Supporting Information

for

Metal-free one-pot synthesis of 2-substituted and

2,3-disubstituted morpholines from aziridines

Hongnan Sun, Binbin Huang, Run Lin, Chao Yang and Wujiong Xia*

Address: State Key Laboratory of Urban Water Resource and Environment, the Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P. R. China

Email: Wujiong Xia* - xiawj@hit.edu.cn

* Corresponding author

Experimental procedures, characterization data and copies of ¹H and ¹³C NMR spectra for products

Contents

1.	General information	S2
2.1	General procedure for the synthesis of aziridines 1a–n	S2
2.2	General procedure for the synthesis of chiral aziridines 1a, 1p and 1q	S5
2.3	Procedure for the synthesis of chiral azetidine 10	S6
3.	General procedure for one-pot synthesis of morpholine derivatives and characterization data of corresponding products	S6
4.	Copies of HPLC chromatograms for ee determination	S16
5.	Copies of NMR spectra	S 22

1. General information

All reagents were purchased from commercial sources unless otherwise noted. Solvent was freshly distilled prior to use unless otherwise noted. Reactions were monitored by thin layer chromatography (TLC) and visualized by UV light (254 nm) or by treatment with a solution of 10 g phosphomolybdic acid and 100 mL EtOH followed by heating. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on Bruker AV-400 instrument. Chemical shifts δ for ¹H NMR spectra were reported in ppm referenced to an internal SiMe₄ standard. Chemical shifts δ for ¹³C NMR spectra were reported in ppm. HRMS spectra were recorded on a Bruker Esquire LC mass spectrometer using electrospray ionization (ESI). Enantiomeric excess (ee) was determined by HPLC using chiralpak AS-H or chiralcel OD-H analytical column (detection at 254 nm).

2.1 General procedure for the synthesis of aziridines 1a-n

The compounds were prepared in a similar manner as described before¹. To a mixture of the appropriate olefin (3 mmol) and TsNClNa \cdot 3H₂O (0.93 g, 3.3 mmol) in 15 mL of MeCN, was added phenyltrimethylammonium tribromide (PTAB) (0.113 g, 0.3 mmol) at rt. After 12 h vigorous stirring, the reaction mixture was concentrated and filtered through a short column of silica gel eluting with EtOAc. After evaporation of the solvent, the resultant solid was purified by flash column chromatography to yield the corresponding aziridine.

¹ Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. **1998**, 120, 6844-6845.

2-Phenyl-1-tosylaziridine (1a).² ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.33-7.20 (m, 7H), 3.77 (dd, *J* = 4.5, 7.1 Hz, 1H), 2.97 (d, *J* = 7.2 Hz, 1H), 2.42 (s, 3H), 2.38 (d, *J* = 4.4 Hz, 1H).

2-(3-Methoxyphenyl)-1-tosylaziridine (1b).³ ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.20 (t, *J* = 7.9 Hz, 1H), 6.82-6.79 (m, 2H), 6.72 (s, 1H), 3.75 (s, 3H), 3.75 – 3.72 (m, 1H), 2.97 (d, *J* = 7.2 Hz, 1H), 2.43 (s, 3H), 2.38 (d, *J* = 4.4 Hz, 1H).

2-(*p***-Tolyl)-1-tosylaziridine (1c).² ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d,** *J* **= 8.3 Hz, 2H), 7.32 (d,** *J* **= 8.1 Hz, 2H), 7.09 (s, 4H), 3.74 (dd,** *J* **= 7.2, 4.5 Hz, 1H), 2.96 (d,** *J* **= 7.2 Hz, 1H), 2.42 (s, 3h), 2.37 (d,** *J* **= 4.5 Hz, 1H), 2.30 (s, 3H).**

2-(4-(*tert***-Butyl)phenyl)-1-tosylaziridine (1d).² ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d,** *J* **= 8.3 Hz, 2H), 7.34-7.30 (m, 4H), 7.14 (d,** *J* **= 8.3 Hz, 2H), 3.76 (dd,** *J* **= 7.2, 4.5 Hz, 1H), 2.96 (d,** *J* **= 7.2 Hz, 1H), 2.43 (s, 3H), 2.38 (d,** *J* **= 4.5 Hz, 1H), 1.28 (s, 9H).**

2-(4-Fluorophenyl)-1-tosylaziridine (**1e**).² ¹H NMR (400 MHz, CDCl₃): δ7.86 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.21-6.96 (m, 4H), 3.75 (dd, *J* = 4.5, 7.1 Hz, 1H), 2.97 (d, *J* = 7.1 Hz, 1H), 2.44 (s, 3H), 2.35 (d, *J* = 4.5 Hz, 1H).

2-(4-Chlorophenyl)-1-tosylaziridine (**1f**).² ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.27-7.25 (m, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 3.73 (dd, *J* = 7.1, 4.4 Hz, 1H), 2.98 (d, *J* = 7.2 Hz, 1H), 2.43 (s, 3H), 2.34 (d, *J* = 4.4 Hz, 1H).

