Supporting Information

for

Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts slkylations

Tommaso Pecchioli, Manoj Kumar Muthyala, Rainer Haag* and Mathias Christmann*

Address: ¹Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany

Email: Rainer Haag - haag@chemie.fu-berlin.de; Mathias Christmann - mathias.christmann@fu-berlin.de

Experimental procedures, analytical data, copies of NMR spectra and GC reports

Contents

1.	General methods	S2
2.	Experimental procedures	S3
3.	General procedure for the Friedel–Crafts alkylations	S15
4.	Friedel-Crafts alkylation products	S16
5.	Spectra of compounds	S21
6.	GC reports	S38
7.	References	S44

^{*}Corresponding author

1. General methods

Commercial reagents were used as received. All reactions were carried out under magnetic stirring and were monitored by TLC analysis on 0.20 mm silica gel plates (Macherey-Nagel G/UV₂₅₄). Column chromatography was carried out on silica gel 60 M (0.04-0.063 mm) Macherey-Nagel. Dialysis was performed in benzoylated cellulose tubes from Sigma-Aldrich (D7884-10FT, width: 32 mm, molecular weight cut-off (MWCO) 2000 g·mol⁻¹. Yields refer to spectroscopically and analytically pure compounds unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on Bruker (ECP 400, AC 500, AV 700) or JEOL (ECX 400, Eclipse 500) instruments. Chemical shifts are reported relative to CDCl₃ (1 H: δ = 7.24 ppm; 13 C: δ = 77.23 ppm), DMSO- d_6 (¹H: δ = 2.50 ppm; ¹³C: δ = 39.51 ppm) or acetone- d_6 (¹H: δ = 2.05 ppm; 13 C: δ = 29.92 ppm). Integrals are in accordance with assignments, coupling constants are given in Hz. For detailed peak assignments 2D spectra were recorded where necessary (COSY, DEPT, HSQC, HMQC, HMBC and NOESY). IR spectra were recorded ona Perkin-Elmer Spectrum BX FTIR System spectrophotometer JASCO FT/IR-4100. HRMS analyses were performed on a Varian Inc. lonspec QFT-7 (ESI-TOF, 4 µL/min, 1.0 bar, 4 kV). Optical rotation measurements were performed on a P-2000 polarimeter from Jasco in a 1 dm optical-path length cell with the frequency of the Na_D line measured at the temperature and concentration (in g/100 mL) indicated. The enantiomeric excess was determined by chiral GC: Agilent 6850 Series II GC System equipped with Hydrodex-\(\beta\)-TBDAc column or Agilent 7890B equipped with Lipodex E column, the standards were prepared using racemic 5benzyl-2,2,3-trimethylimidazolidin-4-one as catalyst.

2. Experimental procedures

General procedure for the synthesis of compound 10¹

(S)-5-(4'-Hydroxylbenzyl)-2,2,3-trimethylimidazolidin-4-one (10). To an ethanolic solution of MeNH₂ (8.0 M in EtOH; 69 mL, 550 mmol, 5.0 equiv) (S)-tyrosine methyl ester hydrochloride (9, 25.5 g, 110 mmol, 1.0 equiv) was added and the solution was stirred for 20 h at 25 °C. After completion of the reaction the organic solvents were removed under reduced pressure, the residue was re-suspended in THF and again concentrated. To remove excess MeNH2 the THF addition-removal cycle was repeated several times. The white solid thus obtained was used in the next step without further purification. The crude product and p-toluenesulfonic acid (209 mg, 1.10 mmol, 0.01 equiv) were dissolved in mixture of anhyd. MeOH (200 mL) and anhyd. acetone (40 mL) and the mixture was refluxed for 18 h. After completion, the reaction mixture was cooled to room temp., all solvents were removed under reduced pressure, and the so-obtained residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH 20:1) to yield **10** (20.4 g, 79%). H-NMR (CDCl₃, 700 MHz): δ = 6.99 (d, J = 8.5 Hz, 2H; Ar-H), 6.72 (d, J = 8.5 Hz, 2H; Ar-H), 3.75 (t, J = 5.3 Hz, 1H; CH), 2.98 (d, J = 5.4 Hz, 2H; Bn-H), 2.72 (s, 3H; N-Me), 1.25 (s, 3H; Me), 1.14 ppm (s, 3H; Me); 13 C-NMR (CDCl₃, 175 MHz): δ = 173.9, 155.9, 130.7, 127.3, 115.9, 76.1, 59.4, 35.8, 27.1, 25.5, 25.1 ppm.

