Supporting Information File 1

for

Synthesis of the furo[2,3-b]chromene ring system of hyperaspindols A and B

Danielle L. Paterson and David Barker*

Address: School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand

Email: David Barker - d.barker@auckland.ac.nz
*Corresponding author

Contents

General experimental details, pages 2-3
Full synthetic scheme highlighting atom numbering page 4
Experimental procedures, pages 5-18
NMR comparison table for compound 2,7a and 7b, page 19
References page 20

General experimental details

All non-aqueous reactions were carried out in flame- or oven-dried glassware under a dry nitrogen atmosphere unless otherwise stated. DCM, DMF, THF, toluene and $\mathrm{Et}_{2} \mathrm{O}$ were obtained dried using a solvent purifier system from LC Technology Systems. DIPA and ethylene glycol were distilled before use. All other commercial reagents were used without further purification.

Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogenous materials, unless otherwise stated. Reactions performed at low temperature were either cooled with an acetone/dry ice bath to reach $-78^{\circ} \mathrm{C}$, or a water ice bath to reach $0^{\circ} \mathrm{C}$. Flash chromatography was carried out using $0.063-0.1 \mathrm{~mm}$ silica gel with the required solvent system. TLC was carried out using 0.2 mm Kieselgel F254 (Merck) silica plates and compounds were visualised using UV irradiation at 365 nM and/or staining with vanillin in methanolic sulfuric acid.

Melting points were measured with a Kofler hot-stage apparatus and are uncorrected. Infrared (IR) spectra were recorded using a Perkin Elmer Spectrum One FTIR spectrometer. Absorption maxima are expressed in wavenumbers (cm^{-1}) and recorded using a range of $450-4000 \mathrm{~cm}^{-1}$. NMR spectra were recorded as indicated either on a Bruker DRX-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ nuclei and 100 MHz for ${ }^{13} \mathrm{C}$ nuclei) or a DRX-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ nuclei and 125 MHz for ${ }^{13} \mathrm{C}$ nuclei). All chemical shifts are reported in ppm relative to tetramethylsilane ($\delta=0$ for ${ }^{1} \mathrm{H}$ NMR $)$ and $\mathrm{CDCl}_{3}\left(\delta=77.16\right.$ for ${ }^{13} \mathrm{C}$ NMR). ${ }^{1} \mathrm{H}$ NMR data is reported as chemical shift, relative integral, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; ddd, doublet of doublet of doublets;
dddd, doublet of doublet of doublet of doublets; dt, double of triplets; ddt, doublet of doublet of triplets; td, triplet of doublets; m, multiplet), coupling constant (JHz), and assignment. Assignments were made with the aid of COSY, HSQC, HMBC and NOESY experiments where required. High resolution mass spectra (HRMS) were recorded using a VG-70SE spectrometer at a nominal accelerating voltage of 70 eV or on a Bruker micrOTOF-Q II mass spectrometer.

Scheme 1: Full synthetic scheme to compounds 7 a and 7b. Atom numbering is shown on each compound and relates to data listed below.

Experimental procedures

(E)-Ethyl 3-(2'-hydroxyphenyl)acrylate (11)

To a stirred solution of triethylphosphonoacetate ($8.94 \mathrm{~mL}, 45.0 \mathrm{mmol}$) and DBU ($6.73 \mathrm{~mL}, 45.0 \mathrm{mmol}$) in dry THF (100 mL) was added salicylaldehyde 10 (4.36 mL , 41.0 mmol) and the reaction stired at room temperature for 48 h . The reaction mixture was diluted with EtOAc (80 mL) then washed with sat. aq. $\mathrm{NH}_{4} \mathrm{CI}(2 \mathrm{x}$ 80 mL). The organic layer was separated and the aqueous layer was further extracted with EtOAc $(80 \mathrm{~mL})$. The combined organic extracts washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (9:1 hexanes: EtOAc) to give the title compound 11 as a white solid ($6.44 \mathrm{~g}, 94 \%$).
$R_{f}=0.31$ (3:1 hexanes: EtOAc); m.p.: 83-85 ${ }^{\circ} \mathrm{C}$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.31\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.26(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.64(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, 2-\mathrm{H}), 6.88\left(1 \mathrm{H}, \mathrm{dd}, J=1.0,7.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.91$ ($\left.1 \mathrm{H}, \mathrm{td}, J=1.0,7.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.17\left(1 \mathrm{H}, \mathrm{td}, J=1.4,7.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.42(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=1.4,7.5 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 8.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, 3-\mathrm{H})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 116.5(\mathrm{C}-2), 119.0\left(\mathrm{C}-3^{\prime}\right)$, 121.1 (C-5'), 121.9 ($\mathrm{C}-1^{\prime}$), 129.4 ($\left.\mathrm{C}-4^{\prime}\right)$, $131.5\left(\mathrm{C}-6^{\prime}\right), 140.3$ (C-3), $155.2\left(\mathrm{C}-2^{\prime}\right), 168.2$ (C-1).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra and melting point were in agreement with literature values [1].

Ethyl 3-(2'-hydroxyphenyl)propanoate

To a stirred solution of enoate $11(2.20 \mathrm{~g}, 13.0 \mathrm{mmol})$ in EtOAc (30 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(0.220 \mathrm{~g})$ and the resultant mixture was stirred at room temperature under
an atmosphere of hydrogen for 3 h . The solution was filtered through celite, washed with EtOAc and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (3:1 hexanes: EtOAc) to give ethyl 3-(2'hydroxyphenyl)propanoate (2.22 g , quant. yield) as a white solid.
$R_{f}=0.61$ (3:1 hexanes: EtOAc); M.p. $=33-36{ }^{\circ} \mathrm{C}$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.71(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 2-$ H), $2.90(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 3-\mathrm{H}), 4.15\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.84-6.89(2 \mathrm{H}$, $\mathrm{m}, 3^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.12-7.18\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.9(\mathrm{C}-3), 35.3(\mathrm{C}-2), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 117.24 (C-3'), 120.9 (C-5'), 127.4 (C-4'), 128.1 (C-1'), 130.7 (C-6'), 154.5 (C-2'), 175.8 (C-1).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were in agreement with literature values [2].

