathered} 1^{\text {st }} \text { solvation } \\ \text { shell } \end{gathered}$	$2^{\text {nd }}$ solvation shell	$\begin{aligned} & 1^{\text {st }} \text { solvation } \\ & \text { shell } \end{aligned}$	$2^{\text {nd }}$ solvation shell
Water				
O^{1}	0.0	0.0	-	-
O^{2}	0.2	0.9	-	-
O^{3}	0.7	4.9	-	-
O^{4}	0.4	2.6	-	-
O^{5}	0.0	0.2	-	-
O^{6}	0.7	4.1	-	-
5 \% v/v Ethanol				
O^{1}	0.0	0.0	0.0	0.0
O^{2}	0.2	1.0	0.0	0.0
O^{3}	0.7	4.6	0.0	0.2
O^{4}	0.4	2.4	0.0	0.2
O^{5}	0.0	0.2	0.0	0.0
O^{6}	0.6	3.5	0.0	0.4
$15 \% \mathrm{v} / \mathrm{v}$ Ethanol				
O^{1}	0.0	0.0	0.0	0.1
O^{2}	0.1	0.4	0.0	0.2
O^{3}	0.6	3.7	0.0	1.0
O^{4}	0.2	1.7	0.0	0.6
O^{5}	0.0	0.2	0.0	0.1
O^{6}	0.4	2.7	0.0	0.7
$30 \% \mathrm{v} / \mathrm{v}$ Ethanol				

	$\boldsymbol{n}(\boldsymbol{r})$ of water molecules		$\boldsymbol{n}(\boldsymbol{r})$ of ethanol molecules	
System	$\mathbf{1}^{\text {st }}$ solvation shell	$\mathbf{2}^{\text {nd }}$ solvation shell	$\mathbf{1}^{\text {st }}$ solvation shell	$\mathbf{2}^{\text {nd }}$ solvation shell
O^{1}	0.0	0.3	0.0	1.5
O^{2}	0.0	0.1	0.0	0.2
O^{3}	0.6	3.2	0.1	1.8
O^{4}	0.2	1.4	0.0	1.0
O^{5}	0.0	0.1	0.0	0.1
O^{6}	0.0	0.6	0.0	0.6
$\mathbf{6 0 ~ \% ~ v / v ~ E t h a n o l ~}$				
O^{1}	0.0	0.3	0.0	1.5
O^{2}	0.0	0.2	0.0	0.3
O^{3}	0.4	2.5	0.2	2.2
O^{4}	0.1	0.8	0.0	1.0
O^{5}	0.0	0.0	0.0	0.1
O^{6}	0.0	0.6	0.0	0.3
Ethanol				
O^{1}	-	-	0.0	1.7
O^{2}	-	-	0.1	1.2
O^{3}	-	-	0.3	4.1
O^{4}	-	-	0.0	2.0
O^{5}	-	-	0.0	0.7
O^{6}	-	-	0.0	0.9