Synthesis of compound 5¹

(S)-5-(p-(Hex-5'-yn-1'-yloxy)benzyl)-2,2,3-trimethylimidazolidin-4-one (5). NaH (60% in mineral oil; 282 mg, 7.02 mmol, 1.1 equiv) was added to solution of 10 (1.50 g, 6.40 mmol, 1 equiv) in anhyd. DMF (5 mL) at 0 °C. After 30 min of stirring at 0 °C, TBAI (23.0 mg, 0.06 mmol, 0.01 equiv) and 6-chloro-1-hexyne (1.01 mL, 8.32 mmol, 1.3 equiv) were added to the reaction and the mixture was allowed to warm to 25 °C and stirred for an additional 16 h. After this time, MeOH (1 mL) and H₂O (5 mL) were added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried over anhyd. Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/EtOH/EtOAc 10:2:1) to yield **5** (1.78 g, 88%) as white solid. m.p.: 45–47 °C; $R_{\rm f} = 0.14$ (pentane/EtOH/EtOAc 10:2:1); $[\alpha]_{\rm D}^{24} = -69.7(c = 0.94 \text{ in CHCl}_3); ^1\text{H-NMR}$ (CDCl₃, 700 MHz): δ = 7.10 (d, J = 8.7 Hz, 2H; Ar-H), 6.79 (d, J = 8.7 Hz, 2H; Ar-H), 3.93 (t, J = 6.3 Hz, 2H; H-1'), 3.72 (dd, J = 5.9, 5.0 Hz, 1H; H-5), 3.04–2.96 (AB system, J = 14.4, 6.3 Hz, 2H; Bn-H), 2.72 (s, 3H; N-Me), 2.24 (td, J = 7.1, 2.7 Hz, 2H; H-4'), 1.95 (t, J = 2.7 Hz, 1H; H-6'), 1.89–1.85 (m, 2H; H-2'), 1.71–1.66 (m, 2H; H-3'), 1.24 (s, 3H; Me), 1.14 ppm (s, 3H; Me); 13 C-NMR (CDCl₃, 175 MHz): δ = 173.4 (C-4), 157.9 (Ar-C), 130.5 (2Ar-CH), 128.8 (Ar-C), 114.6 (2Ar-CH), 84.1 (C≡CH), 75.5 (C-2), 68.7 (C≡CH), 67.2 (C-1'), 59.3 (C-5), 36.1 (Bn-C), 28.3 (C-2'), 27.2 (N-Me), 25.2 (2xMe), 25.0 (C-3'), 18.1 ppm (C-4'); IR (CDCl₃): $\tilde{v} = 3304$, 3286, 2974, 2943, 2871, 1688, 1612, 1580, 1511, 1474, 1428, 1398, 1368, 1244, 1178, 1148, 1054, 1032, 822 cm⁻¹; HRMS (ESI) : m/z : calcd for $C_{19}H_{26}N_2O_2+H^+$: 315.2067; found: 315.2075 [M+H⁺].

Synthesis of hPG-OH 1²

Hyperbranched polyglycerol (hPG) **1** with M_n = 9.000 g/mol⁻¹ (loading OH = 13.5 mmol/g, PDI = 1.87) was synthesized by a one-step ring opening anionic polymerization (ROAP) method, according to the earlier reported methods.² 1,1,1-Tris(hydroxymethyl)propane (TMP) was used as the starter in ROAP. Azide functionalized hPG were synthesized according to previously reported procedures.³⁻⁴

Synthesis of hPG-OMs 2a-c^{3,4}

General procedure: Mesylation of hyperbranched polyglycerol 1 was carried out under an inert gas atmosphere and exclusion of moisture. In a two-necked 1 L flask, hyperbranched polyglycerol 1 (13.51 mmol OH-groups) was dissolved in anhyd. pyridine (60 mL). The resulting solution was stirred at 25 °C for 10 min and then cooled to 0 °C in an ice bath. A solution of methanesulfonyl chloride (1.2 equiv, with respect to functionalization degree) in anhyd. pyridine (20 mL) was added dropwise to the reaction mixture and stirring at 25 °C was continued for 16 h. The reaction mixture was then filtered and the solvent was removed under reduced pressure.