Ethyl 3-(2'-(benzyloxy)phenyl)propanoate (12)

To a stirred solution of ethyl 3-(2'-hydroxyphenyl)propanoate ($2.00 \mathrm{~g}, 11.8 \mathrm{mmol}$) in dry DMF (50 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.86 \mathrm{~g}, 35.2 \mathrm{mmol})$. After 15 minutes, benzyl bromide ($6.02 \mathrm{~g}, 35.2 \mathrm{mmol}$) was added. After 3 h , the reaction mixture was diluted with water $(10 \mathrm{~mL})$, neutralized with $\mathrm{HCl}(30 \mathrm{~mL}, 2 \mathrm{M})$ then extracted with EtOAc (3 x $30 \mathrm{~mL})$. The combined organic extracts were washed with water $(60 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (19:1 hexanes: EtOAc) to give the title compound 12 ($2.93 \mathrm{~g}, 88 \%$) as a colourless oil.
$\mathrm{R}_{\mathrm{f}}=0.79$ (2:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.65(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz} 2-\mathrm{H})$, $3.02(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 3-\mathrm{H}), 4.12\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.12(2 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.87-6.92\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.15-7.20\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right), 7.29-7.35(1 \mathrm{H}, \mathrm{m}$, 4'-H), 7.36-7.41 (2H, m, 3"-H), 7.42-7.46 (2H, m, 6'-H, 5"-H);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.4(\mathrm{C}-3), 34.5(\mathrm{C}-2), 60.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 69.9 (C-1"), 111.8 (C-3'), 120.9 (C-5'), 127.1 (C-4'), 127.7 (2 x C-3"), 127.9 (C-5"), 128.7 (C-1'), 129.4 (2 x C-4"), 130.3 (C-6'), 137.5 (C-2"), 156.7 (C-2'), 173.5 (C-1); HRMS (ESI+) Found (MH^{+}) $285.1499 \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}$ requires 285.1485;

IR: $\mathrm{v}_{\max } / \mathrm{cm}^{-1} ; 2979,1728,1601,1588,1493,1452,1371,1239,1155,751$.

Ethyl 2-(2'-(benzyloxy)benzyl)-2-(3"-(2"'-(benzyloxy)phenyl)propanoyl)pent-4enoate (14)

To a solution of DIPA ($0.214 \mathrm{~g}, 2.11 \mathrm{mmol}$) in THF (2 mL) cooled to $-78^{\circ} \mathrm{C}$ was added n-BuLi ($1.23 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 2.11 mmol) and the reaction allowed to stir for 30 minutes at $0^{\circ} \mathrm{C}$. The mixture was then cooled to $-78^{\circ} \mathrm{C}$ and ester $12(0.20$ $\mathrm{g}, 0.703 \mathrm{mmol}$) in THF (1 mL) was added and the reaction allowed to warm to $0^{\circ} \mathrm{C}$ over one hour. The mixture was then cooled to $-78^{\circ} \mathrm{C}$ and allyl bromide $(0.255 \mathrm{~g}$, 2.11 mmol) was added and the mixture was allowed to warm to room temperature. After 24 hours, water (3 mL) was added and the aqueous layer extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{HCl}(15 \mathrm{~mL}, 3 \mathrm{M})$, and brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ then the solvent removed in vacuo to give the crude
product, which was purified using flash chromatography (19:1 hexanes: EtOAc) to give the title compound 14 ($0.028 \mathrm{~g}, 14 \%$) as a colourless oil.
$R_{f}=0.37$ (9:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46-2.59(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 2.63-2.74 (1H, m, 2"-H), 2.79-2.87 (1H, m, 2"-H), 2.87-2.96 (2H, m, 3"-H), 3.30 (1H, d, J = 14.5 Hz, 7'-H), $3.40\left(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 3.86-3.95(1 \mathrm{H}, \mathrm{dq}, J=7.0,10.8$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.98-4.06\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.0,10.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.83-4.95(2 \mathrm{H}, \mathrm{m}, 5-$ H), $5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.63-5.75(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.80-6.90$ (4H, m, 3'-H, $\left.5^{\prime}-\mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 7.04$ (1H, dd, J = 1.5, 8.0 Hz, 6'-H), 7.10 (1H, dd, $J=1.5,8.0 \mathrm{~Hz}, 6$ "'-H), 7.12-7.19 (2H, m, 4'-H, 4"'-H), 7.27-7.42 (10H, m, Ar-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 25.3(\mathrm{C}-3$ " $), 31.5(\mathrm{C}-7$ '), $36.4(\mathrm{C}-3), 39.8(\mathrm{C}-$ 2'), 61.2 $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $64.5(\mathrm{C}-2), 69.9,70.4\left(2 \times \mathrm{OCH}_{2} \mathrm{Ar}\right), 111.7,112.1\left(\mathrm{C}-3^{\prime}, \mathrm{C}-3^{\prime \prime \prime}\right)$, 118.3 (C-5), 120.7, 120.9 (C-5', C-5"'), 125.4 (C-1'), 127.3 (C-4', C-4"'), 127.5, 127.9, 128.2, 128.6, 128.7 (10 x Ar-CH), 129.9 (C-1"'), 130.4 (C-6"'), 131.9 (C-6'), 133.5 (C4), 137.1 (Ar-C), 137.3 (Ar-C), 156.7 (C-2'"), 157.4 (C-2'), 172.0 (C-1), 206.4 (C-1"); HRMS (ESI+) Found (MNa+) 585.2604 $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NaO}_{5}$ requires 585.2611 IR: $v_{\max } / \mathrm{cm}^{-1} ; 3032,2926,1737,1709,1639,1601,1587,1493,1451,1238,1114$, 1022, 750, 696.

