Supporting Information

for

Bromotyrosine-derived alkaloids from the Caribbean sponge

Aplysina lacunosa

Qun Göthel, Thanchanok Sirirak, and Matthias Köck*

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung,

Am Handelshafen 12, 27570 Bremerhaven, Germany

Email: Matthias Köck - mkoeck@awi.de

* Corresponding author

1D, 2D NMR, and CD spectra of three new compounds. 1D NMR, mass and

CD spectra of all known isolated compounds

Figure S1:	1D ¹ H-NMR spectrum of 14-debromo-11-deoxyfistularin-3 (1)				
Figure S2:	$1D^{13}C$ -NMR spectrum of 14-debromo-11-deoxyfistularin-3 (1) S				
Table S1:	NMR data (¹³ C, ¹ H, ¹ H, ¹ H-COSY, ¹ H, ¹ H-HMBC, 1,1-ADEQUATE, and ¹ H, ¹ H-				
	NOESY) of 14-debromo-11-deoxyfistularin-3 (1)				
Figure S3:	2D ¹ H, ¹³ C-HSQC spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S6			
Figure S4:	2D ¹ H, ¹³ C-HMBC spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S 6			
Figure S5:	2D ¹ H, ¹³ C-HMBC spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S 7			
Figure S6:	2D ¹ H, ¹ H-COSY spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S 7			
Figure S7:	2D 1,1-ADEQUATE spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S 8			
Figure S8:	2D ¹ H, ¹ H-NOESY spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S 8			
Figure S9:	Circular dichroism spectrum of 14-debromo-11-deoxyfistularin-3 (1)	S 9			

Figure S10:	1D ¹ H-NMR spectrum of aplysinin A (2)	S10
Figure S11:	1D ¹³ C-NMR spectrum of aplysinin A (2)	S 10
Table S2:	NMR data (¹³ C, ¹ H, ¹ H, ¹ H-COSY, ¹ H, ¹ H-HMBC, 1,1-ADEQUATE, and ¹ H, ¹ H-	S11
	NOESY) of aplysinin A (2)	
Figure S12:	2D ¹ H, ¹³ C-HSQC spectrum of aplysinin A (2)	S12
Figure S13:	2D ¹ H, ¹³ C-HMBC spectrum of aplysinin A (2)	S12
Figure S14:	2D ¹ H, ¹³ C-HMBC spectrum of aplysinin A (2)	S13
Figure S15:	2D ¹ H, ¹ H-COSY spectrum of aplysinin A (2)	S13
Figure S16:	2D 1,1-ADEQUATE spectrum of aplysinin A (2)	S14
Figure S17:	2D ¹ H, ¹ H-NOESY spectrum of aplysinin A (2)	S14
Figure S18:	Circular dichroism spectrum of aplysinin A (2)	S15
Figure S19:	1D ¹ H-NMR spectrum of aplysinin B (3)	S16
Figure S20:	1D ¹³ C-NMR spectrum of aplysinin B (3)	S16
Table S3:	NMR data (¹³ C, ¹ H, ¹ H, ¹ H-COSY, and ¹ H, ¹ H-HMBC) of aplysinin B (3)	S17
Figure S21:	2D ¹ H, ¹³ C-HSQC spectrum of aplysinin B (3)	S17
Figure S22:	2D ¹ H, ¹³ C-HMBC spectrum of aplysinin B (3)	S18
Figure S23:	2D ¹ H, ¹ H-COSY spectrum of aplysinin B (3)	S18
Figure S24:	1D ¹ H-NMR spectrum of 14-debromoaraplysillin I (4)	S19
Figure S25:	ESI-MS(+) spectral data of 14-debromoaraplysillin I (4).	S19
Figure S26:	Circular dichroism spectrum of 14-debromoaraplysillin I (4)	S20
Figure S27:	1D ¹ H-NMR spectrum of fistularin-3 (5)	S20
Figure S28:	ESI-MS(+) spectral data of fistularin-3 (5)	S21
Figure S29:	Circular dichroism spectrum of fistularin-3 (5)	S21
Figure S30:	1D ¹ H-NMR spectrum of 11,19-dideoxyfistularin-3 (6)	S22
Figure S31:	1D ¹ H-NMR spectrum of 19-deoxyfistularin-3 (7)	S22
Figure S32:	ESI-MS spectral data of 19-deoxyfistularin-3 (7).	S23
Figure S33:	Circular dichroism spectrum of 19-deoxyfistularin-3 (7)	S23
Figure S34:	1D ¹ H-NMR spectrum of 11-deoxyfistularin-3 (8)	S24
Figure S35:	ESI-MS(+) spectral data of 11-deoxyfistularin-3 (8)	S24
Figure S36:	Circular dichroism spectrum of 11-deoxyfistularin-3 (8)	S25
Figure S37:	1D ¹ H-NMR spectrum of 11-ketofistularin-3 (9)	S25

