Supporting Information

for

Synthesis of antibacterial 1,3-diyne-linked peptoids from an Ugi-4CR/Glaser coupling approach

Martin C. N. Brauer, Ricardo A. W. Neves Filho, Bernhard Westermann, Ramona Heinke and Ludger A. Wessjohann*,§
Address: Department of Bioorganic Chemistry, Leibniz Institute of Plant
Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
* Corresponding author
Email: Ludger A. Wessjohann - wessjohann@ipb-halle.de
§Fax: +49345 5582 1309; Tel: +49 34555821301

Complete experimental procedures, characterization and figures of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Experimental part

General

All commercially available chemicals were used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectra were recorded in CDCl_{3} solutions on a Varian Mercury 400 spectrometer at $400\left({ }^{1} \mathrm{H}\right)$ and 100 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively. Chemical shifts (δ) are reported in ppm relative to TMS (${ }^{1} \mathrm{H}$ NMR) and to residual CDCl_{3} signal (${ }^{13} \mathrm{C}$ NMR). High resolution ESI mass spectra were obtained from a Bruker Apex III Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an Infinity ${ }^{\text {TM }}$ cell, a 7.0 Tesla superconducting magnet, an RF-only hexapole ion guide and an external electrospray ion source (Agilent, off axis spray). ESI-MS was recorded on a Finnigan TSQ 7000, LC-Tech Ultra Plus pumps, Linear UV-vis 200 detector, Sepserve Ultrasep ES RP-18 $5 \mu \mathrm{~m} 1 \times 100 \mathrm{~mm}$ column, flow $70 \mu \mathrm{~L} \mathrm{~min}^{-1}$. Flash column chromatography was carried out using Merck silica gel 60 (0.040-0.063 mm) and analytical thin-layer chromatography (TLC) was performed using Merck silica gel 60 F254 aluminium sheets. HPLC experiments were performed in an Agilent 1100 series equipped with a column SNr. 176: YMC pack $150 \times$ 4.6 LD $102 \AA 5 \mu \mathrm{~m}$ ODS-A and UV detector (200-600 nm). The employed gradient was $\mathrm{MeOH} 0.1 \%$ formic acid: $\mathrm{H}_{2} \mathrm{O} 0.1 \%$ formic acid $1 \mathrm{~mL} / \min (5 \mu \mathrm{~L})$, $\mathrm{MeOH} 2 \%>20 \mathrm{~min}>100 \%(5 \mathrm{~min})$ at $25^{\circ} \mathrm{C}$.

General procedure for the synthesis of compounds 7a-j

To a stirred solution of aldehyde (2.5 mmol) in methanol (2.5 mL) propargylamine ($0.14 \mathrm{~g}, 0.16 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added. After 30 min carboxylic acid (2.5 mmol) and isocyanide (2.5 mmol) were added. The contents were stirred for 24 h . The solvent was concentrated under reduced pressure in a rotavap. The crude material was purified by isocratic column chromatography to afford the pure product. The same solvent system used for R_{f} value measurements was applied for performing flash column chromatography.

N-tert-Butyl-3-methyl-2-(N-(prop-2-ynyl)acetamido)butanamide (7a).

Yield: 97%. Purified by column chromatography. $R_{\mathrm{f}} 0.59$ (EtOAc / hexane 3:7). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.82$ and $3.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.1 .(\mathrm{s}, 9 \mathrm{H}), 0.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 171.5,169.1,79.2,72.0,62.1,50.8,33.7,28.1$, 26.8, 21.7, 18.9. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$ 275.1735, found 275.1729.

Methyl 2-(3-methyl-2-(N-(prop-2-ynyl)acetamido)butanamido)acetate (7b).

Yield: 95\%. Purified by column chromatography. $R_{\mathrm{f}} 0.15$ (EtOAc / hexane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.37(\mathrm{bs}, 1 \mathrm{H}), 4.60$ and $4.58(\mathrm{~s}, 1 \mathrm{H}), 4.31$ and $3.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14(\mathrm{~m}, 4 \mathrm{H}), 0.80-0.84(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 172.1, 170.5, 169.7, 79.9,72.3, 61.7, 51.8, 40.5, 34.1, 26.6, 21.7, 19.1. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$291.1321, found 291.1315.
N-tert-Butyl-2-(4-methoxyphenyl)-2-(N-(prop-2-ynyl)acetamido)acetamide (7c).