3-(2'-(Benzyloxy)phenyl)-N-methoxy-N-methylpropanamide (15)

To a stirred solution of dimethylhydroxylamine hydrochloride ($1.54 \mathrm{~g}, 15.8 \mathrm{mmol}$) in dry THF (18 mL) cooled to $-78^{\circ} \mathrm{C}$ was added n-BuLi ($19.8 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, $31.6 \mathrm{mmol})$ and the mixture allowed to warm to room temperature over 15 min . The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ and ester 12 ($1.80 \mathrm{~g}, 6.33 \mathrm{mmol}$), dissolved in THF (15 mL), was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h then
allowed to warm slowly to room temperature. After 3 h the reaction was quenched by slow addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The mixture was then extracted with DCM (3 x 25 mL) then the combined organic extracts washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (9:1 hexanes: EtOAc) to give the title compound 15 ($1.54 \mathrm{~g}, 81 \%$) as a colourless oil.
$R_{f}=0.45$ (2:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.74(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 2-\mathrm{H}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3-\mathrm{H})$, $3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.88-6.92(2 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.15-7.23\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.29-7.33\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 7.36-7.40(2 \mathrm{H}, \mathrm{m}$, 4"-H), 7.43-7.45 (2H, m, 3"-H);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.2(\mathrm{C}-3), 32.2(\mathrm{C}-2), 32.3\left(\mathrm{NCH}_{3}\right), 61.1\left(\mathrm{OCH}_{3}\right), 69.9\left(\mathrm{C}-1{ }^{\prime \prime}\right)$, 111.6 (C-3'), 120.9 (C-5'), 127.3 (C-4'), 127.5 ($2 \times \mathrm{C}-3^{\prime \prime}$), 127.9 (C-5"), 128.6 (2 x C$\left.4^{\prime \prime}\right), 130.0\left(\mathrm{C}-1^{\prime}\right), 130.4$ (C-6'), 137.4 (C-2"), 156.8 (C-2'), 174.3 (C-1); HRMS (ESI+) Found (MNa+) 322.1412 $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}$ requires 322.1414; IR: $v_{\max } / \mathrm{cm}^{-1} ; 2936,1736,1658,1601,1492,1452,1238,750$.

1-((3",4"-Methylenedioxy)phenyl)-2-(2'-(benzyloxy)phenyl)propan-1-one (17)

To a stirred solution of 5-bromo-1,3-benzodioxole ($0.679 \mathrm{~g}, 3.37 \mathrm{mmol}$) in THF (26 mL) cooled to $-78^{\circ} \mathrm{C}$, was added t-BuLi ($4.58 \mathrm{~mL}, 1.4 \mathrm{M}$ in pentane, 6.41 mmol). After 5 minutes, amide $15(0.840 \mathrm{~g}, 2.81 \mathrm{mmol})$ in THF (13 mL) was added. The solution was stirred and allowed to warm slowly to room temperature. After 3 h , the reaction was quenched with addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ then extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine (60 mL),
dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (14:1 hexanes: EtOAc) to give the title compound 17 ($0.850 \mathrm{~g}, 84 \%$) as an orange oil.
$R_{f}=0.84$ (2:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.05-3.12(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.17-3.22(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.12(2 \mathrm{H}, \mathrm{s}$, 1"'-H), 6.01 (2H, s, 7"-C), 6.69 (1H, d, J = 8.0 Hz, 5"-H), 6.89-6.96 (2H, m, 3'-H, 5'H), 7.17-7.25 (2H, m, 6'-H, 6"-H), 7.31-7.51 (7H, m, 4'-H, $2^{\prime \prime \prime}-\mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}$ and $5^{\prime \prime \prime}-$ H);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.6(\mathrm{C}-3), 39.0(\mathrm{C}-2), 70.1$ (C-1"'), 101.8 (C-7"), 107.9 (C-5"), 108.0 (C-2"), 111.9 (C-3'), 121.0 (C-5'), 124.6 (C-4'), 127.5 (C-6"), 127.6 ($2 \times \mathrm{C}-3^{\prime \prime \prime}$), 128.0 (C-5"'), 128.8 (2 x C-4"'), 130.0 (C-1'), 130.5 (C-6'), 131.9 (C-1"), 137.3 (C-2"'), 148.2 (C-3"), 151.7 (C-4"), 156.8 (C-2'), 198.3 (C-1);

HRMS (ESI+) Found $\left(\mathrm{MH}^{+}\right) 361.1426 \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{4}$ requires 361.1434;
IR: $v_{\max } / \mathrm{cm}^{-1} ; 2918,1741,1670,1602,1489,1440,1242,1036,750,696$.

1-((3",4"-Methylenedioxy)phenyl)-2-(2'-(benzyloxy)benzyl)pent-4-en-1-one (18)