The degrees of functionalization were confirmed by ¹H NMR of the crude products correlating the *CH*₃-Ms with polyglycerol backbone protons.

hPG-OMs (>95%), 2a

Reaction conditions were as described above, using **1** (1.0 g). The crude product was washed with cold H_2O (3 × 10 mL), further dissolved and dialyzed in acetone for 72 h to give pure **2a** (1.52 g, 76% yield). ¹H-NMR (DMSO- d_6 , 400 MHz): δ = 5.09–4.86 (functionalized secondary PG-groups), 4.58–4.35 (functionalized primary PG-groups), 4.05–3.45 (PG backbone), 3.27–3.11 (br s; Ms), 1.49–1.39 (m; C<u>CH₂CH₃</u> of starter), 0.91 ppm (t; CCH₂CH₃, of starter).

hPG-OMs (57%), 2b

Reaction conditions were as described above, using **1** (1.0 g). The crude product was dissolved in an acetone/H₂O mixture (1:1 v/v) and dialyzed in the same mixture for 72 h to give pure **2b** (1.31, 82% yield). ¹H-NMR (acetone- d_6 , 400 MHz): δ = 5.08–4.85 (functionalized secondary PG-groups), 4.42–4.17 (functionalized primary PG-groups), 4.05–3.75 (PG backbone), 3.25–3.12 (br s; Ms), 1.42–1.34 (m; C<u>CH₂CH₃</u> of starter), 0.87 ppm (t; CCH₂CH₃, of starter).

hPG-OMs (30%), 2c

Reaction conditions were as described above, using **1** (1.0 g). The crude product was dissolved in a MeOH/H₂O mixture (1:1 v/v) and dialyzed in the same mixture for 72 h to give pure **2c** (1.12, 87% yield). ¹H-NMR (DMSO- d_6 , 400 MHz): δ = 5.11–4.81 (functionalized secondary PG-groups), 4.30–4.21 (functionalized primary PG-groups), 4.15–3.45 (PG backbone), 3.27 (br s; Ms), 1.43–1.31 (m, C<u>CH₂CH₃</u> of starter), 0.90 ppm (t, CCH₂CH₃, of starter).

Synthesis of hPG-N₃ 3a-c^{3,4}

General procedure: To a homogeneous mixture of *O*-mesylpolyglycerol **2a–c** (1 equiv) in DMF (15 mL), NaN₃ (3 equiv) was added and the resulting suspension was heated at 65 °C for 72 h. After completion of the reaction, the mixture was cooled to room temp. and filtered through Celite[®] to remove excess NaN₃. The filtrate was concentrated under reduced pressure at a temperature below 40 °C and handled with a plastic spatula to avoid a potentially explosive degradation of the polyazide.

hPG-N₃ (95%), 3a

Reaction conditions were as described above, using **2a** (1.52 g). The crude product was dissolved in CHCl₃ and extracted four times with H₂O. The organic phase was dried over anhyd. MgSO₄. To remove traces of DMF from the crude product an additional dialysis in a MeOH/CHCl₃ mixture (1:1 v/v) was performed to give pure **3a** (0.72 g, 72% yield). ¹H-NMR (CDCl₃, 400 MHz): δ = 4.04–3.35 (m; PG backbone), 1.45–1.33 (m; CCH₂CH₃ of starter), 0.85 ppm (t; CCH₂CH₃, of starter); ¹³C-NMR (CDCl₃, 400 MHz): δ = 76.4–51.5 (PG backbone), 25.7 (CCH₂CH₃ of starter), 8.8 ppm (CCH₂CH₃ of starter); IR: \tilde{v} = 2871, 2091 (N₃), 1447, 1345, 1267, 1174, 1099, 927 cm⁻¹.