Yield: 99\%. Purified by column chromatography. $R_{\mathrm{f}} 0.23$ (EtOAc / hexane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4$ Hz, 2H), 6.15 (s, 1H), $6.00(\mathrm{bs}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.26$ ($\mathrm{s}, 3 \mathrm{H}$), $2.02(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ (ppm) 171.5, 169.1, 159.4, 130.7, 127.0, 113.9, 79.5, 71.2, 59.7, 55.1, 51.5, 35.5, 28.5, 22.0. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 339.1685 , found 339.1679 .
N-(1-(tert-Butylamino)-3-methyl-1-oxobutan-2-yl)- N-(prop-2-ynyl)benzamide (7d).

Yield: 70\%. Purified by column chromatography. $R_{\mathrm{f}} 0.56$ (EtOAc / hexane 1:4). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.54(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 3 \mathrm{H})$, $6.58(\mathrm{bs}, 1 \mathrm{H}), 4.21-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.87$ and $3.92(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~m}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.99-1.04(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ (ppm) 173.1, 169.0, 135.4, 130.1, 128.2, 126.8, 79.6, 72.5, 66.2, 50.9, 37.3, 28.4, 26.5, 19.5. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$ 337.1892, found 337.1886.
N-(2-(tert-Butylamino)-2-oxo-1-p-tolylethyl)- N-(prop-2-ynyl)butyramide (7e).

Yield: 91\%. Purified by column chromatography. $R_{f} 0.16$ (EtOAc / hexane 1:4). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~m}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 173.4,169.0,137.4,131.9,128.9,128.8$, 79.6, 70.9, 60.1, 50.9, 34.9, 34.6, 28.1, 29.7, 17.9, 13.3. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 351.2048$, found 351.2042.
N-(2-(tert-Butylamino)-2-oxoethyl)-N-(prop-2-ynyl)butyramide (7f).

Yield: 70\%. Purified by column chromatography. $R_{f} 0.34$ (EtOAc / hexane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 6.10$ and $6.06(\mathrm{~s}, 1 \mathrm{H}), 4.29$ and $4.19(\mathrm{~s}$, $2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 2.45$ and $2.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ and $2.31(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.37$ and $1.33(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 173.3,173.1,167.7,166.9,78.8,77.8,73.0,72.6,51.4,50.9$, $50.4,38.6,36.0,34.7,34.6,28.4,18.2,18.0,13.6,13.5$. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$261.1579, found 261.1573.
N-tert-Butyl-2-(4-fluorophenyl)-2-(2-methoxy- N-(prop-2-ynyl) acetamido) acetamide (7g).

Yield: 98%. Purified by column chromatography. $R_{f} 0.25$ (EtOAc / hexane 1:1). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.36\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=5.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.05(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.19-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.9,168.1$, $164.0,160.8,131.2,131.0,130.4,130.3,115.6,115.3,78.6,71.8,70.8,59.0$, 58.9, 51.5, 33.7, 28.3. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 357.1590 , found 357.1585 .
(S)-tert-Butyl 1-((2-(tert-butylamino)-2-oxoethyl)(prop-2-ynyl)amino)-1-oxo-3-phenylpropan-2-ylcarbamate (7h).

Yield: 82\%. Purified by column chromatography. $R_{\mathrm{f}} 0.34$ (EtOAc / hexane 3:7). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.09-7.18 (m, 5 H$), 6.28$ and $6.87(\mathrm{~s}, 1 \mathrm{H})$, 5.55 and $5.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ and $4.72(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-4.35$ $(\mathrm{m}, 4 \mathrm{H})$, 2.77-3.07 (m, 2H), 2.17 and $2.31(\mathrm{~s}, 1 \mathrm{H}), 1.21-1.26(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 172.1,171.9,166.9,166.4,155.2,154.9,135.9$, 135.6, 129.0, 128.1, 126.6, 126.5, 79.3, 79.2, 77.7, 77.4, 73.7, 72.5, 51.7, 51.5, 51.1, 50.8, 50.2, 49.9, 38.1, 37.8, 35.5, 28.2, 27.8. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$438.2369, found 438.2363.
N-tert-Butyl-3-methyl-2-(2-(2-phenylacetamido)- N-(prop-2-ynyl) acetamido) butanamide (7i).