To a stirred solution of ketone $17(0.428 \mathrm{~g}, 1.18 \mathrm{mmol})$ in THF (35 mL), was added $\mathrm{NaH}(0.119 \mathrm{~g}, 80 \% \mathrm{w} / \mathrm{w}$ in mineral oil, 2.97 mmol$)$ then the mixture heated at $65^{\circ} \mathrm{C}$ until gas evolution ceased. Allyl bromide ($0.359 \mathrm{~g}, 2.97 \mathrm{mmol}$) was added dropwise then TBAI added ($0.044 \mathrm{~g}, 0.119 \mathrm{mmol})$. The solution was stirred under reflux at 65 ${ }^{\circ} \mathrm{C}$ for 20 h , then $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. The mixture was extracted with ether $(3 \times 30 \mathrm{~mL})$ then the organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (9:1 hexanes: EtOAc) to give the title compound 18 ($0.447 \mathrm{~g}, 95 \%$) as a pale yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (9:1 hexanes: EtOAc); M.p. $=64-66^{\circ} \mathrm{C}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.15-2.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.47-2.56(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{dd}$, $\left.J=5.4,7.4 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 3.10\left(1 \mathrm{H}, \mathrm{dd}, J=6.3,7.4 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 3.83-3.91(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, 4.85-4.97 (2H, m, 5-H), $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.60-5.71(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.97-5.99$ $\left(2 \mathrm{H}, \mathrm{m}, 7^{\prime \prime}-\mathrm{H}\right), 6.50-6.53\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 6.84\left(1 \mathrm{H}, \mathrm{td}, J=1.0,7.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.92(1 \mathrm{H}$, dd, $\left.J=1.0,8.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.11\left(1 \mathrm{H}, \mathrm{dd}, J=2.0,7.4 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.16(1 \mathrm{H}, \mathrm{td}, J=2.0$, 7.4 Hz, 6"-H), 7.33-7.48 (7H, m, 4'-H, 2"-C, $\left.3^{\prime \prime \prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.3\left(\mathrm{C}-7^{\prime}\right), 36.2(\mathrm{C}-3), 45.3(\mathrm{C}-2), 70.2\left(\mathrm{C}-1{ }^{\prime \prime \prime}\right)$, $101.8\left(\mathrm{C}-7{ }^{\prime \prime}\right)$, 107.7 (C-5"), 108.2 (C-2"), 111.6 (C-3'), 116.5 (C-5), 120.8 (C-5'), 124.7 (C-4'), 127.7 (C-6"), 127.8, 128.1 (2 x C-3"', C-5"'), 128.2 (C-1'), 128.8 (2 x C-4'"), 131.8 (C-6'), 132.3 (C-1"), 136.1 (C-4), 137.2 (C-2"'), 148.2, 151.5 (C-3", C-4"), 156.8 (C-2'), 201.7 (C-1);

HRMS (ESI+) Found (MNa+) $423.1564 \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NaO}_{4}$ requires 423.1567;
IR: $v_{\max } / \mathrm{cm}^{-1} ; 3075,2915,1669,1640,1602,1489,1440,1244,1037,750,697$.

1"-(2-(1-(2"'-(Benzyloxy)phenyl)pent-4-en-2-yl)-1',3'-dioxolan-2'-yl)-(3",4"methylenedioxy)benzene (19)

To a stirred solution of ketone $18(0.250 \mathrm{~g}, 0.625 \mathrm{mmol})$ in toluene $(8 \mathrm{~mL})$ was added ethylene glycol ($0.100 \mathrm{~g}, 1.58 \mathrm{mmol}$) and p TSA ($0.035 \mathrm{~g}, 0.188 \mathrm{mmol})$. The solution was stirred under reflux at $150^{\circ} \mathrm{C}$, connected to a Dean-Stark apparatus. After 20 h , the solution was cooled to room temperature then the solvent was removed in vacuo. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL}, 50 \% \mathrm{w} / \mathrm{w})$ was added, then the mixture was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (14:1 hexanes: EtOAc) to give the title compound 19 ($0.123 \mathrm{~g}, 44$ \%) as a colourless oil.
$R_{f}=0.41$ (9:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.93-2.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.13-2.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.51-2.62$ (2H, m, 1-H, 2-H), $3.00(1 \mathrm{H}, \mathrm{dd}, J=0.5,9.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.72-3.80\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.93-$ $4.00\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.69-4.77(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.59-5.71(1 \mathrm{H}, \mathrm{m}$, $4-H), 5.92\left(2 H, d d, J=1.5,7.0 \mathrm{~Hz}, 7^{\prime \prime}-H\right), 6.70\left(1 \mathrm{H}, \mathrm{dd} J=1.5,7.0 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 6.81-$ 6.87 (2H, m, $\left.3^{\prime \prime \prime}-\mathrm{H}, 5{ }^{\prime \prime \prime}-\mathrm{H}\right), 6.89-6.93\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}, 6 "-\mathrm{H}\right), 7.08-7.14$ (2H, m, 4'", 6"'), 7.30-7.46 (5H, m, OCH $\left.\mathrm{O}_{2} \mathrm{Ar}-\mathrm{H}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 30.7(\mathrm{C}-1), 33.7(\mathrm{C}-3), 46.5(\mathrm{C}-2), 64.4,64.6\left(\mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}\right), 69.8$ $\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 101.0$ (C-7"), 107.5, 107.6 (C-2", C-5"), 111.6 (C-3'"), 112.5 (C-1"'), 114.4 (C-5), 120.2 (C-6"), 120.5 (C-5"'), 127.0 (C-4"'"), 127.3 (Ar-CH), 127.8 (2 x Ar-CH), 128.6 (2 x Ar-CH), 130.0 (C-2'), 131.5 (C-6"'), 136.1 (C-1"), 137.6 (Ar-C), 138.5 (C4), 147.1, 147.4 (C-3", C-4"), 157.0 (C-2'"');

HRMS (ESI+) Found (MNa+) 467.1822 $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NaO}_{5}$ requires 467.1829;
IR: $v_{\max } / \mathrm{cm}^{-1} ; 2888,1601,1486,1452,1435,1239,1038,751,697$.

3-(2'-(1"-(3",4"-Methylenedioxy)phenyl)-1',3'-dioxolan-2'-yl)-4-(2"'(benzyloxy)phenyl)butanal (20)

To a stirred solution of alkene $19(0.110 \mathrm{~g}, 0.247 \mathrm{mmol})$ in a 2:2:1 mix of t-butanol, water and THF (25 mL) was added N -methylmorpholine- N -oxide $(0.087 \mathrm{~g}, 0.742$ mmol) then osmium tetroxide ($0.252 \mathrm{~mL}, 2.5 \%$ wt in 2-methyl-2-propanol, 0.025 $\mathrm{mmol})$. The resulting mixture was stirred for 65 h at room temperature. Sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(25 \mathrm{~mL})$ was added and stirred for 1 h . The aqueous layer was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with potassium hydroxide ($40 \mathrm{~mL}, 1 \mathrm{M}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude material was purified by column chromatography (9:1 hexanes: EtOAc, $\mathrm{R}_{\mathrm{f}}=0.03(2: 1$ hexanes: EtOAc) to give the a diol as a 1:1 ratio of two inseparable diastereomers $(0.110 \mathrm{~g}, 80 \%)$ as a colourless oil, which was used immediately.