Figure S38: ESI–MS(+) spectral data of 11-ketofistularin-3 (9).	S26
Figure S39: Circular dichroism spectrum of 11-ketofistularin-3 (9)	S26
Figure S40: 1D ¹ H-NMR spectrum of hexadelin B (10)	S27
Figure S41: ESI–MS(+) spectral data of hexadelin B (10)	S27
Figure S42: 1D ¹ H-NMR spectrum of aerothionin (11)	S28
Figure S43: ESI–MS(+) spectral data of aerothionin (11)	S28
Figure S44: Circular dichroism spectrum of aerothionin (11)	S29
Figure S45: 1D ¹ H-NMR spectrum of 11-hydroxyaerothionin (12)	S29
Figure S46: ESI-MS(+) spectral data of 11-hydroxyaerothionin (12)	S 30
Figure S47: Circular dichroism spectrum of 11-hydroxyaerothionin (12)	S 30
Figure S48: 1D ¹ H-NMR spectrum of 11-oxoaerothionin (13)	S 31
Figure S49: ESI–MS(+) spectral data of 11-oxoaerothionin (13)	S 31
Figure S50: Circular dichroism spectrum of 11-oxoaerothionin (13)	S32
Figure S51: 1D ¹ H-NMR spectrum of 11-oxo-12-hydroxyaerothionin (14)	S32
Figure S52: ESI–MS(+) spectral data of 11-oxo-12-hydroxyaerothionin (14)	S33
Figure S53: Circular dichroism spectrum of 11-oxo-12-hydroxyaerothionin (14)	S33
Figure S54: 1D ¹ H-NMR spectrum of <i>N</i> -methylaerophobin-2 (15)	S34
Figure S55: ESI–MS(+) spectral data of <i>N</i> -methylaerophobin-2 (15)	S34
Figure S56: 1D ¹ H-NMR spectrum of aeroplysinin-2 (16)	S35
Figure S57: ESI–MS(+) spectral data of aeroplysinin-2 (16)	S35
Figure S58: Circular dichroism spectrum of aeroplysinin-2 (16)	S36
Figure S59: 1D ¹ H-NMR spectrum of subereaphenol B (17)	S36
Figure S60: ESI–MS(+) spectral data of subereaphenol B (17)	S37
Figure S51: 1D ¹ H-NMR spectrum of unnamed bromytyrosine (18)	S37
Figure S62: ESI–MS(+) spectral data of unnamed bromytyrosine (18)	S38
Figure S63: Circular dichroism spectrum of unnamed bromytyrosine (18)	S 38

position	$\delta_{ m C}$	$\delta_{ m H}$	¹ H, ¹ H-COSY	¹ H, ¹³ C- HMBC	1,1-ADEQ	¹ H, ¹ H-NOESY
1/11	73.6	3.92		2/2´, 3/3´,	2/2´,	
	73.5			5/5´, 6/6´	6/61	
2/ 2	113.6, 2C					
3/3	147.1, 2C					
4/ 4´	120.9, 120.8					
5/5´	131.2, 131.1	6.57		1/1´, 6/6´, 7/7´	6/ 6´	
6/ 6´	90.3 90.2					7/71
7/	40.0	3.21		1/1´, 5/5´, 6/6´, 8/8´, 9/9´	6/6′, 8/8′	6
		3.63				
7´	39.9	3.19				6´
		3.62				
8/8-	154.5					
	154.6					
9/ 9 ′	159.1 159.0					
10	36.1	3.36	9-NH, 11	9	11	
11	28.6	1.95	10, 12		10, 12	
12	66.5	4.06	11	10, 11, 13	11	
13	153.8					
14	113.3	7.05	15	13, 15	13, 15	
15	126.7	7.28	14			
16	137.2					
17	130.5	7.52				
18	110.8					
19	69.9	4.65	20	15, 16, 17, 20	16, 20	15, 17,
						9′-NH
20	46.8	3.35	19, 9´-NH	9´		
3/3'-OMe	59.7, 2C	3.64				
9-NH		8.60	10	9, 10		
9′-NH		8.35	20	20		
1-OH		6.36				7
1′-OH		6.37				7´, 19-OH
19-OH		5.54				1´-OH