2-(2-Chlorophenyl)-1-tosylaziridine (**1g**).⁴ ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.3 Hz, 2H), 7.36-7.32 (m, 3H), 7.23-7.16 (m, 3H), 4.04 (dd, *J* = 4.4, 7.2 Hz, 1H), 3.03 (d, *J* = 7.2 Hz, 1H), 2.45 (s, 3H), 2.29 (d, *J* = 4.4 Hz, 1H).

² Gao, G.-Y.; Harden, J. D.; Zhang, X. P. Org. Lett. **2005**, 7, 3191–3193.

³ Huang, C.-Y.; doyle, A. G. J. Am. Chem. Soc. **2012**, 134, 9541-9544.

⁴ Craig, II, R. A.; O'Connor, N. R.; Goldberg, A. F. G.; Stoltz, B. M. Chem. Eur. J. 2014, 20, 4806-4813.

1-Tosyl-2-(4-(trifluoromethyl)phenyl)aziridine (1h).³ ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 3.81 (dd, *J* = 7.1, 4.3 Hz, 1H), 3.02 (d, *J* = 7.2 Hz, 1H), 2.44 (s, 3H), 2.37 (d, *J* = 4.3 Hz, 1H). **2-(4-Nitrophenyl)-1-tosylaziridine (1i).**⁵ ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.7 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 3.84 (dd, *J* = 7.1, 4.3 Hz, 1H), 3.05 (d, *J* = 7.2 Hz, 1H), 2.45 (s, 3H), 2.38 (d, *J* = 4.2 Hz, 1H).

2-(Naphthalen-1-yl)-1-tosylaziridine (1j). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.86-7.84 (m, 1H), 7.82-7.75 (m, 1H), 7.56-7.49 (m, 2H), 7.36-7.33 (m, 4H), 4.33 (dd, J = 7.1, 4.6 Hz, 1H), 3.14 (d, J = 7.2 Hz, 1H), 2.45-2.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 144.7, 134.9, 133.3, 131.5, 130.9, 129.8, 128.7, 128.6, 128.1, 126.6, 126.1, 125.3, 124.3, 122.9, 39.5, 35.1, 21.6. HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₉H₁₈NO₂S, 324.1058; found: 324.1058.

7-Tosyl-7-azabicyclo[4.1.0]heptane (**1k**).³ ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 2.99-2.95 (m, 2H), 2.44 (s, 3H), 1.80-1.77 (m, 4H), 1.45-1.36 (m, 2H), 1.27-1.17 (m, 2H).

trans-2-Methyl-3-phenyl-1-tosylaziridine (11).⁶ ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.8 Hz, 2H), 7.26-7.13 (m, 7H), 3.79 (d, J = 4.1 Hz, 1H), 2.93-2.88 (m, 1H), 2.38 (s, 3H), 1.84 (d, J = 5.9 Hz, 3H).

1-Tosyl-1,1a,6,6a-tetrahydroindeno[**1,2**-*b*]**azirine** (**1m**). ⁷ ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 7.3 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.23-7.17 (m, 3H), 4.30 (d, J = 5.3 Hz, 1H), 3.91-3.88 (m, 1H), 3.14-3.13 (m, 2H), 2.41 (s, 3H).

⁵ Evans, D. A., Faul, M. M., Bilodeau, M. T. J. Am. Chem. Soc. **1994**, 116, 2742-2753.

⁶ Yoshimura, A.; Nemykin, V. N.; Zhdankin, V. V. Chem. Eur. J. **2011**, 17, 10538-10541.

⁷ Saikia, I.; Kashyap, B.; Phukan, P. Chem. Commun. **2011**, 47, 2967–2969.

2-Butyl-1-tosylaziridine (**1n**).⁸ ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 2.75-2.69 (m, 1H), 2.63 (d, *J* = 7.0 Hz, 1H), 2.06 (s, 3H), 2.06 (d, *J* = 4.6 Hz, 1H), 1.59-1.5 (m, 1H), 1.38-1.20 (m, 5H), 0.81 (t, *J* = 7.0 Hz, 3H).

2.2 General procedure for the synthesis of chiral aziridines 1a, 1p and

1q

The compounds were prepared in a similar manner as described before⁹. The chiral amino acid was reduced to the amino alcohol by treatment with LiAlH₄ in THF. The reaction was quenched with water. The solid was filtered off and the filtrate was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the crude product. Subsequent treatment of the crude product with TsCl and K_2CO_3 in MeCN afforded pure chiral aziridines.

(*S*)-2-Isobutyl-1-tosylaziridine (1p).¹⁰ ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 2.82-2.76 (m, 1H), 2.63 (d, J = 7.0 Hz, 1H), 2.44 (s, 3H), 2.02 (d, J = 4.6 Hz, 1H), 1.67-1.57 (m, 1H), 1.39-1.28 (m, 2H), 0.88 (dd, J = 6.6, 1.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 135.2, 129.6, 127.9, 40.4, 39.0, 34.0, 26.7, 22.7, 21.9, 21.6. HRMS-ESI (*m*/*z*): [M+H]⁺ calculated for C₁₃H₂₀NO₂S, 254.1215; found: 254.1215.