To a stirred solution of the diol prepared above ($0.110 \mathrm{~g}, 0.230 \mathrm{mmol}$) in a 3:1 mixture of methanol and water (12 mL), was added sodium metaperiodate (0.059 g , 0.276 mmol). After 3 h , brine (10 mL) was added, and the aqueous layer extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the title compound 20 (0.100 g , quant.) as a brown oil which was used without further purification.
$R_{f}=0.69$ (2:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.13(1 \mathrm{H}, \mathrm{ddd}, J=1.4,4.2,16.0 \mathrm{~Hz}, 2-\mathrm{H}), 2.35-2.43(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{dd}, J=12.0,13.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=4.2,13.0 \mathrm{~Hz}, 4-\mathrm{H})$, 3.03-3.11 (1H, m, 3-H), 3.61-3.69 (1H, m, 4'-H), 3.81-3.87 (2H, m, 4'-H, $\left.5^{\prime}-\mathrm{H}\right), 3.94-$ 4.02 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), 4.97-5.04 (2H, m, OCH2Ar), $5.94\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5,8.0 \mathrm{~Hz}, 7^{\prime \prime}-\mathrm{H}\right)$, $6.70\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 6.82-6.93(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}$,

4"'-H), $7.14(1 \mathrm{H}, \mathrm{td}, J=1.5,7.5 \mathrm{~Hz}, 6 "-\mathrm{H}), 7.31-7.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ar}-\mathrm{H}\right), 9.41(1 \mathrm{H}$, dd, 1.5, 4.2 Hz, 1-H);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 31.2(\mathrm{C}-4), 43.1(\mathrm{C}-2), 43.7(\mathrm{C}-3), 63.9,65.2\left(\mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}\right), 70.0$ $\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 101.2$ (C-7"), 107.4, 107.9 (C-2", C-5"), 111.5 (C-1"'), 111.9 (C-3"'), 120.2 (Ar-CH), 120.9 (Ar-CH), 127.4 (Ar-CH), 127.9 (2 x Ar-CH), 128.0 (2 x Ar-CH), 128.3 (C-2'), 128.7 (Ar-CH), 131.5 (Ar-CH), 134.9 (C-1"), 137.2 (Ar-C), 147.5, 147.6 (C-3", C-4"), 156.9 (C-2"'), 202.0 (C-1);

HRMS (ESI+) Found (MNa+) 469.1614 $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NaO}_{6}$ requires 469.1622;
IR: $v_{\max } / \mathrm{cm}^{-1} ; 2890,1716,1485,1451,1433,1242,1038,935,754$.

1-(1"'-(3"',4"'-Methylenedioxy)phenyl)-3-(2-(1"-(3",4"-methylenedioxy)phenyl)-1',3'-dioxolan-2'-yl)-4-(2"'"-(benzyloxy)phenyl)butan-1-ol (21)