Table S1: NMR data (13 C, 1 H, 1 H, 1 H-COSY, 1 H, 13 C-HMBC, 1,1-ADEQUATE, and 1 H, 1 H-NOESY) of 14-debromo-11-deoxyfistularin-3 (1) in DMSO- d_6

Figure S3: 2D ¹H, ¹³C-HSQC spectrum of 14-debromo-11-deoxyfistularin-3 (1) in DMSO- d_6 , 303 K.

Figure S4: 2 D 1 H, 13 C-HMBC spectrum of 14-debromo-11-deoxyfistularin-3 (1) in DMSO- d_6 , 303 K.

Figure S5: 2D ¹H, ¹³C-HMBC spectrum of 14-debromo-11-deoxyfistularin-3 (1) in DMSO- d_{6} , D6 = 0.2500, 303 K.

Figure S6: 2D ¹H, ¹H-COSY spectrum of 14-debromo-11-deoxyfistularin-3 (1) in DMSO- d_6 , 303 K.

Figure S7: 2D 1,1-ADEQUATE spectrum of 14-debromo-11-deoxyfistularin-3 (1) in DMSO-*d*₆, 303 K.

Figure S8: 2D ¹H, ¹H-NOESY spectrum of 14-debromo-11-deoxyfistularin-3 (1) in DMSO- d_6 , 303 K.

Figure S9: Circular dichroism spectrum of 14-debromo-11-deoxyfistularin-3 (1) $(c = 2.0 \times 10^{-4} \text{ M}, \text{ MeOH}, 25 \text{ °C}).$

position	$\delta_{ m C}$	$\delta_{ m H}$	¹ H, ¹ H-COSY	¹ H, ¹³ C-HMBC	1,1-ADEQ	¹ H, ¹ H-NOESY
1	73.5	3.93	1-OH	2, 3, 5, 6		
2	113.1					
3	147.1					
4	120.9					
5	131.1	6.56		4,6	6	7
6	90.3					
7	39.7	3.17		1, 5, 6, 8, 9		5
		3.61				
8	154.3					
9	159.0					
10	46.3	3.33, 2H	9-NH	9,12		
11	69.3	4.67	10, 11 - OH	10, 12, 13, 17		10, 13, 17
12	142.5					
13/17	130.4, 2C	7.57, 2H		11, 12, 14/16	12, 16, 14	
14/16	117.3, 2C					
15	151.4					
18	71.3	3.96, 2H	19	15, 19, 20		
19	29.8	1.91, 2H	20			
20	35.7	3.25, 2H	20-NH	21		
21	169.1					
22	22.6	1.80, 3H		21		
3-OMe	59.6	3.65, 3H		3		
9-NH		8.39	10	9		11
1-OH		6.36	1	1, 2, 6		11-OH
11-OH		5.72	11			
20-NH		7.86	20	21		

Table S2: NMR data (13 C, 1 H, 1 H, 1 H, 1 H-COSY, 1 H, 13 C-HMBC, 1,1-ADEQUATE, and 1 H, 1 H-NOESY) of aplysinin A (**2**) in DMSO- d_6

Figure S12: 2D ¹H, ¹³C-HSQC spectrum of aplysinin A (2) in DMSO- d_6 , 303 K.

Figure S14: 2D ¹H, ¹³C-HMBC spectrum of aplysinin A (2) in DMSO- d_6 , D6 = 0.2500, 303 K.

Figure S16: 2D 1,1-ADEQUATE spectrum of aplysinin A (2) in DMSO- d_6 , 303 K.

Figure S17: 2D ¹H, ¹H-NOESY spectrum of aplysinin A (2) in DMSO- d_6 , 303 K.