hPG-N₃ (57%), 3b

Reaction conditions were as described above, using **2b** (1.31 g). The crude product was dissolved in acetone/H₂O mixture (1:1 v/v) and dialyzed in the same mixture for 72 h to give pure **3b** (0.78 g, 81% yield). ¹H-NMR (CDCl₃, 400 MHz): δ = 4.02–3.34 (m; PG backbone), 1.38–1.27 (m; CCH₂CH₃ of starter), 0.79 (t; CCH₂CH₃, of starter);

¹³C-NMR (CDCl₃, 100 MHz): $\delta = 77.7-53.9$ (PG backbone), 25.7 (C<u>CH₂</u>CH₃ of starter), 8.0 (CCH₂CH₃ of starter) ppm; IR: $\tilde{v} = 3398$, 2871, 2096 (N₃), 1769, 1636, 1453, 1455, 1270, 1077, 991, 929 cm⁻¹.

hPG-N₃ (30%), 3c

Reaction conditions were as described above, using **2c** (1.12 g). The residue was purified by dialysis in H₂O for 48 h to give pure **3c** (0.78 g, 86% yield). ¹H-NMR (DMSO- d_6 , 400 MHz): $\delta = 4.05-3.35$ (m; PG backbone), 1.35–1.29 (m; CCH₂CH₃ of starter), 0.77 ppm (t; CCH₂CH₃ of starter); ¹³C-NMR (DMSO- d_6 , 100 MHz): $\delta = 78.5-54.0$ (PG backbone), 24.1 (CCH₂CH₃ of starter), 10.4 ppm (CCH₂CH₃ of starter); IR: $\tilde{v} = 3382$, 2871, 2359, 2341, 2098 (N₃), 2035, 1771, 1635, 1558, 1455, 1272, 1078, 932, 869, 671 cm⁻¹.

Synthesis of hPG-cat. 4a-c⁵

General procedure: hPG-azide **3a-c** (1.0 equiv) and alkyne **5** (2.0 equiv) were dissolved in a THF/H₂O mixture (3:1 v/v; 4 mL) and the resulting solution was degassed for 10 min. Sodium ascorbate (2.0 equiv) in H₂O (100 mg/mL) and CuSO₄·5H₂O (0.2 equiv) in H₂O (100 mg/mL) were mixed and the resulting solution was added dropwise to the solution of hPG-azide **3a-c** and alkyne **5**. The reaction mixture was stirred at 25 °C for app. 48 h and the progress of the reaction was monitored by infrared (IR) spectroscopy. After completion of the

reaction, the mixture was diluted with CHCl₃ and the resulting solution was washed with sat. aq. EDTA solution (2 \times 10 mL), followed by water (2 \times 10 mL), and dried over anhyd. Na₂SO₄. The compounds were further purified by dialysis MeOH/CHCl₃ mixture (1:1 v/v) 24 h, and then MeOH and CHCl₃, respectively, for 12 h each.

The degrees of functionalization were confirmed by ¹H NMR correlating the aromatic protons with polyglycerol backbone protons.

hPG-Cat (95%), 4a

Reaction conditions and purification methods were as described above, using **3a** (100 mg) to give pure **4a** (296 mg, 71% yield). 1 H-NMR (CDCl₃, 700 MHz): δ = 7.64–7.36 (m, 1H; triazole), 7.13–7.04 (m, 2H; Ar-H), 6.80–6.70 (m, 2H; Ar-H), 5.37–4.70 (functionalized secondary PG-groups), 4.67–4.38 (functionalized primary PG-groups), 4.31–3.15 (PG backbone), 3.92–3.84 (m, 2H; CH₂O-Ar), 3.74–3.65 (br s, 1H; HNCHCON[CH₃]), 3.07–2.98 (m, 1H; Bn-H), 2.97–2.88 (m, 1H; Bn-H), 2.76–2.63 (m, 5H; N-CH₃, triazole-CH₂-), 1.84–1.62 (m, 4H; [CH₂]₂-), 1.25 (s, 3H; Me), 1.17 ppm (s, 3H; Me); 13 C-NMR (CDCl₃, 175 MHz): δ = 173.5 (C=O), 157.8 (C-Ar), 147.7 (C₅-triazole), 130.5 (C-Ar), 129.1 (C-Ar), 122.0 (C-Ar), 114.5 (C-Ar), 75.6 (NC[CH₃])₂N), 72.9–68.6 (PG backbone), 67.4 (CH₂O-Ar), 59.4, 36.2, 29.0–28.7, 27.3, 26.1–25.9, 25.2 (2xMe), 24.3 ppm; IR: \tilde{v} = 2929, 1682 (CONHCH₃), 1611, 1510, 1429, 1399, 1243, 1177, 1112, 811, 752 cm⁻¹.