(*S*)-2-((*S*)-sec-Butyl)-1-tosylaziridine (1q).¹¹ ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 2.61-2.55 (m, 2H), 2.44 (s, 3H), 2.06 (d, J = 3.3 Hz, 1H), 1.42-1.33 (m, 1H), 1.20-1.07 (m, 2H), 0.88 (d, J = 6.6 Hz, 3H), 0.81 (t,

⁸ Kumar, G. D. K.; Baskaran, S. Chem. Commun. 2004, 1026–1027.

⁹ Cernerud, M.; Adolfsson, H.; Moberg, C. *Tetrahedron: Asymmetry* 1997, 8, 2655-2662.

¹⁰ Craven, A. P.; Dyke, H. J.; Thomas, E. J. *Tetrahedron* **1989**, 45, 2417-2429.

¹¹ Kolb, H. C.; Kanamarlapudi, R. C.; Richardson, P. F.; Khan, G. U. S. Pat. Appl. 20030153771.

J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 135.1, 129.5, 128.0, 45.1, 36.6, 32.6, 27.1, 21.6, 15.5, 10.8. HRMS-ESI (*m*/*z*): [M+H]⁺ calculated for C₁₃H₂₀NO₂S, 254.1215; found: 254.1215.

2.3 Procedure for the synthesis of chiral azetidine 10

The compound was prepared in a similar manner as described before¹². The amino acid was reduced to the corresponding amino alcohol by treatment with LiAlH₄ in THF. Tosylation of the amino alcohol with 2 equiv TsCl in pyridine followed by treatment with KCN in DMSO gave the aminonitrile. The nitrile was hydrolyzed to the corresponding acid by treatment with 40% aq NaOH under reflux. Subsequent reduction of the acid using LiAlH₄ in THF afforded the amino alcohol. Finally, the alcohol was cyclized to the corresponding azetidine by treatment with PPh₃ and DEAD in THF.

(*R*)-2-Phenyl-1-tosylazetidine (10).¹² ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 7.7 Hz, 2H), 7.41 (d, J = 7.2 Hz, 2H), 7.37-7.26 (m, 5H), 4.88 (t, J = 8.2 Hz, 1H), 3.81-3.72 (m, 2H), 2.44 (s, 3H), 2.35-2.28 (m, 1H), 2.26-2.14 (m, 1H).

3. General procedure for one-pot synthesis of morpholine derivatives and characterization data of the corresponding product

General procedure: A 10 mL round bottomed flask equipped with a magnetic stir bar was charged with aziridine/azetidine **1** (0.3 mmol, 1 equiv), $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol, 2 equiv) and haloalcohol (10 equiv). The mixture was stirred at rt for the

¹² Ghorai, M. K.; Das, K.; Kumar, A. *Tetrahedron Lett.* **2007**, 48, 2471-2475.

appropriate time (until the starting material disappeared completely as monitored by TLC). Then, 5.0 mL THF and excess KOH (12 equiv) were added to the mixture and stirring was continued at rt. After completion of the reaction, the resulting suspension was treated with saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layers were combined, washed with brine and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using ethyl acetate/hexane as eluent to afford the pure product.

2-Phenyl-4-tosylmorpholine (3a). To a 10 mL round bottomed flask was added **1a** (82 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol). The mixture was stirred at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3a** as a white solid (88 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.3 Hz, 2H), 7.36-7.28 (m, 7H), 4.60 (dd, J = 2.6, 10.3 Hz, 1H), 4.09-4.05 (m, 1H), 3.85 (dt, J = 2.7, 11.6 Hz, 1H), 3.76 (td, J = 2.2, 11.5 Hz, 1H), 3.65-3.62 (m, 1H), 2.50 (dt, J = 3.4, 11.6 Hz, 1H), 2.43 (s, 3H), 2.24 (dd, J = 10.4, 11.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 138.7, 132.2, 129.8, 128.5, 128.3, 127.8, 126.0, 77.4, 66.2, 51.9, 45.4, 21.5. HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₇H₂₀NO₃S, 318.1164; found: 318.1156.

2-(3-Methoxyphenyl)-4-tosylmorpholine (3b). To a 10 mL round bottomed flask was added **1b** (91 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol). The mixture was stirred at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3b** as a colorless liquid (94 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.26-7.23 (m, 1H), 6.89-6.82 (m, 3H), 4.57 (dd, *J* = 2.5, 10.2 Hz, 1H), 4.07 (dd, *J* = 2.2, 11.7 Hz, 1H), 3.88-3.74 (m, 5H), 3.63 (d, *J* = 11.4 Hz, 1H), 2.49 (dt, *J* = 3.4, 11.6 Hz, 1H), 2.43 (s, 3H), 2.23 (t, *J* = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 143.9, 140.2, 132.2, 129.8, 129.5, 127.8, 118.2, 113.8, 111.5, 77.3, 66.2, 55.3, 51.9, 45.4, 21.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calculated for C₁₈H₂₂NO₄S, 348.1270; found: 348.1275.

