Supporting Information

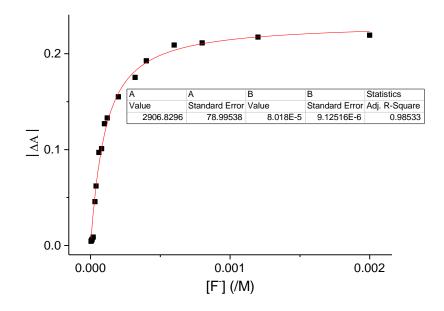
for

Fluoride-driven 'turn on' ESPT in the binding with a novel benzimidazole-based sensor

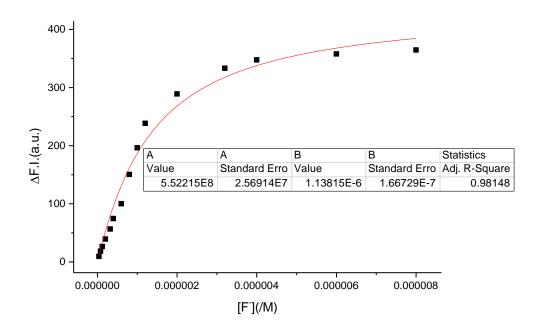
Kai Liu*^{1,2}, Xiaojun Zhao¹, Qingxiang Liu², Jianzhong Huo², Bolin Zhu², Shihua Diao²

Address: ¹Key Laboratory of Inorganic-Organic hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China and ²Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China

Email: Kai Liu* - hxxylk@mail.tjnu.edu.cn


*Corresponding author

Binding constants determination by UV-vis and fluorescence methods

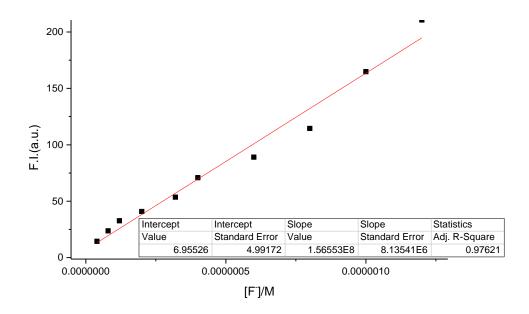

Binding constants (K) were calculated by non-linear least-square analysis of the titration curves according to the following relation for 1:1 complexation.

$$\Delta X = A \left\{ C_H + C_G + B - \left[\left(C_H + C_G + B \right)^2 - 4 C_H C_G \right]^{\frac{1}{2}} \right\}$$

where ΔX is the difference value between the absorbance (or emission intensity) of the whole system and the absorbance of free host, A is a floating parameter in the analysis, B is the ratio between 1 to k (binding association), C_H and C_G are the concentration of host and guest, respectively.

Figure S1: Non-linear curve fit of absorbance changes at 410 nm as a function of fluoride concentration.

Figure S2: Non-linear curve fit of emission intensity at 376 nm as a function of fluoride concentration.


2. Calculation of detection limit

The detection limit (D) of BIP in emission spectra for fluoride ion was determined according to the followed equation:

$$D = 3S_b / k$$

Where S_b is the standard deviation of the blank solution; k is the slope of the curve.

From the Figure S3, we get the slope, which was 156553000. And the standard deviation S_b was 1.1166. Then the detection limit was obtained to be 0.021 μ M using the above-mentioned equation.

Figure S3: Changes of fluorescence intensity of BIP at 376 nm as a function of fluoride concentration.

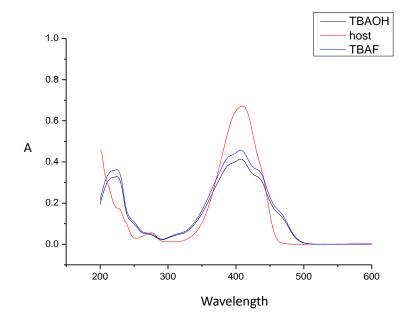
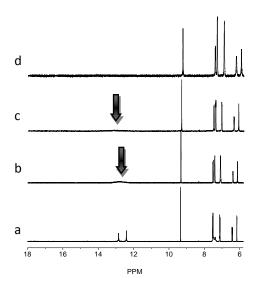
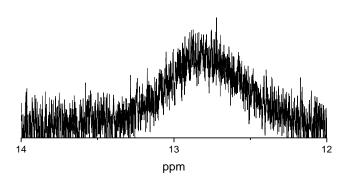




Figure S4: Spectral changes of BIP upon addition of F⁻ and OH⁻.

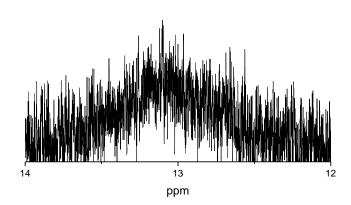
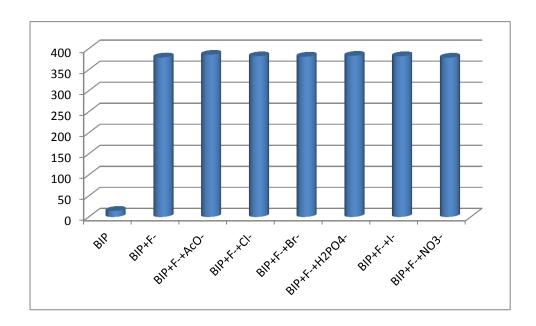


Figure S5: Partial ¹H NMR spectra of BIP in DMSO- d_6 upon the addition of F⁻: (a) 0 equiv; (b) 0.5 equiv; (c) 2.0 equiv; (d) 5.0 equiv. Arrow marked the NH signal.


а

b

Figure S6: Partial ¹H NMR spectra of BIP in DMSO- d_6 upon the addition of F⁻: (a) 0.5 equiv.; (b) 2.0 equiv.

Figure S7: Emission spectral changes of BIP (4.0×10^{-7} mol/l) containing 20.0 equiv fluoride upon the addition of 20.0 equiv other anions (Cl⁻, Br⁻, l⁻, H₂PO₄⁻, NO₃⁻ and AcO⁻).