hPG-Cat (57%), 4b

Reaction conditions and purification methods were as described above, using **3b** (100 mg) to give pure **4b** (121 mg, 40% yield). 1 H-NMR (CDCl₃, 700 MHz): δ = 7.57–7.40 (m, 1H; triazole), 7.09–7.07 (m, 2H; Ar-H), 6.75 (m, 2H; Ar-H), 5.18–4.68 (functionalized secondary PG-groups), 4.49–4.24 (functionalized primary PG-groups), 4.20–3.25 (PG backbone), 3.90–3.82 (m, 2H; CH₂OAr), 3.74–3.65 (br s, 1H; NHCHCON[CH₃]), 3.02–3.00 (m, 1H; Bn-H), 2.94–2.88 (m, 1H; Bn-H), 2.71–2.62 (m, 5H; N-CH₃, triazol-CH₂-), 1.76–1.67 (m, 4H; [CH₂]₂), 1.22 (s, 3H; Me), 1.14 ppm (s, 3H; Me); 13 C NMR (CDCl₃, 175 MHz): δ = 173.5 (C=O), 157.9 (C-Ar), 147.6 (C₅-triazole), 130.6 (C-Ar), 129.1–128.9 (C-Ar), 122.8–122.6 (C₄-triazole), 114.6 (C-Ar), 75.6 (NC[CH₃])₂N), 72.9–68.6 (PG backbone), 67.5 (CH₂OAr), 59.3, 36.2, 28.8, 27.2, 25.9, 25.2 (2xMe), 24.2 ppm; IR: \tilde{v} = 3312, 2924, 1679 (CONHCH₃), 1611, 1510, 1428, 1398, 1388, 1296, 1241, 1176, 1110, 807, 664 cm⁻¹.

hPG-Cat (30%), 4c

Reaction conditions and purification methods were as described above, using **3c** (100 mg) to give pure **4c** (64.0 mg, 35% yield). 1 H-NMR (CDCl₃, 700 MHz): δ = 7.61–7.41 (m, 1H; triazole), 7.14–7.08 (m, 2H; Ar-H), 6.81–6.72 (m, 2H; Ar-H), 5.00–4.60 (functionalized secondary PG-groups), 4.44–4.32 (functionalized primary PG-groups), 4.28–3.15 (PG backbone), 3.87–3.80 (m, 2H; CH₂O-Ar), 3.03–3.01 (m, 1H; Bn-H), 3.76–3.67 (br s, 1H; NH<u>CH</u>CON[CH₃]), 2.94–2.89 (m, 1H; Bn-H), 2.76–2.63 (m, 5H; N-Me, triazol-CH₂-), 1.84–1.70 (m, 4H; [CH₂]₂), 1.27 (s, 3H; Me), 1.15 ppm (s, 3H; Me); 13 C-NMR (CDCl₃, 175 MHz): δ = 173.6 (C=O), 157.9 (C-Ar), 147.6 (C₅-triazole), 130.6 (C-Ar), 129.0–128.9 (C-Ar), 122.9–122.6 (C₄-Triazole), 114.6 (C-Ar),

75.6 (NC[CH₃])₂N), 72.9–68.6 (PG backbone), 67.5 (CH₂OAr), 59.3, 36.2, 28.8, 27.2, 25.9, 25.2 (2xMe), 24.2 ppm; IR: \tilde{v} = 3357, 2869, 1675 (CONHCH₃), 1611, 1431, 1400, 1242, 1177, 1077, 808, 664 cm⁻¹.