Yield: 82\%. Purified by column chromatography. $R_{\mathrm{f}} 0.30$ (EtOAc / hexane 2:3). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.77$ and $6.77(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.36$ $(\mathrm{m}, 5 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.53$ and $4.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.61$ and $3.55(\mathrm{~s}, 2 \mathrm{H}), 2.35$ and $2.14(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.29$ and 1.27 $(\mathrm{s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 171.4,170.6,169.6,168.7,168.3,167.8,134.4,134.2,129.0$, 128.9, 128.4, 126.8, 79.5, 78.2, 73.1, 70.3, 65.9, 62.9, 51.0, 42.9, 42.6, 41.0,
41.1, 32.4, 31.9, 28.0, 26.7, 19.2, 18.9. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 408.2263$, found 408.2258 .

Benzyl 2-((2-(tert-butylamino)-2-oxoethyl)(prop-2-ynyl)amino)-2-oxoethylcarbamate (7j)

Yield: 80\%. Purified by column chromatography. $R_{f} 0.19$ (EtOAc / hexane 1:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.28-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.36$ and $6.16(\mathrm{~s}, 1 \mathrm{H})$, $5.95(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.05$ and $4.03(\mathrm{~s}, 2 \mathrm{H}), 4.23$ and $3.92(\mathrm{~s}$, $2 \mathrm{H}), 4.10$ and $3.97(\mathrm{~s}, 2 \mathrm{H}), 2.36$ and $2.26(\mathrm{~s}, 1 \mathrm{H}), 1.30$ and $1.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.1,167.1,166.2,156.4,136.3,128.5$, $128.1,127.9,78.2,74.1,73.3,66.8,51.8,51.5,50.3,49.7,42.6,37.9,36.4$, 28.6. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 382.1743$, found 382.1737.

General procedure for the synthesis of compounds 8a-j

In a 10 mL round bottom flask, to stirred solution of a suitable alkyne 7a-j (0.25 $\mathrm{mmol})$ in dry DMSO (0.5 mL), $\mathrm{CuCl}(1.3 \mathrm{mg}, 0.013 \mathrm{mmol} / 5 \mathrm{~mol} \%)$ was added. The contents were stirred at $90^{\circ} \mathrm{C}$ under air atmosphere. After 24 h the reaction mixture was diluted with ethyl acetate (10 mL) and filtered through a Celite plug. The solvent was removed under reduced pressure in a rotavap. The crude material was purified by column chromatography to afford the pure product. The
same solvent system for the R_{f} values measurements was employed for column chromatography.

2,2'-(Hexa-2,4-diyne-1,6-diylbis(acetylazanediyl))bis(N-tert-butyl-3methylbutanamide) (8a, mixture of diastereoisomers).

Yield: 88%. Purified by column chromatography. $R_{\mathrm{f}} 0.49$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 5.91(\mathrm{~s}, 4 \mathrm{H}), 4.54-4.41(\mathrm{~m}, 8 \mathrm{H}), 4.14$ and $4.09(\mathrm{~s}$, $4 \mathrm{H}), 2.24(\mathrm{~s}, 12 \mathrm{H}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 36 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 0.86$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 171.9,169.1,74.4$, 68.0, 51.4, 42.6, 34.7, 28.5, 26.9, 22.0, 19.3, 19.0. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 525.3417$, found 525.3411 .

Dimethyl 6,13-diacetyl-4,15-dioxo-5,14-di(propan-2-yl)-3,6,13,16-tetraazaoctadeca-8,10-diyne-1,18-dioate (8b, mixture of diastereoisomers).

Yield: 80%. Purified by column chromatography. $R_{f} 0.29$ (EtOAc / MeOH 19:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 6.79(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.65-4.06(\mathrm{~m}$, $12 \mathrm{H}), 3.95$ (d, J = $5.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.73$ (s, 12H), 2.28 (m, 16H), 0.99-0.95 (m, 24H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 172.4,170.6,169.8,74.3,68.2,62.3$,
58.3, 52.3, 41.1, 40.9, 35.1, 31.0, 26.7, 22.1, 19.4, 19.3. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} 557.2587$, found 557.2581.