2-(p-Tolyl)-4-tosylmorpholine (3c). To a 10 mL round bottomed flask was added 1c

(86 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol). The mixture was stirred at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3c** as a white solid (87 mg, 88% yield). ¹H NMR (400MHz, CDCl₃): δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.19-7.13 (m, 4H), 4.56 (dd, *J* = 1.9, 10.2 Hz, 1H), 4.05 (dd, *J* = 2.1, 11.6 Hz, 1H), 3.84 (dt, *J* = 2.5, 11.6 Hz, 1H), 3.73 (d, *J* = 11.5 Hz, 1H), 3.62 (d, *J* = 11.4 Hz, 1H), 2.49 (dt, *J* = 3.3, 11.5 Hz, 1H), 2.43 (s, 3H), 2.33 (s, 3H), 2.23 (t, *J* = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 138.0, 135.7, 132.2, 129.7, 129.1, 127.8, 125.9, 77.3, 66.2, 52.0, 45.4, 21.5, 21.1. HRMS-ESI (*m*/*z*): [M+H]⁺ calculated for C₁₈H₂₂NO₃S, 332.1320; found: 332.1318.

2-(4-(*tert***-Butyl)phenyl)-4-tosylmorpholine (3d).** To a 10 mL round bottomed flask was added **1d** (99 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol). The mixture was stirred at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3d** as a white solid (94 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 4.57 (dd, *J* = 10.3, 2.5 Hz, 1H), 4.06 (dd, *J* = 11.6, 2.1 Hz, 1H), 3.84 (dt, *J* = 2.6, 11.6 Hz, 1H), 3.75 (td, *J* = 2.0, 11.6 Hz, 1H), 3.62 (d, *J* = 11.6 Hz, 1H), 2.50 (dt, *J* = 11.5, 3.4 Hz, 1H), 2.43 (s, 3H), 2.27 (dd, *J* = 11.3, 10.6 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 151.3, 143.9, 135.6, 132.2, 129.8, 127.8, 125.8, 125.4, 77.3, 66.2, 51.8, 45.4, 34.6, 31.3, 21.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calculated for C₂₁H₂₈NO₃S, 374.1790; found: 374.1795.

2-(4-Fluorophenyl)-4-tosylmorpholine (3e). To a 10 mL round bottomed flask was added **1e** (87 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3a** as a white solid (84 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.29-7.26 (m, 2H), 7.02 (t, J = 8.7 Hz, 2H), 4.57 (dd, J = 2.5, 10.2 Hz, 1H), 4.06 (dd, J = 2.1, 10.6 Hz, 1H), 3.84 (dt, J = 2.7, 11.6 Hz, 1H), 3.73 (td, J = 2.0, 11.5 Hz, 1H), 3.63 (d, J = 11.0 Hz, 1H), 2.49 (dt, J = 3.4, 11.6 Hz, 1H), 2.43 (s, 3H), 2.20 (dd, J = 10.5, 11.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 162.5 (d, J = 245 Hz), 144.0, 134.5 (d, J = 3.0 Hz), 132.2, 129.8, 127.8, 127.7 (d, J = 8.6 Hz), 115.4 (d, J = 21.3 Hz), 76.7, 66.2, 51.9, 45.3, 21.5. ¹⁹F NMR (376MHz, CDCl₃): δ -113.6 (S)

HRMS-ESI (m/z): $[M+H]^+$ calculated for C₁₇H₁₉FNO₃S, 336.1070; found: 336.1076.

2-(4-Chlorophenyl)-4-tosylmorpholine (3f). To a 10 mL round bottomed flask was added **1f** (92 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3a** as a white solid (84 mg, 80% yield). ¹H NMR (400 MHz, CDCl3): δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.33-7.23 (m, 6H), 4.57 (dd, *J* = 10.2, 2.6 Hz, 1H), 4.09-4.02 (m, 1H), 3.83 (dt, *J* = 2.7, 11.6 Hz, 1H), 3.77-3.69 (m, 1H), 3.62 (d, *J* = 10.9 Hz, 1H), 2.49 (dt, *J* = 3.4, 11.6 Hz, 1H), 2.43 (s, 3H), 2.18 (dd, *J* = 10.4, 11.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl3): δ 144.0, 137.1, 134.0, 132.1, 129.8, 128.6, 127.8, 127.3, 76.6, 66.1, 51.8, 45.3, 21.5. HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₇H₁₉CINO₃S, 352.0774; found: 352.0779.

2-(2-Chlorophenyl)-4-tosylmorpholine (3g). To a 10 mL round bottomed flask was added **1g** (92 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3g** as a colorless liquid (92 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.2 Hz, 2H), 7.42-7.40 (m, 1H), 7.36-7.31 (m, 3H), 7.25-7.22 (m, 2H), 4.94 (dd, J = 2.4, 10.1 Hz, 1H), 4.08 (dd, J = 2.4, 11.5 Hz, 1H), 3.96 (d, J = 11.6 Hz, 1H), 3.87 (dt, J = 2.6, 11.7 Hz, 1H), 3.66 (d, J = 11.2 Hz, 1H), 2.54 (dt, J = 3.4, 11.7 Hz, 1H), 2.43 (s, 3H), 2.11 (t, J = 10.3, 11.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 136.3, 132.6, 131.9, 129.8, 129.4, 129.2, 127.8, 127.4, 127.0, 74.4, 66.3, 50.3, 45.4, 21.5. HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₇H₁₉ClNO₃S, 352.0774; found: 352.0779.