Synthesis of compound 6

[G1]-N₃ was synthesized according to the earlier reported methods.⁶

Synthesis of compound 7

To a homogeneous solution of alkyne **5** (100 mg, 0.32 mmol, 1.0 equiv) and $[G_1]$ -N₃ **6** (120 mg, 0.35 mmol, 1.1 equiv) in a THF/H₂O mixture (3:1 v/v; 4 mL), DIPEA (4.00 mg, 0.032 mmol, 0.1 equiv) was added. Stock solutions (100 mg/mL in H₂O) of sodium ascorbate (13.0 mg, 0.064 mmol, 0.2 equiv) and CuSO₄·5H₂O (8.00 mg, 0.032 mmol, 0.1 equiv) were added simultaneously to the reaction mixture which was further stirred at 25 °C for 12 h. After completion of the reaction, the resulting residue was diluted with H₂O and

extracted with CH_2CI_2 (3 × 10 mL). The combined organic layers were washed consecutively with sat. aq EDTA solution (2 × 10 mL) and H_2O (3 × 10 mL), dried over anhyd. Na_2SO_4 , and concentrated under reduced pressure. The resulting crude product was purified by column chromatography on silica gel ($CH_2CI_2/MeOH\ 20:1$) to give pure **7** as a mixture of diastereoisomers (150 mg, 70% yield).

¹H-NMR (CD₃OD, 500 MHz): δ = 7.88–7.79 (m, 1H; triazole), 7.17–7.12 (m, 2H; Ar-H), 6.86–6.82 (m, 2H; Ar-H), 4.96–4.93 (m, 1H), 4.21–4.13 (m, 2H), 4.12–4.02 (m, 1H), 3.98–3.88 (m, 7H), 3.74 (dd, J = 7.8, 4.1 Hz, 1H), 3.64–3.58 (m, 2H), 3.54–3.43 (m, 4H), 3.03 (dd, J = 14.3, 4.2 Hz, 1H; Bn-H), 2.85 (dd, J = 14.3, 7.3 Hz, 1H; Bn-H), 2.78 (d, J = 7.0 Hz, 2H; triazole-CH₂), 2.75 (s, 3H; N-CH₃), 1.88–1.75 (m, 4H; -CH₂-), 1.36 (s, 3H; OC(CH₃)₂), 1.31–1.29 (m, 6H; OC(CH₃)₂), 1.23 (s, 3H; Me), 1.13 ppm (s, 3H; Me); ¹³C-NMR (CD₃OD, 125 MHz): δ = 174.2, 158.2, 147.2, 130.2, 129.2, 121.9, 114.3, 109.2 (2C), 76.1, 74.7 (2C), 71.9, 71.6, 70.1, 70.0, 69.9, 67.3, 66.0, 59.6, 35.8, 28.5, 25.8, 25.7, 25.6, 24.7, 24.3 (2C), 24.2, 23.5 ppm; IR: \tilde{v} = 2982, 2932, 2870, 1685 (CONHCH₃), 1611, 1581, 1550, 1510, 1473, 1455, 1427, 1397, 1380, 1369, 1241, 1177, 1145, 1111, 1078, 953, 838, 731 cm⁻¹; HRMS (ESI) calcd for C₃₄H₄₅N₅O₈+H⁺: 660.3967; found 660.3970 [M+H]⁺, 682.3748 [M+Na]⁺.

Synthesis of compound 8⁶

Ion exchange resin Dowex 50W (500 mg) was added to **7** (100 mg, 0.15 mmol) dissolved in MeOH (4 mL), and the mixture heated to reflux for 12 h. After cooling, Dowex 50W was filtered off and washed with a 6% solution of NH₃ in MeOH. The filtrate was concentrated under reduced pressure to yield **8** as a mixture of diastereoisomers (80.0 mg, 95% yield).