2,2'-(Hexa-2,4-diyne-1,6-diylbis(acetylazanediyl))bis(N-tert-butyl-2-(4methoxyphenyl)acetamide) (8c, mixture of diastereoisomers)

Yield: 99%. Purified by column chromatography. $R_{\mathrm{f}} 0.28$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.28-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 8 \mathrm{H}), 6.08(\mathrm{~s}, 4 \mathrm{H})$, 5.83 (bs, 4H), $4.09(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~s}, 12 \mathrm{H}), 2.19(\mathrm{~s}, 12 \mathrm{H}), 1.31(\mathrm{~m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 171.4,169.5,169.3,169.1,159.7,159.3$, 130.7, 130.6, 128.4, 126.7, 114.2, 74.2, 67.1, 67.0, 59.6, 56.3, 55.3, 55.2, 51.7, 51.6, 42.6, 36.3, 28.6, 28.5, 23.2, 22.1. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na})^{+} 653.3315$, found 653.3309 .
N, N^{\prime}-(Hexa-2,4-diyne-1,6-diyl)bis(N-(1-(tert-butylamino)-3-methyl-1-oxobutan-2$\mathrm{yl})$ benzamide) (8d, mixture of diastereoisomers).

Yield: 91\%. Purified by column chromatography. $R_{\mathrm{f}} 0.34$ (EtOAc / hexane 3:7).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.42-753(\mathrm{~m}, 20 \mathrm{H}), 6.47(\mathrm{bs}, 4 \mathrm{H}), 4.45-4.32$ $(\mathrm{m}, 8 \mathrm{H}), 4.01(\mathrm{~m}, 4 \mathrm{H}), 2.51(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 36 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 173.4,169.1,135.4,130.5,128.6,126.9,74.9,68.4$, 65.7, 51.3, 37.8, 28.6, 26.8, 19.7, 19.5. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$649.3730, found 649.3724.
N, N^{\prime}-(Hexa-2,4-diyne-1,6-diyl)bis(N-(2-(tert-butylamino)-2-oxo-1- p-tolylethyl)butyramide) (8e, mixture of diastereoisomers).

Yield: 99\%. Purified by column chromatography. $R_{\mathrm{f}} 0.52$ (EtOAc / hexane 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.28-7.16(\mathrm{~m}, 16 \mathrm{H}), 6.09(\mathrm{~s}, 4 \mathrm{H}), 5.79(\mathrm{~s}$, $4 \mathrm{H}), 4.12(\mathrm{~s}, 8 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 8 \mathrm{H}), 2.34(\mathrm{~s}, 12 \mathrm{H}), 1.71(\mathrm{~m}, 8 \mathrm{H}), 1.34(\mathrm{~s}$, $36 \mathrm{H}), 0.98(\mathrm{t}, J=6.4 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 173.9$, 172.2, 169.1, 138.3, 135.8, 131.8, 129.5, 129.4, 129.3, 127.1, 74.4, 67.1, 60.3, 51.7, 35.7, 35.5, 28.6, 28.5, 21.2, 21.1, 19.0, 18.5, 13.9.. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$677.4043, found 677.4037.
N, N '-(Hexa-2,4-diyne-1,6-diyl)bis(N-(2-(tert-butylamino)-2-oxoethyl)butyramide)
(8f)

Yield: 99\%. Purified by column chromatography. $R_{\mathrm{f}} 0.38$ (EtOAc / hexane 4:1).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 6.82$ and $6.10(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 4 \mathrm{H}), 3.96$ $(\mathrm{m}, 4 \mathrm{H}), 2.41$ and $1.66(\mathrm{~m}, 4 \mathrm{H}), 2.31$ and $2.25(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 18 \mathrm{H}), 0.97$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 173.5,173.4,167.8,166.8$, $166.6,74.5,73.7,73.5,72.9,68.8,68.5,68.2,67.8,51.9,51.7,51.6,51.3,51.3$, $50.6,50.5,43.7,39.4,38.2,36.9,36.1,34.8,28.6,18.4,18.3,13.9,13.8,13.7$. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$497.3104, found 497.3098.