4-Tosyl-2-(4-(trifluoromethyl)phenyl)morpholine (**3h**). To a 10 mL rounded bottom flask was added **1h** (102 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3h** as a white solid (90 mg, 78% yield). ¹H NMR (400 MHz, CDCl3): δ 7.62-7.59 (m, 4H), 7.44 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.66 (dd, J = 10.2, 2.3 Hz, 1H), 4.09 (dd, J = 11.7, 2.1 Hz, 1H), 3.86 (dt, J = 2.7, 11.6 Hz, 1H), 3.78 (td, J = 2.0, 11.5 Hz, 1H), 3.65 (d, J = 11.7 Hz, 1H), 2.51 (dt, J = 3.4, 11.6 Hz, 1H), 2.43 (s, 3H), 2.19 (dd, J = 11.4, 10.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 144.1, 142.6 (d, J = 1.0 Hz), 132.1, 130.4 (q, J = 32.6 Hz), 129.8, 127.8, 126.3, 125.4 (q, J = 3.8 Hz), 123.9 (q, J = 3.4 Hz).

270.0 Hz), 76.6, 66.2, 51.8, 45.3, 21.5. ¹⁹F NMR (376MHz, CDCl₃): δ -62.6 (S). HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₈H₁₉F₃NO₃S, 386.1038; found: 386.1038.

2-(4-Nitrophenyl)-4-tosylmorpholine (3i). To a 10 mL round bottom flask was added **1i** (96 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 3 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3i** as a white solid (90 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 4.71 (dd, J = 2.5 Hz, 10.2 Hz, 1H), 4.10 (dd, J = 2.1, 11.7 Hz, 1H), 3.87 (dt, J = 2.7, 11.6 Hz, 1H), 3.80 (td, J = 1.9, 11.6 Hz, 1H), 3.66 (d, J = 11.1 Hz, 1H), 2.52 (dt, J = 3.4, 11.6 Hz, 1H), 2.43 (s, 3H), 2.19 (dd, J = 10.5, 11.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 145.6, 144.2, 132.0, 129.9, 127.8, 126.8, 123.7, 76.3, 66.2, 51.5, 45.3, 21.5. HRMS-ESI (*m/z*): [M+H]⁺ calculated for C₁₇H₁₉N₂O₅S, 363.1015; found: 363.1016.

2-(Naphthalen-1-yl)-4-tosylmorpholine (3j). To a 10 mL round bottomed flask was added **1j** (97 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 1 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford **3j** as a white solid (90 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.59-7.47 (m, 5H), 7.42 (t, J = 7.7 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 5.32 (dd, J = 1.9, 10.0 Hz, 1H), 4.16 (dd, J = 2.3, 11.7 Hz, 1H), 4.02-3.96 (m, 2H), 3.71 (d, J = 11.3 Hz, 1H), 2.60 (dt, J = 3.4, 11.6 Hz, 1H), 2.39-2.32 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 134.3, 133.5, 132.2, 129.9, 129.696, 128.9, 128.6, 127.7, 126.6, 125.7, 125.3, 123.6, 122.5, 74.5, 66.5, 51.6, 45.6, 21.4. HRMS-ESI (m/z): [M+H]⁺ calculated for C₂₁H₂₂NO₃S, 368.1320; found: 368.1322.

4-Tosyloctahydro-2*H***-benzo[***b***][1,4]oxazine (3k). To a 10 mL round bottome flask was added 1k (75 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 3 h to afford 3k as a white solid (84 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃): \delta 7.65 (d,** *J* **= 8.3Hz, 2H), 7.34 (d,** *J* **= 8.1 Hz, 2H), 3.92-3.86 (m, 2H), 3.77 (dt,** *J* **= 2.2, 11.2 Hz, 1H), 3.25-3.19 (m, 1H), 2.76 (dt,** *J* **= 3.7, 12.1 Hz, 1H), 2.57-2.52 (m, 1H), 2.45 (s, 3H), 2.28 (ddd,** *J* **= 3.8, 8.8, 11.9 Hz,**

1H), 1.89-1.85 (m, 1H), 1.75-1.65 (m, 2H), 1.52-1.42 (m, 1H), 1.32-1.09 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 134.6, 129.7, 127.5, 79.5, 66.4, 63.4, 48.9, 31.5, 29.5, 24.8, 23.9, 21.5. HRMS-ESI(*m*/*z*): [M+H]⁺ calculated for C₁₅H₂₂NO₃S, 296.1320; found, 296.1336.

cis-3-Methyl-2-phenyl-4-tosylmorpholine (3l). To a 10 mL round bottomed flask was added 1l (86 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 1 h to afford 3l and 4l. Regioisomer 3l (75 mg, 75% yield) colorless liquid: ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.34-7.24 (m, 7H), 4.62 (d, *J* = 1.4 Hz, 1H), 4.20 (qd, *J* = 6.4, 2.2 Hz, 1H), 4.04 (dd, *J* = 11.4, 3.2 Hz, 1H), 3.69 (td, *J* = 11.9, 2.8 Hz, 1H), 3.60 (d, *J* = 13.1 Hz, 1H), 3.25 (td, *J* = 12.6, 3.4 Hz, 1H), 2.42 (s, 3H), 0.73 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 138.6, 137.5, 129.8, 128.3, 127.4, 127.1, 125.3, 80.2, 67.0, 53.2, 39.4, 21.5, 9.0. HRMS-ESI(*m*/*z*): [M+H]⁺ calculated for C₁₈H₂₂NO₃S, 332.1320; found: 332.1322.