¹H-NMR (CD₃OD, 700 MHz): δ = 7.93–7.81 (m, 1H; triazole), 7.19–7.14 (m, 2H; Ar-H), 6.87 (dd, J = 8.8, 2.6 Hz, 2H; Ar-H), 5.00–4.94 (m, 1H), 4.66–4.48 (m, 1H), 4.04–3.88 (m, 4H), 3.82–3.42 (m, 12H), 3.05 (dd, J = 14.4, 4.2 Hz, 1H; Bn-H), 2.88 (dd, J = 14.4, 7.2 Hz, 1H; Bn-H), 2.77 (m, 5H), 1.95–1.77 (m, 4H), 1.29 (s, 3H; Me), 1.23 ppm (s, 3H; Me); ¹³C-NMR (CD₃OD, 125 MHz): δ = 174.1, 158.1, 158.1, 147.4, 147.2, 130.2, 130.2, 129.1, 123.4, 123.3, 121.9, 121.9, 121.9, 115.0, 114.3, 77.7 (2C), 77.6 (2C), 76.1, 72.6 (2C), 72.4, 72.3, 71.3 (2C), 71.0 (2C), 70.8 (2C), 70.7, 70.0 (2C), 69.9 (2C), 67.2 (2C), 62.9 (3C), 62.8 (2C), 60.9 (3C), 60.1, 59.5, 51.4, 50.7, 50.6, 35.8, 35.6, 31.4, 28.7, 28.5, 28.4 (2C), 25.7, 25.6, 24.7, 24.6 (2C), 24.2, 23.5, 22.3, 13.0 ppm; IR: \tilde{v} = 3339 (OH), 2928, 2870, 1736, 1657 (CO-NH-CH₃), 1611, 1580, 1549, 1510, 1444, 1404, 1298, 1241, 1177, 1111, 1024, 953, 820, 659 cm⁻¹; HRMS (ESI) calcd for C₂₈H₄₅N₅O₈+H⁺: 580.3341; found: 580.3404 [M+H]⁺, 602.318 [M+Na]⁺.

General procedure for the synthesis of 16⁷

5-Benzyl-2,2,3-trimethylimidazolidin-4-one (16). Reaction conditions and work-up were as described above (Section 2 Supporting Information File 1, page S3), using (*S*)-phenylalanine methyl ester hydrochloride (1.08 g, 5.03 mmol, 1.0 equiv). The so-obtained crude product was purified by column chromatography on silica gel (EtOAc) to give pure **16** (790 mg, 72%).

¹H-NMR (CDCl₃, 500 MHz): δ = 7.24–7.14 (m, 5H), 3.72 (dd, J = 6.8, 4.5 Hz, 1H), 3.07 (dd, J = 14.2, 4.5 Hz, 1H), 2.94 (dd, J = 14.2, 6.8 Hz, 1H), 2.68 (s, 1H), 1.19 (s, 3H), 1.09 ppm (s, 3H); ¹³C-NMR (CDCl₃, 125 MHz): δ = 173.4, 137.2, 129.5, 128.6, 126.8, 75.5, 59.3, 37.4, 27.3, 25.4, 25.2 ppm.

Synthesis of trans-p-methoxy-cinnamaldehyde (14c)⁸

trans-p-Methoxy-cinnamaldehyde (14c). KO*t*-Bu (824 mg, 7.34 mmol, 2.0 equiv) was added to a suspension of (1,3-dioxan-2-ylmethyl)triphenylphosphonium bromide (3.47 g, 8.08 mmol, 2.2 equiv) in anhyd. THF (30 mL) at 0 °C and the mixture was stirred for 30 min at this temp. A solution of *p*-anisaldehyde (500 mg, 3.67 mmol, 1.0 equiv) in anhyd. THF (7 mL) was then slowly added, and the mixture was stirred for

1 h at 25 °C and then heated at reflux for an additional 24 h. Then, the reaction mixture was quenched by the addition of aq oxalic acid (8 g in 100 mL of H_2O) and stirred at 25 °C for an additional 16 h. Afterwards, the mixture was extracted with Et_2O (2 × 50 mL), the combined organic layers were washed consecutively with sat. aq NaHCO₃ (80 mL) and H_2O (80 mL), dried over anhyd. Na₂SO₄ and concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel (pentane/EtOAc 7:1) afforded pure *trans-p*-methoxy-cinnamaldehyde (**14c**) as a yellow solid (595 mg, 83%).