2,2'-(4,13-Dioxo-2,15-dioxa-5,12-diazahexadeca-7,9-diyne-5,12-diyl)bis(N-tert-butyl-2-(4-fluorophenyl)acetamide) (8g, mixture of diastereoisomers)

Yield: 97\%. Purified by column chromatography. $R_{f} 0.42$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.32(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~m}, 8 \mathrm{H}), 6.11(\mathrm{~s}, 4 \mathrm{H}), 5.83(\mathrm{~s}$, $4 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 16 \mathrm{H}), 3.44(\mathrm{~s}, 12 \mathrm{H}), 1.34(\mathrm{~m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$
$\mathrm{MHz}): \delta(\mathrm{ppm}) 170.0,168.2,164.0,161.5,131.3,130.2,115.9,115.7,71.2$, 59.3, 51.8, 42.6, 34.6, 28.5. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{NaO}_{6}$ $(\mathrm{M}+\mathrm{Na})^{+}$689.3127, found 689.3121.

Di-tert-butyl(2R,2'S)-1,1'-(2,2,17,17-tetramethyl-4,15-dioxo-3,6,13,16-tetraaza-octadeca-8,10-diyne-6,13-diyl)bis(1-oxo-3-phenylpropane-2,1-diyl) dicarbamate (8h)

Yield: 99%. Purified by column chromatography. $R_{\mathrm{f}} 0.34$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.32-7.15(\mathrm{~m}, 10 \mathrm{H}), 6.63$ and $6.05(\mathrm{~s}, 2 \mathrm{H}), 5.21$ and $5.38(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 4 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H})$, $3.41(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ (ppm) 172.4, 172.2, 167.0, 166.9, 166.4, 166.3, 155.5, 155.3, 135.8, 135.5, 129.4, 128.8, 128.7, 127.4, 127.2, 80.2, 80.0, 74.1, 72.9, 720, 69.7, 68.5, 68.0, 52.0, 51.8, 51.4, 50.8, 50.6, 39.0, 38.7, 38.5, 36.4, 28.7, 28.6, 28.2. HRMS (ESI-pos) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+}$851.4683, found 851.4634 .

2,2'-(2,5,14,17-Tetraoxo-1,18-diphenyl-3,6,13,16-tetraazaoctadeca-8,10-diyne-6,13-diyl)bis(N-tert-butyl-3-methylbutanamide) (8i, mixture of diastereoisomers)

Yield: 96\%. Purified by column chromatography. $R_{\mathrm{f}} 0.41$ (EtOAc / hexane 4:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.68$ and $8.42(\mathrm{~s}, 4 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 20 \mathrm{H})$, 6.45 and $5.66(\mathrm{~s}, 4 \mathrm{H}), 4.72-4.01(\mathrm{~m}, 14 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 8 \mathrm{H}), 2.98(\mathrm{~s}$, $4 \mathrm{H}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.30(\mathrm{~m}, 36 \mathrm{H}), 0.96-0.80(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): ~ \delta(\mathrm{ppm}) 171.9,171.7,170.1,169.9,169.6,168.6,168.5,168.4$, 168.1, 168.0, 135.2, 135.1, 134.5, 134.4, 129.5, 129.3, 128.9, 128.6, 128.5, $127.4,126.9,75.7,75.1,73.8,72.1,69.4,68.6,66.5,66.0,63.3,51.7,51.6$, $51.5,51.4,43.5,43.2,43.1,42.9,41.9,41.8,41.7,41.7,33.2,33.1,33.0,32.7$, 28.7, 28.6, 28.5, 27.2, 20.0, 19.3, 19.2, 19.1. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na})^{+} 791.4472$, found 791.4466.

Dibenzyl (2,2,17,17-tetramethyl-4,15-dioxo-3,6,13,16-tetraazaoctadeca-8,10-diyne-6,13-diyl)bis(2-oxoethane-2,1-diyl)dicarbamate (8j)

Yield: 99%. Purified by column chromatography. $R_{\mathrm{f}} 0.43$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.33(\mathrm{~m}, 10 \mathrm{H}), 6.36$ and $6.11(\mathrm{~s}, 2 \mathrm{H}), 6.19$ and 5.95 (s, 2H), $5.83(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 4.35-3.89(\mathrm{~m}, 12 \mathrm{H}), 1.34$ and $1.31(\mathrm{~m}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.3,169.1,168.9,166.9,165.9,165.8$, 156.3, 136.3, 128.5, 128.2, 127.0, 74.4, 73.5, 72.9, 72.0, 69.5, 69.1, 68.4, 67.0, 52.0, 51.2, 50.1, 49.6, 42.6, 38.4, 36.8, 28.6. HRMS (ESI-pos) m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} 739.3431$, found 739.3425.

