Supporting Information

for

Exploring architectures displaying multimeric presentations of a trihydroxypiperidinedine iminosugar

Camilla Matassini¹, Stefania Mirabella¹, Andrea Goti¹, Inmaculada Robina², Antonio J. Moreno-Vargas² and Francesca Cardona*¹

Address: ¹Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy and ²Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Prof. García González 1, E-41012, Sevilla, Spain.

Email: Francesca Cardona - francesca.cardona@unifi.it

*Corresponding author

Characterization data, ¹H NMR and ¹³C NMR spectra of synthesized compounds and IC₅₀ graphics of compounds 11·HCl and 15
Table of contents

Figure S1. 1H NMR spectrum of compound 7
Figure S2. 13C NMR spectra of compound 7
Figure S3. 1H NMR spectrum of compound 9
Figure S4. 13C NMR spectra of compound 9
Figure S5. 1H NMR spectrum of compound 8
Figure S6. 13C NMR spectra of compound 8
Figure S7. 1H NMR spectrum of compound 11
Figure S8. 13C NMR spectra of compound 11
Figure S9. 1H NMR spectrum of compound 12
Figure S10. 13C NMR spectra of compound 12
Figure S11. 1H NMR spectrum of compound 11·HCl
Figure S12. 13C NMR spectra of compound 11·HCl
Figure S13. 1H NMR spectrum of compound 14
Figure S14. 13C NMR spectra of compound 14
Figure S15. 1H NMR spectrum of compound 15
Figure S16. 13C NMR spectra of compound 15
Figure S17. IC$_{50}$ of compound 11 towards amyloglucosidase.
Figure S18. IC$_{50}$ of compound 15 towards amyloglucosidase.
Figure S1: 1H NMR spectrum of compound 7 (400 MHz, CDCl$_3$).
Figure S2: 13C NMR spectrum of compound 7 (50 MHz, CDCl$_3$).
Figure S3: 1H NMR spectrum of compound 9 (400 MHz, CDCl$_3$).
Figure S4: 13C NMR spectrum of compound 9 (50 MHz, CDCl$_3$).
Figure S5: 1H NMR spectrum of compound 8 (400 MHz, D$_2$O).
Figure S6: 13C NMR spectrum of compound 8 (50 MHz, D$_2$O).
Figure S7: 1H NMR spectrum of compound 11 (400 MHz, D$_2$O).
Figure S8: 13C NMR spectrum of compound 11 (100 MHz, D$_2$O).
Figure S9: 1H NMR spectrum of compound 12 (400 MHz, CDCl$_3$).
Figure S10: 13C NMR spectrum of compound 12 (100 MHz, CDCl$_3$).
Figure S11: 1H NMR spectrum of compound 11·HCl (400 MHz, D$_2$O).
Figure S12: 13C NMR spectrum of compound 11·HCl (100 MHz, D$_2$O).
Figure S13: 1H NMR spectrum of compound 14 (400 MHz, CD$_3$OD).
Figure S14: 13C NMR spectrum of compound 14 (100 MHz, CD$_3$OD).
Figure S15: 1H NMR spectrum of compound 15 (400 MHz, CD$_3$OD).
Figure S16: 13C NMR spectrum of compound 15 (50 MHz, CD$_3$OD).
Glycosidase inhibition assays

The experiments were performed essentially as previously described. The experiments were performed essentially as previously described. Briefly, 0.01–0.5 units/mL of enzyme and inhibitor were pre-incubated for 5 min at rt, and the reaction started by addition of the substrate, buffered to the optimal pH of the enzyme. After 20 min of incubation at 37 °C, the reaction was stopped by addition of sodium borate buffer pH 9.8. The p-nitrophenolate formed was measured by visible absorption spectroscopy at 405 nm.

![Graph showing % inhibition vs inhibitor concentration for Compound 11 and Compound 15](image)

Figure S17: IC_{50} of compound 11 towards amylglucosidase.

Figure S18: IC_{50} of compound 15 towards amylglucosidase.