cis-2-Methyl-3-phenyl-4-tosylmorpholine (4l). 16 mg, 16% yield, white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.37-7.30 (m, 5H), 4.39 (d, J = 4.4 Hz, 1H), 3.97-3.91 (m, 1H), 3.79-3.73 (m, 1H), 3.71-3.66 (m, 1H), 3.58-3.52 (m, 1H), 3.19 (dt, J = 12.1, 4.1 Hz, 1H), 2.44 (s, 3H), 1.21 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 138.2, 136.1, 129.8, 128.5, 128.1, 127.8, 127.5, 80.3, 62.6, 52.9, 43.0, 21.5, 15.4. HRMS-ESI(m/z): [M+H]⁺ calculated for C₁₈H₂₂NO₃S, 332.1320; found: 332.1322.

4-Tosyl-2,3,4,4a,5,9b-hexahydroindeno[**1,2-***b***][1,4**]**oxazine** (**3m**)**.** To a 10 mL round bottomed flask was added **1m** (86 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 5 h to afford **3m** and **4m**. Regioisomer **3m** (40 mg, 40% yield) white solid: ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.29-7.26 (m, 4H), 4.64 (d, J = 9.1 Hz, 1H), 4.15 (ddd, J = 11.6, 3.7, 1.0 Hz, 1H), 4.05 (td, J = 11.8, 2.8 Hz, 1H), 3.74-3.71 (m, 1H), 3.35 (dd, J = 15.1, 6.7 Hz, 1H), 3.26 (dd, J = 15.1, 10.7 Hz, 1H), 2.58-2.51 (m, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.7, 141.8, 139.6, 136.8, 129.9, 129.5, 127.3, 127.2, 125.3, 125.2, 77.9, 64.3, 55.2, 40.3, 30.6, 21.5;

HRMS-ESI (m/z): $[M+H]^+$ calculated for C₁₈H₂₀NO₃S, 330.1164; found: 330.1167.

4-Tosyl-2,3,4,4a,9,9a-hexahydroindeno[2,1-*b***][1,4]oxazine (4m). 47 mg, 47% yield, white solid. ¹H NMR (400 MHz, CDCl₃): \delta 7.76 (d,** *J* **= 8.3 Hz, 2H), 7.42-7.16 (m, 6H), 4.60 (d,** *J* **= 4.5 Hz, 1H), 4.39-4.28 (m, 1H), 3.82 (dd,** *J* **= 11.5, 1.9 Hz, 1H), 3.68 (d,** *J* **= 12.8 Hz, 1H), 3.58 (td,** *J* **= 11.5, 2.4 Hz, 1H), 3.11 (td,** *J* **= 12.4, 3.1 Hz, 1H), 2.91 (dd,** *J* **= 15.1, 9.6 Hz, 1H), 2.78 (dd,** *J* **= 15.2, 7.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 143.7, 141.8, 139.6, 136.8, 129.9, 129.5, 127.3, 127.2, 125.3, 125.2, 77.9, 64.3, 55.2, 40.3, 30.6, 21.5; HRMS-ESI (***m***/***z***): [M+H]⁺ calculated for C₁₈H₂₀NO₃S, 330.1164; found: 330.1167.**

2-Butyl-4-tosylmorpholine (3n). To a 10 mL round bottomed flask was added **1n** (76 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 5 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 3 h to afford **3n** and **4n**. Regioisomer **3n** (40 mg, 45% yield) colorless liquid: ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 3.88 (dd, *J* = 2.1, 11.6 Hz, 1H), 3.65 (dt, *J* = 2.5, 11.5 Hz, 1H), 3.56-3.46 (m, 3H), 2.44 (s, 3H), 2.38 (dt, *J* = 3.3, 11.4 Hz, 1H), 2.03 (t, *J* = 10.5 Hz, 1H), 1.45-1.26 (m, 6H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 132.2, 129.7, 127.8, 75.3, 65.9, 50.4, 45.5, 32.8, 27.2, 22.540, 21.5, 13.8. HRMS-ESI (*m*/*z*): [M+H]⁺ calculated for C₁₅H₂₄NO₃S, 298.1477; found: 298.1483.

3-Butyl-4-tosylmorpholine (4n). 27 mg, 30% yield, colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.75-3.69 (m, 2H), 3.66 (d, J = 11.6 Hz, 1H), 3.54 (d, J = 11.7 Hz, 1H), 3.41 (dd, J = 2.9, 11.5 Hz, 1H), 3.35-3.22 (m, 2H), 2.43 (s, 3H), 1.74-1.63 (m, 1H), 1.59-1.50 (m, 1H), 1.33-1.20 (m, 4H), 0.86 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 138.2, 129.7, 127.0, 68.4, 66.1, 53.5, 40.7, 28.4, 27.6, 22.4, 21.5, 13.9. HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₅H₂₄NO₃S, 298.1477; found: 298.1486.