Combinatorial approach to dimers

In a 10 mL round botton flask, to stirred solution of the alkynes $\mathbf{7 f}, \mathbf{7 j}$ and $\mathbf{7 h}$ (0.25 mmol each), CuCl ($0.07 \mathrm{mmol} / 5 \mathrm{~mol} \%$) was added. The contents were stirred at $90{ }^{\circ} \mathrm{C}$ under air atmosphere. After 24 h the reaction mixture was diluted with ethyl acetate (10 mL) and filtered through a Celite plug. The solvent was removed under reduced pressure. The crude material analyzed by HPLC.

Biological activity assay

The antibacterial activity against Bacillus subtilis was determined with a fluorescence based antibacterial growth inhibition assay. The fluorescence was measured on a microtiter plate reader GENios Pro (Fa. Tecan, excitation, 510 nm; emission, 535 nm). The Bacillus subtilis strain 168 ($\mathrm{P}_{\text {AbrB }}$-IYFP) was maintained on TY (tryptone-yeast extract) medium supplemented with 1% Bacto-tryptone, 0.5 \% Bacto-yeast extract, $1 \% \mathrm{NaCl}$ and chloramphenicol (5 $\mu \mathrm{g}$ $\left.\mathrm{ml}^{-1}\right)$. Details of the assay are published:

Katharina Michels, Ramona Heinke, Oscar P. Kuipers, Norbert Arnold and

Ludger A. Wessjohann "A Fluorescence-based Bioassay for Antibacterials and its Application in Screening Natural Product Extracts", J. Antibiot. submitted.

Table S1

Compound	Growth inhibition ${ }^{2}$ in $\%$ at $1 \mu \mathrm{M}^{d}$	Standard deviation ${ }^{\text {d }}$	Growth inhibition in \% at $10 \mu \mathrm{M}^{\mathrm{d}}$	Standard deviation ${ }^{\text {d }}$
8a	26.4	18.9	40.9	24.5
8b	44.0	26.7	52.3	27.8
8c	1.3	5.1	23.7	12.7
8d	44.0	21.8	54.9	19.1
8 e	29.3	11.4	34.1	16.2
8 f	2.3	13.5	30.1	21.4
8 g	36.2	15.5	41.2	17.1
8h	43.9	23.0	49.9	23.5
8 i	39.2	12.6	44.3	10.4
8j	23.2	17.0	57.6	26.5
Std. ${ }^{\text {b }}$	70.8	4.5	$N P^{\text {c }}$	$N P^{\text {c }}$

${ }^{\text {a }}$ Measured after 15 h
${ }^{\mathrm{b}}$ Erythromycin
${ }^{c}$ Not performed.
${ }^{d}$ Mean values of two trials involving 3 replicates

Figures of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Please note that spectra of N-alkyl-amides (peptoids) like Ugi products display double signal sets in NMR due to interconvertible isomers with s-cis and s-trans amide bonds. Depending on substitution pattern, solvent and temperature, the equilibrium between these forms is shifted and may lead to broadened or doubled peaks of varied intensity.

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 a}$

 $\begin{array}{lllllllllllll}220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \text { ppm }\end{array}$

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7a

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7b

Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7b

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 c

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7c

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 d}$

Figure S8: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7d

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7e

Figure S10: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7e

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7f

Figure S12: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 f

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $7 \mathbf{g}$

Figure $\mathbf{S 1 4}:{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 g}$

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 h}$

Figure S16: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 h

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 i}$

Figure S18: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 i}$

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 j}$

Figure S20: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 j

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8a

Figure S22: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 a}$

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 b}$

Figure S24: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 b}$

Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 c}$

Figure S26: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 C

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 d}$

Figure S28: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $8 \mathbf{d}$

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8 e

Figure S30: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 e

Figure S31: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 f}$

 $\begin{array}{lllllllllllllllll}220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \text { ppm }\end{array}$

Figure S32: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 f

Figure S33: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 g}$

Figure S34: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 g}$

Figure S35: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 h}$

Figure S36: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 h}$

Figure S37: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 i}$

Figure S39: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 j}$

Figure S40: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 j}$