Figure S18: Circular dichroism spectrum of aplysinin A (2) ($c = 2.6 \times 10^{-4}$ M, MeOH, 25 °C).

position	$\delta_{ m C}$	$\delta_{ m H}$	¹ H, ¹ H-COSY	¹ H, ¹³ C-HMBC
1	134.9			
2/6	131.7, 2C	7.88, 2H		3, 4, 5, 7
3/5	118.5, 2C			
4	154.4			
7	135.7	7.33		1, 2, 6, 8, 9
8	124.9	6.66		1, 9
9	165.0			
10	38.4	3.20		9, 11
11	28.1	1.71, 2H	11	10, 12, 13
12	22.0	2.45, 2H	12	13, 14
13	126.8			
14	109.2	6.60		13, 15
15	147.4			
4-OMe	61.0	3.82, 3H		4
9-NH		8.17	10	9, 10

Table S3: NMR data (¹³C, ¹H, ¹H, ¹H-COSY, and ¹H, ¹³C-HMBC) of aplysinin B (**3**) in DMSO-*d*₆

Figure S22: 2D ¹H, ¹³C-HMBC spectrum of aplysinin B (3) in DMSO- d_6 , 303 K.

Figure S24: 1D ¹H-NMR spectrum of 14-debromoaraplysillin I (4) in DMSO- d_6 , 303 K, 600 MHz.

Figure S26: Circular dichroism spectrum of 14-debromoaraplysillin I (4) ($c = 3.1 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S27: 1D ¹H-NMR spectrum of fistularin-3 (**5**) in DMSO- d_6 , 303 K, 600 MHz.

Figure S28: ESI–MS(+) spectral data of fistularin-3 (5).

Figure S29: Circular dichroism spectrum of fistularin-3 (5) ($c = 1.7 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S32: ESI–MS(+) spectral data of 19-deoxyfistularin-3 (7).

Figure S33: Circular dichroism spectrum of 19-deoxyfistularin-3 (7) ($c = 1.8 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S34: 1D ¹H-NMR spectrum of 11-deoxyfistularin-3 (8) in DMSO- d_6 , 303 K, 600 MHz.

Figure S36: Circular dichroism spectrum of 11-deoxyfistularin-3 (8) ($c = 1.8 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S37: 1D ¹H-NMR spectrum of 11-ketofistularin-3 (9) in DMSO- d_6 , 303 K, 600 MHz.

Figure S38: ESI–MS(+) spectral data of 11-ketofistularin-3 (9).

Figure S39: Circular dichroism spectrum of 11-ketofistularin-3 (9) ($c = 1.8 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S40: 1D ¹H-NMR spectrum of hexadelin B (10) in DMSO- d_6 , 303 K, 600 MHz.

Figure S42: 1D ¹H-NMR spectrum of aerothionin (11) in DMSO- d_6 , 303 K, 600 MHz.

Figure S44: Circular dichroism spectrum of aerothionin (11) ($c = 2.4 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S45: 1D ¹H-NMR spectrum of 11-hydroxyaerothionin (12) in DMSO- d_6 , 303 K, 600 MHz.

Figure S46: ESI–MS(+) spectral data of 11-hydroxyaerothionin (12).

Figure S47: Circular dichroism spectrum of 11-hydroxyaerothionin (12) ($c = 2.4 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S48: 1D ¹H-NMR spectrum of 11-oxoaerothionin (13) in CD₃OD, 303 K, 600 MHz.

Figure S50: Circular dichroism spectrum of 11-oxoaerothionin (13) ($c = 2.4 \times 10^{-4}$ M, MeOH, 25 °C).

Figure S51: 1D ¹H-NMR spectrum of 11-oxo-12-hydroxyaerothionin (14) in DMSO- d_6 , 303 K, 600 MHz.

Figure S52: ESI–MS(+) spectral data of 11-oxo-12-hydroxyaerothionin (14).

Figure S53: Circular dichroism spectrum of 11-oxo-12-hydroxyaerothionin (14) $(c = 2.3 \times 10^{-4} \text{ M}, \text{ MeOH}, 25 \text{ °C})$

Figure S55: ESI–MS(+) spectral data of *N*-methyl-aerophobin-2 (15).

Figure S56: 1D ¹H-NMR spectrum of aerophysinin-2 (**16**) in DMSO- d_6 , 303 K, 600 MHz.

Figure S57: ESI–MS(+) spectral data of aeroplysinin-2 (16).

Figure S58: Circular dichroism spectrum of aerophysinin-2 (16) $(c = 5.5 \times 10^{-4} \text{ M}, \text{ MeOH},$ 25 °C)

Figure S60: ESI–MS(+) spectral data of subereaphenol B (17).

Figure S63: Circular dichroism spectrum of unnamed bromytyrosine (18) ($c = 4.8 \times 10^{-4}$ M, MeOH, 25 °C)