(*R*)-2-Phenyl-4-tosylmorpholine (3a). Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column, hexane/isopropanol, 90:10, flow rate = 1.0 mL/min; t_R1: 8.43 (minor), t_R2: 15.71 (major).

(*R*)-2-Phenyl-4-tosyl-1,4-oxazepane (3ab). To a 10 mL round bottomed flask was added (*S*)-1a (82 mg, 0.3 mmol), $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol) and 3-bromopropyl alcohol (417 mg, 3.0 mmol) at rt for 0.5 h. THF (5.0 mL) and KOH (202 mg,

3.6 mmol) were then added and stirred at rt for further 16 h to afford **3ab** as a colorless liquid (72 mg, 72% yield). Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column, hexane-isopropanol, 98:2, flow rate = 1.0 mL/min; t_R1: 15.87 (minor), t_R2: 17.32 (major). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.3 Hz, 2H), 7.34-7.26 (m, 7H), 4.63 (dd, J = 10.0, 2.5 Hz, 1H), 4.21-4.14 (m, 1H), 3.97 (ddd, J = 14.0, 2.3, 1.4 Hz, 1H), 3.91-3.84 (m, 2H), 3.04 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 2.82 (dd, J = 14.0, 10.0 Hz, 1H), 2.41 (s, 3H), 2.14-2.06 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 143.30, 139.63, 136.17, 129.72, 128.45, 127.89, 126.86, 125.97, 83.95, 68.56, 57.71, 46.86, 30.51, 21.45. HRMS-ESI (m/z): [M+H]⁺ calculated for C₁₈H₂₂NO₃S, 332.1320; found: 332.1326.

(S)-7-Phenyl-4-tosyl-1.4-oxazepane (30). To a 10 mL round bottomed flask was 0.3 mmol), $(NH_4)_2S_2O_8$ (137 mg, added (*R*)-10 (86 mg, 0.6 mmol) and 2-bromoethanol (375 mg, 3.0 mmol) at rt for 1 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 36 h to afford 30 as a white solid (65 mg, 65% yield). Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column, hexane/isopropanol, 95:5, flow rate = 1.0 mL/min; t_{R} 1: 16.82 (minor), t_{R} 2: 19.54 (major). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 7.9Hz, 2H), 7.34-7.23 (m, 7H), 4.67 (dd, J = 9.6, 4.1 Hz, 1H), 4.10 (d, J = 12.9 Hz, 1H), 3.80-3.59 (m, 3H), 3.30 (ddd, J = 33.9, 16.9, 7.3 Hz, 2H), 2.44 (s, 3H), 2.34-2.28 (m, 1H), 2.05-2.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 142.9, 135.9, 129.8, 128.4, 127.4, 127.1, 125.5, 81.5, 70.0, 51.7, 46.2, 37.8, 21.5. HRMS-ESI (m/z): $[M+H]^+$ calculated for C₁₈H₂₂NO₃S, 332.1320; found: 332.1320.

(*S*)-2-Phenyl-5-tosyl-1,5-oxazocane (3ob). To a 10 mL round bottomed flask was added (*R*)-10 (86 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and 3-bromopropyl alcohol (417 mg, 3.0 mmol) at rt for 1 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 48 h to afford **3ob** as a colorless liquid (62 mg, 60% yield). Enantiomeric purity was determined by chiral HPLC analysis (Chiralcel OD-H column, hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; t_R1: 9.11 (minor), t_R2: 10.50 (major). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.34-7.26 (m, 7H), 4.73 (dd, *J* = 10.0, 3.9 Hz, 1H), 3.92-3.86 (m, 1H), 3.78-3.70 (m, 2H), 3.58 (dt, *J* = 14.3, 3.9 Hz, 1H), 3.21 (ddd, *J* = 14.2, 10.3, 3.6 Hz, 1H), 3.03 (dd, *J* = 13.7, 8.6 Hz, 1H), 2.43 (s, 3H), 2.34-2.20 (m, 2H), 1.92-1.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 143.1, 143.0, 136.7, 129.7, 128.3, 127.1, 126.9, 125.7, 76.41,

66.4, 49.0, 47.6, 37.4, 30.4, 21.5. HRMS-ESI (m/z): $[M+H]^+$ calculated for C₁₉H₂₄NO₃S 346.1477; found: 346.1478.