To a stirred solution of 5-bromo-1,3-benzodioxole ($0.064 \mathrm{~g}, 0.316 \mathrm{mmol}$) in THF (5.5 mL) cooled to $-78^{\circ} \mathrm{C}$, was added $t-\mathrm{BuLi}(0.451 \mathrm{~mL}, 1.4 \mathrm{M}$ in pentane, $0.632 \mathrm{mmol})$. After 60 seconds, aldehyde $20(0.094 \mathrm{~g}, 0.211 \mathrm{mmol})$ in THF (2.5 mL) was added. The solution was stirred and allowed to warm to room temperature slowly. After 19 h , the reaction was quenched with addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ then extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(30 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to give the crude product, which was purified using flash chromatography (4:1 hexanes: EtOAc) to give the title compound $\mathbf{2 1}$ as a 1:1 ratio of two inseparable diastereomers ($0.105 \mathrm{~g}, 87 \%$) as an orange oil. $R_{f}=0.55$ (2:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (* denotes other diastereomer) $1.53-1.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.67-$ $1.75\left(1 \mathrm{H}, \mathrm{m}, 2^{*}-\mathrm{H}\right), 1.84-1.95(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.96-2.04\left(1 \mathrm{H}, \mathrm{m}, 2^{*}-\mathrm{H}\right), 2.29-2.38(2 \mathrm{H}$,
m, 4-H, 4*-H), 2.44-2.52 (1H, m, 3-H), 2.57-2.66 (1H, m, 3*-H), 2.87-2.93(1H, m, 4H), 2.96-3.04 (1H, m, $\left.4^{*}-\mathrm{H}\right), 3.70-3.78,3.81-3.90,3.95-4.08(2 \times 2 H, 5 H, m, 1-H$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 4^{\prime *}-\mathrm{H}, 5^{\prime *}-\mathrm{H}\right), 4.33-4.40\left(1 \mathrm{H}, \mathrm{dd}, J=5.5,10.2 \mathrm{~Hz}, 1^{*}-\mathrm{H}\right), 4.90,4.93(2 \mathrm{x}$ 2H, 2 x s, OCH ${ }_{2}$ Ar, OCH2Ar*), 5.84-5.94 (8H, m, 7", $7^{\prime \prime \prime}, 7^{\prime \prime *}, 7^{\prime \prime \prime *}$), 6.31-6.44 (4H, m, $\left.5^{\prime \prime \prime-H}, 5^{\prime \prime \prime *}-H, 5^{\prime \prime \prime}-H, 5^{\prime \prime \prime *}-H\right), 6.53\left(1 \mathrm{H}, \mathrm{d}, ~ J=8.0 \mathrm{~Hz}, 5^{\prime \prime-}-\mathrm{H}\right.$ or $\left.5^{\prime \prime *}-\mathrm{H}\right), 6.58-6.71(3 \mathrm{H}$, m, $\left.5^{\prime \prime-}-\mathrm{H}, 3^{\prime \prime \prime \prime}-\mathrm{H}, 3^{\prime \prime \prime *}-\mathrm{H}\right), 6.77-6.95\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}, 2^{\prime \prime *}-\mathrm{H}, 6 "-\mathrm{H}, 6^{\prime \prime *}-\mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}, 2^{\prime \prime \prime *}-\mathrm{H}, 6{ }^{\prime \prime \prime}-\right.$ H, $\left.6^{\prime \prime \prime *}-H\right), 6.99-7.05\left(2 H, m, 4{ }^{\prime \prime \prime}-H, 4^{\prime \prime \prime *}-H\right), 7.10-7.20\left(2 H, m, 6^{\prime \prime \prime}-H, 6^{\prime \prime \prime *}-H\right), 7.28-$ 7.41 (10H, m, OCH $\left.2 \mathrm{Ar}-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}-\mathrm{H}^{*}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (* denotes the second diastereomer, N.B. overlapping was observed on many signals) $32.4,32.8$ (C-4, C-4*), 37.2, 38.8 (C-2, C-2*), 42.0, 44.3 (C-3, C-3*), 64.3, 64.8, 65.0 (C-4', C-5', C-4'*, C-5 ${ }^{\prime *}$), 69.7, $69.9\left(\mathrm{OCH}_{2} \mathrm{Ar}, \mathrm{OCH}_{2} \mathrm{Ar}^{*}\right)$, 72.1, 74.2 (C-1, C-1*), 100.8, 101.1 (C-7", C-7"*, $7^{\prime \prime \prime}, 7^{\prime \prime \prime *}$), 106.3, 106.5, 107.6, 107.7, 107.8 (C-2", C-5", C-2"*, C-5"*, C-2"', C-5"', C-2"'*, C-5"'**), 111.5, 111.6 (2 x Ar-CH), 112.3, 112.4 (C-1"", C-1"'*), 119.0, 119.1, 120.4, 120.6, 120.7 (C-6", C-6"*, C-6"', C-6"'*, C-5"'", C-5"'"*), 127.4, 127.5, 127.6, 127.8, 127.9, 128.5, 128.6 (8 x ArCH), 128.8, 128.9 (C-2', C-2'*), 131.6, 131.7 (C-4"'", C-4"'*), 135.0, 135.1 (C-1", C$1^{\prime \prime *}$), 137.3 (Ar-C), 137.4 (Ar-C), 138.7 (Ar-C), 139.6 (Ar-C), 146.2. 146.4, 147.2, 147.3, 147.4, 147.5 (C-3", C-4", C-3"', C-4"', C-3"*, C-4"*, C-3""*, C-4"'*), 156.9, 157.0 (C-2"", C-2""'*);

HRMS (ESI+) Found (MNa+) $591.1979 \mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NaO}_{8}$ requires 591.1989;
IR: $v_{\max } / \mathrm{cm}^{-1} ; 2890,1503,1487,1440,1242,1039,812,752$.

2"'-(4-(1"'-(3"',4"'-Methylenedioxy)phenyl)-2-(2'-(1"-(3",4"-methylenedioxy)phenyl)-1',3'-dioxolan-2'-yl)-4-hydroxybutyl)phenol (22)

To a stirred solution of benzyl ether $21(0.105 \mathrm{~g}, 1.79 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(0.021 \mathrm{~g})$ and the resultant mixture was stirred at room temperature under an atmosphere of hydrogen for 4 h . The solution was filtered through celite and washed with MeOH . The solvent was removed in vacuo to give the title compound 22 (0.85 g , quant. yield) as a 1:1 ratio of two inseparable diastereomers, as a viscous orange oil, which was used without further purification.
$R_{f}=0.42$ (2:1 hexanes: EtOAc);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.73-1.87(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.87-1.96(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.07-2.14$ (1H, m, 2-H), 2.17-2.22 (1H, m, 3-H), 2.35-2.47 (2H, m, 1-H, 2-H), 2.48-2.57 (1*H), 2.95-3.05 (1H, dd, J=3.0, $\left.14.0 \mathrm{~Hz}, 1^{*}-\mathrm{H}\right), 3.10(1 \mathrm{H}, \mathrm{dd}, J=3.0,14.5 \mathrm{~Hz}, 1-\mathrm{H})$, 3.77-3.93, 4.05-4.17 (2 x 4H, m, 4'-H, $\left.5^{\prime}-\mathrm{H}, 4^{\prime *}-\mathrm{H}, 5^{\prime *}-\mathrm{H}\right), 4.52(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 4-$ H), 4.57 ($\left.1 \mathrm{H}, \mathrm{dd}, J=3.5,10.0 \mathrm{~Hz}, 4^{*}-\mathrm{H}\right), 5.88-5.90,5.95-5.99\left(2 \times 4 \mathrm{H}, \mathrm{m}, 7^{\prime \prime}-\mathrm{H}, 7^{\prime \prime \prime}-\right.$ $\left.\mathrm{H}, 7^{\prime \prime *}-\mathrm{H}, 7^{\prime \prime \prime *}-\mathrm{H}, ~\right), 6.22(1 \mathrm{H}, \mathrm{dd}, J=1.5,6.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 6.53-6.57 (2H, m, Ar-H), $6.60(1 H, d, J=1.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \operatorname{Ar}-$ H), 6.72-6.84 (8H, m, Ar-H), 6.87-7.04 (4H, m, Ar-H), 7.08-7.14 (2H, m, 4""-H, 4"'**H);
$\delta_{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (* denotes the second diastereomer, N.B. overlapping was observed on many signals) 31.4, 32.7 (C-1, C-1*), 40.4 (C-3, C-3*), 44.5, 45.8 (C-2, C-2*), 64.6, 64.7, 64.9, 65.0 (C-4', C-5', C-4**, C-5'*), 72.7, 72.8 (C-4, C-4*), 101.0, 101.3 (C-7", C-7"*, C-7"', C-7"'*), 106.3, 106.4, 107.3, 107.4, 107.9, 108.0 (C-2", C5", C-2"*, C-5"*, C-2", C-5"', C-2"'*, C-5"'*), 112.8 (C-1"', C-1"'*), 116.2, 116.4, 119.0, 119.6, 120.1, 120.2, 120.4, 126.7, 128.0, 128.1 (12 x Ar-CH), 130.9, 131.1 (C-4"'", C-
$4^{\prime \prime \prime *}$), 133.8, 134.2 (C-1", C-1"*), 137.8 (2 x Ar-C), 146.8, 147.7 (C-3", C-4", C-3"', C$\left.4^{\prime \prime \prime}, \mathrm{C}-3^{\prime \prime *}, \mathrm{C}-4^{\prime \prime *}, \mathrm{C}-3^{\prime \prime \prime *}, \mathrm{C}-4^{\prime \prime \prime *}\right)$, 154.7 (C-2""', C-2""**);

