Supporting Information

for

Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels

Shintaro Kawano¹, Toshiyuki Kida^{*2}, Mitsuru Akashi², Hirofumi Sato¹, Motohiro Shizuma¹ and Daisuke Ono^{*1}

Address: ¹Biomaterial and Commodity Chemicals Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan and ²Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Email: Toshiyuki Kida - kida@chem.eng.osaka-u.ac.jp; Daisuke Ono -

Daiskono@omtri.or.jp,

* Corresponding author

Additional material

S1

Figure S1: FTIR spectrum of DM-β-CD/PDI polymer.

Figure S2: Zeta potential of DM-β-CD/PDI nanogels at various pH levels.

Figure S3: TEM images of self-assembled DM-β-CD/PDI nanogels.

Figure S4: Surface tension vs concentration plots of DM- β -CD/PDI polymer and DM- β -CD aqueous solutions. The arrow shows a critical aggregation concentration of DM- β -CD/PDI polymer solution.

Figure S5: Optical micrograph of the toluene-in-water emulsion stabilized by DM- β -CD/PDI nanogel after the partial removal (A) and evaporation (B) of toluene core.

δ	DM-β-CD/PDI polymer			DM-β-CD		
	Chemical	Integral	coupling	Chemical	Integral	coupling
	shift			shift (ppm)		
	(ppm)					
H ₁	4.99	1H	br	4.97	1H	m, <i>J</i> _{1,2} =
						4.1 Hz
H_2	3.21	1H	br	3.19	1H	dd, $J_{2,3} =$
						9.6 Hz
H_3	3.72	1H	br	3.70	1H	t, <i>J</i> _{3,4} =
						9.6 Hz
H_4	3.3 ^a	_		3.35 ^a	1H	m
H_5	3.54	1H	br	3.68	1H	m
H_6	3.46	2H	br	3.55	2H	m
$2-OCH_3$	3.3 ^a	_		3.50	ЗH	S
6-OCH ₃	3.22	ЗH	br	3.25	3H	S
phenyl	7.31	4H	br	_	_	_

Table S1: ¹H NMR chemical shifts (δ ; ppm), integral values and coupling constants (*J*; Hz) of DM-β-CD/PDI polymer and DM-β-CD in (CD₃)₂SO.

^aThe signals were overlapped with H_2O .