(*R*)-2-Isobutyl-4-tosylmorpholine (3p). To a 10 mL round bottomed flask was added (*S*)-1p (76 mg, 0.3 mmol), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 12 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 3 h to afford **3p** and **4p**. Regioisomer **3p** (40 mg, 45% yield) colorless liquid. Enantiomeric purity was determined by chiral HPLC analysis (Chiralpak AS-H column, hexane/isopropanol, 98:2, flow rate = 0.8 mL/min; t_R1: 25.77 (major), t_R2: 32.34 (minor). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 3.88 (dd, *J* = 2.2, 11.4 Hz, 1H), 3.65 (dt, *J* = 2.4, 11.5 Hz, 1H), 3.59-3.50 (m, 3H), 2.44 (s, 3H), 2.37 (dt, *J* = 3.3, 11.5 Hz, 1H), 2.02 (t, *J* = 10.8 Hz, 1H), 1.80-1.69 (m, 1H), 1.36 (ddd, *J* = 5.9, 8.4, 14.0 Hz, 1H), 1.13 (ddd, *J* = 4.3, 8.3, 13.1 Hz, 1H), 0.90 (d, *J* = 2.3 Hz, 3H), 0.88 (t, *J* = 2.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 132.2, 129.7, 127.8, 73.6, 65.8, 50.6, 45.5, 42.1, 24.1, 23.1, 22.1, 21.5. HRMS-ESI(*m*/*z*): [M+H]⁺ calculated for C₁₅H₂₄NO₃S, 298.1477; found, 298.1481.

(*S*)-3-Isobutyl-4-tosylmorpholine (4p). 14 mg, 16% yield, white solid. Enantiomeric purity was determined by chiral HPLC analysis (Chiralpak AS-H column, hexane/isopropanol, 98:2, flow rate = 0.8 mL/min; t_R1: 31.28 (major), t_R2: 38.92 (minor). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 3.84-3.83 (m, 1H), 3.72-3.69 (m, 1H), 3.62 (d, *J* = 11.5 Hz, 1H), 3.54 (d, *J* = 12.4 Hz, 1H), 3.44 (dd, *J* = 2.9, 11.5 Hz, 1H), 3.36-3.22 (m, 2H), 2.43 (s, 3H), 1.59-1.51 (m, 2H), 1.44-1.36 (m, 1H), 0.89 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 138.1, 129.8, 127.1, 68.8, 66.1, 51.7, 40.7, 36.9, 24.9, 22.7, 22.4, 21.5. HRMS-ESI(*m*/*z*): [M+H]⁺ calculated for C₁₅H₂₄NO₃S, 298.1477; found, 298.1482.

(*R*)-2-((*S*)-sec-Butyl)-4-tosylmorpholine (3q). To a 10 mL round bottomed flask was added (*S*)-1q (76 mg, 0.3 mmol), $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol) and chloroethanol (240 mg, 3.0 mmol) at rt for 12 h. THF (5.0 mL) and KOH (202 mg, 3.6 mmol) were then added and stirred at rt for further 3 h to afford 3q and 4q. Regioisomer 3q (34 mg, 38% yield) colorless liquid. Enantiomeric purity was determined by chiral HPLC analysis (Chiralpak AS-H column, hexane/isopropanol, 98:2, flow rate =

0.8 mL/min; t_R1: 27.51 (major), t_R2: 32.84 (minor).¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.90 (dd, J = 2.2, 11.5 Hz, 1H), 3.63 (dt, J = 2.6, 11.5 Hz, 1H), 3.58-3.50 (m, 2H), 3.37-3.32 (m, 1H), 2.45 (s, 3H), 2.36 (dt, J = 3.4, 11.4 Hz, 1H), 2.14 (t, J = 10.7 Hz, 1H), 1.49-1.39 (m, 1H), 1.18-1.09 (m, 1H), 0.90-0.87 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 132.4, 129.7, 127.8, 78.7, 66.0, 48.3, 45.6, 37.6, 25.2, 21.5, 14.5, 11.4. HRMS-ESI(m/z): [M+H]⁺ calculated for C₁₅H₂₄NO₃S, 298.1477; found, 298.1483.

(*S*)-3-((*S*)-sec-Butyl)-4-tosylmorpholine (4q). 19 mg, 21% yield, white solid. Enantiomeric purity was determined by chiral HPLC analysis (Chiralpak AS-H column, hexane-isopropanol, 98:2, flow rate = 0.8 mL/min; t_R1: 34.80 (major), t_R2: 44.87 (minor). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 3.82 (d, *J* = 12.0 Hz, 1H), 3.62-3.56 (m, 2H), 3.41 (dd, *J* = 2.6, 10.4 Hz, 1H), 3.34-3.26 (m, 1H), 3.22-3.12 (m, 2H), 2.43 (s, 3H), 2.09-1.98 (m, 2H), 1.69-1.60 (m, 1H), 1.14-1.03 (m, 1H), 0.94-0.88 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 138.8, 129.8, 127.0, 66.3, 65.4, 58.4, 41.3, 31.7, 25.3, 21.5, 15.9, 11.2. HRMS-ESI(*m*/*z*): [M+H]⁺ calculated for C₁₅H₂₄NO₃S, 298.1477; found: 298.1484.

4. Copies of HPLC chromatograms for ee determination

Figure S6 Chromatogram of 30 (52% ee)

S18

S19

Figure S15 Chromatogram of racemic 4q

S21

5. Copies of NMR spectra

 $\begin{array}{c} \overbrace{7}^{7} \begin{array}{c} 6939\\ -7 \end{array} \begin{array}{c} 6742\\ 6742 \end{array} \\ -7 \end{array} \begin{array}{c} 4257\\ -1 \end{array} \\ -7 \end{array} \begin{array}{c} 3622\\ -7 \end{array} \\ -7 \end{array} \\ 3313 \end{array}$