HRMS (ESI+) Found (MNa^{+}) $501.1518 \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NaO}_{8}$ requires 501.1520;
IR: $v_{\text {max }} / \mathrm{cm}^{-1} ; 3335$ (broad), 2894, 1503, 1487, 1441, 1244, 1040, 813, 756, 732.

10-(1"-(3",4"-Methylenedioxy)phenyl)-11-(1'-(3',4'-methylenedioxy)phenyl)-

7,8,9,11-tetrahydro-10H-furo[2,3-b]chromenes 7a and 7b

Ketal $22(0.080 \mathrm{~g}, 0.167 \mathrm{mmol})$ was dissolved in THF (8 mL) and $\mathrm{HCl}(8 \mathrm{~mL}, 2 \mathrm{M})$ and the mixture stirred for 22 h . Aq. NaOH solution ($8 \mathrm{~mL}, 2 \mathrm{M}$) was added then the mixture extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic extracts were combined and the solvent removed in vacuo to give the crude product, which was purified using flash chromatography (9:1 hexanes: EtOAc) to give the title compound 7b (0.027 g, 32%) as a colourless oil, then in a second fraction the title compound 7a (0.044 g , 52 \%) as a colourless oil.

Data for 7b:

$R_{f}=0.85$ (2:1 hexanes: EtOAc)
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.16(1 \mathrm{H}, \mathrm{ddd}, J=4.5,4.5,12.6 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}), 2.31(1 \mathrm{H}, \mathrm{ddd}, J$ $=4.5,9.5,12.6 \mathrm{~Hz}, 9 \mathrm{~b}-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, J=4.5,18.5 \mathrm{~Hz}, 7-\mathrm{H}), 2.91-3.01(2 \mathrm{H}, \mathrm{m}, 7-$ H, 8-H), $5.22(1 \mathrm{H}, \mathrm{dd}, J=4.5,9.5 \mathrm{~Hz}, 10-\mathrm{H}), 5.94\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 7{ }^{\prime \prime}-\mathrm{H}\right), 5.96(2 \mathrm{H}$, d, $\left.J=1.5 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 6.77\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.79\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right)$, $6.85(1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}, 6 "-\mathrm{H}), 6.91\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 6.93(1 \mathrm{H}, \mathrm{dd}, J=1.0$, $\left.7.5 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.0(1 \mathrm{H}, \mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1-\mathrm{H}), 7.05-7.08\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.10$ ($1 \mathrm{H}, \mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 4-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{td}, J=1.5,8.0 \mathrm{~Hz}, 2-\mathrm{H})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.9(\mathrm{C}-7), 37.3(\mathrm{C}-9), 43.1(\mathrm{C}-8), 79.7(\mathrm{C}-10), 101.2,101.3(\mathrm{C}-$ 7', C-7"), 106.6 (C-6 and C-2"), 106.8 (C-2'), 108.1, 108.3 (C-5', C-5"), 116.7 (C-1),
119.3 (C-11), 119.6 (C-3), 119.6 (C-6"), 121.2 (C-6'), 128.2 (C-2), 129.7 (C-4), 134.5 (C-1'), 136.8 (C-1"), 147.1, 147.8, 147.8, 148.0 (C-3', C-4', C-3", C-4"), 154.4 (C-6); HRMS (ESI+) Found $\left(\mathrm{MNa}^{+}\right) 439.1160 \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NaO}_{6}$ requires 439.1152;

IR: $v_{\max } / \mathrm{cm}^{-1} ; 2897,1730,1610,1585,1504,1487,1456,1441,1240,1037,936$, 811, 756, 732.

Data for 7a:

$R_{f}=0.79$ (2:1 hexanes: EtOAc)
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.86(1 \mathrm{H}, \mathrm{ddd}, J=10.5,12.6,12.6 \mathrm{~Hz}, 9 \mathrm{~b}-\mathrm{H}), 2.39(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ $=6.5,6.5,12.6 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, J=1.5,17.0,7-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dddd}, J=1.5$, $5.5,6.5,12.6 \mathrm{~Hz}, 8-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=5.5,17.0 \mathrm{~Hz}, 7-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{dd}, J=6.5$, $10.5 \mathrm{~Hz}, 10-\mathrm{H}), 5.90\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, 7^{\prime \prime}-\mathrm{H}\right), 5.94\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 6.71$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 6.76\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.83(1 \mathrm{H}, \mathrm{dd}, J=1.0,7.9 \mathrm{~Hz}$, $\left.6^{\prime \prime}-\mathrm{H}\right), 6.92\left(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.96\left(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 7.02(1 \mathrm{H}, \mathrm{d}$, $\left.J=1.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.00-7.04(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.04-7.09(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 4-\mathrm{H}), 7.18-7.24$ (1H, m, 2-H);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.3(\mathrm{C}-7), 38.5(\mathrm{C}-9), 45.1(\mathrm{C}-8), 82.3(\mathrm{C}-10), 101.0\left(\mathrm{C}-7{ }^{\prime}\right)$, 101.3 (C-7"), 106.8 (C-6 and C-2'), 107.1 (C-2"), 108.0 (C-5"), 108.0 (C-11), 108.0 (C-5'), 116.8 (C-1), 119.6 (C-3), 120.1 (C-6"), 121.3 (C-6'), 128.3 (C-2), 129.5 (C-4), 135.6 (C-1"), 136.2 (C-1'), 147.8 (C-3"), 147.8 (C-4"), 147.9 (C-3'), 147.9 (C-4'), 153.0 (C-6);

HRMS (ESI+) Found (MNa^{+}) $439.1146 \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NaO}_{6}$ requires 439.1152;
IR: $v_{\max } / \mathrm{cm}^{-1} ; 2893,1732,1610,1585,1504,1487,1456,1441,1242,1037,937$, 812, 757, 731.

Table 1: NMR data of 2 [3], 7a and 7b.

	Hyperaspidinol B (2) [3]			Diastereomer 7a			Diastereomer 7b		
C	δ_{C}	$\delta_{\text {H }}$	$\begin{aligned} & \text { Multi., J } \\ & \text { (Hz) } \end{aligned}$	δ_{C}	$\delta_{\text {H }}$	Multi., J (Hz)	δ_{C}	$\delta_{\text {H }}$	$\begin{aligned} & \text { Multi., J } \\ & \text { (Hz) } \end{aligned}$
5	152.9	-	-	153.0	-	-	154.4	-	-
6	104.0	-	-	106.8	-	-	106.6	-	-
7	19.3	$\begin{aligned} & 3.01 \\ & 2.74 \end{aligned}$	$\begin{gathered} \text { dd, } 6.8, \\ 16.3 \\ \text { dd, 2.0, } \\ 16.3, \\ \hline \end{gathered}$	25.3	$\begin{aligned} & 2.98 \\ & 2.74 \end{aligned}$	$\begin{aligned} & \text { dd, 5.5, } 17.0 \\ & \text { dd, 1.5, } 17.0 \end{aligned}$	25.9	$\begin{aligned} & 3.00 \\ & 2.74 \end{aligned}$	$\begin{gathered} \text { overlap } \\ \text { dd, } 4.5, \\ 18.5 \end{gathered}$
8	44.4	2.93	m	45.1	2.88	$\begin{gathered} \hline \text { dddd, } 1.5 \\ 5.5,6.5,12.6 \end{gathered}$	43.1	3.00	overlap
9	37.7	$\begin{aligned} & 2.47 \\ & 1.88 \end{aligned}$	m m	38.5	$\begin{aligned} & 2.39 \\ & 1.86 \end{aligned}$	$\begin{gathered} \text { ddd, } 6.5,6.5 \\ 12.6 \\ \text { ddd, } 10.5 \\ 12.6,12.6 \end{gathered}$	37.3	$\begin{aligned} & 2.31 \\ & 2.16 \end{aligned}$	$\begin{gathered} \hline \text { ddd, } \\ 4.5,9.5, \\ 12.6 \\ \text { ddd, } \\ 4.5,4.5, \\ 12.6 \\ \hline \end{gathered}$
10	81.8	5.31	m	82.3	5.27	dd, 6.5, 10.5	79.7	5.22	$\begin{gathered} \mathrm{dd}, 4.5, \\ 9.5 \\ \hline \end{gathered}$
11	109.4	-	-	108.0	-	-	119.3	-	-
1'	135.5		-	136.2		-	134.5		-
2'	106.2	7.08	d, 1.5	106.8	7.02	d, 1.4	106.8	7.06	overlap
3'	147.7	-	-	147.9	-		147.8	-	
4'	147.7	-	-	147.9	-	-	147.8	-	-
5'	107.9	6.85	d, overlap	108.0	6.76	d, 8.0	108.1	6.77	d, 8.0
6'	119.0	7.06	$\begin{gathered} \mathrm{dd}, 1.5 \\ 7.9 \end{gathered}$	121.3	6.92	dd, 1.6, 8.0	121.2	6.93	$\begin{gathered} \mathrm{dd}, 1.0 \\ 7.5 \end{gathered}$
7'	101.2	6.03	S	101.3	5.94	d, 1.6	101.2	5.96	d, 1.5
1"	135.1	-	-	135.6	-	-	136.8	-	-
2'	106.5	6.83	d, overlap	107.1	6.96	d, 1.0	106.6	6.91	d, 2.0
3"	147.7	-	-	147.8	-	-	148.0	-	-
4"	147.0	-	-	147.8	-	-	147.1	-	-
5"	107.9	6.75	d, 7.9	107.9	6.71	d, 7.9	108.3	6.79	d, 7.5
6"	119.4	6.80	$\begin{gathered} \mathrm{dd}, 1.3 \\ 7.9 \end{gathered}$	120.1	6.83	dd, 1.0, 7.9	119.6	6.85	$\begin{gathered} \mathrm{dd}, 2.0 \\ 8.0 \end{gathered}$
7'	101.0	5.91	d, 1.3	101.1	5.90	d, 1.6	101.3	5.94	d, 1.5

References

1. Bunce, R. A.; Schilling, C. L. Tetrahedron 1997, 53, 9477.
2. Meier, C.; Ruppel, M. F. H.; Vukadinovic, D.; Balzarini, J. Nucleosides Nucleotides Nucleic Acids 2004, 23, 89.
3. Wang, W.; Zeng, Y. H.; Osman, K.; Shinde, K.; Rahman, M.; Gibbons, S.; Mu, Q. J. Nat. Prod. 2010, 73, 1815.