¹H-NMR (CDCl₃, 400 MHz): δ = 9.62 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 15.8 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 6.58 (dd, J = 15.8, 7.8 Hz, 1H), 3.83 ppm (s, 3H); ¹³C-NMR (CDCl₃, 175 MHz): δ = 193.7, 162.2, 152.7, 130.4, 126.8, 126.5, 114.6, 55.5 ppm.

3. General procedure for the Friedel-Crafts alkylations

A solution of the catalyst **4a–c** or **8** or **16** (**x** mol %) in the **solvent** indicated was treated with aq TFA (5 M; **x** mol %). The mixture was stirred at room temp. for 10 minutes, then the aldehyde **12** or **14a–e** (0.25 mmol, 1.0 equiv) was added at the desired temperature **7**. After 5 minutes of stirring, *N*-methylpyrrole (**11**, 111 μL, 1.25 mmol, 5.0 equiv) was added and the reaction was stirred at the same temperature **7**. Et₂O (3 mL) was added to the mixture and the catalyst was removed by filtration, washed several time with Et₂O, then recovered with CH₂Cl₂ and dried in vacuo for future use. The organic phase was concentrated under reduced pressure and the so-obtained residue was purified by silica gel chromatography (pentane/Et₂O) to afford the corresponding products.

4. Friedel–Crafts alkylations products Synthesis of compound 13

(S)-3-(1-Methyl-1*H*-pyrrol-2-yl)-3-phenylpropanal (13). Reaction conditions and work-up were as described above, using commercially available *trans*-cinnamaldehyde (12, 31.5 μL) and *N*-methylpyrrole (11). Purification by column chromatography on silica gel (pentane/Et₂O 7:1) gave 13 (46.2 mg, 87%). H-NMR (CDCl₃, 400 MHz): δ = 9.74 (t, J= 0.8 Hz, 1H), 7.30–7.13 (m, 5H), 6.55 (t, J= 2.0 Hz, 1H), 6.12–6.09 (m, 2H), 4.56 (t, J= 7.5 Hz, 1H), 3.31 (s, 3H), 3.15 (ddd, J= 17.2, 8.4, 2.0 Hz, 1H), 2.95 ppm (ddd, J= 17.2, 6.8, 1.6 Hz, 1H); C-NMR (CDCl₃, 175 MHz): δ = 200.9, 142.5, 133.1, 128.8, 127.7, 126.8, 122.5, 106.7, 106.6, 50.1, 37.7, 33.9 ppm. The enantiomeric excess was determined by chiral GC on a Hydrodex- β -TBDAc column (120 °C isotherm, 1.1 mL/min He): S isomer t_r = 185.45 min and R isomer t_r = 191.51 min. The absolute configuration was determined by reduction to the corresponding alcohol and comparison of the optical specific rotation with reported data.

Synthesis of compound 15a

(R)-3-(1-Methyl-1H-pyrrol-2-yl)butanal (15a). Reaction conditions and work-up were as described above, using commercially available predominantly trans-

crotonaldehyde (**14a**, 20.4 μ L) and *N*-methylpyrrole (**11**). Purification by column chromatography on silica gel (pentane/Et₂O 9:1) gave **15a** (32.5 mg, 86%). ¹H-NMR (CDCl₃, 400 MHz): δ = 9.74 (t, J = 1.7 Hz, 1H), 6.53 (t, J = 2.2 Hz, 1H), 6.05 (t, J = 3.2 Hz, 1H), 5.88 (dd, J = 3.6, 2.0 Hz, 1H), 3.59 (s, 3H), 3.38 (q, J = 7.2 Hz, 1H), 2.79 (ddd, J = 17.2, 6.2, 1.5 Hz, 1H), 2.64 (ddd, J = 17.2, 7.9, 1.8 Hz, 1H), 1.27 ppm (d, J = 6.9 Hz, 3H); ¹³C-NMR (CDCl₃, 175 MHz): δ = 201.7, 136.6, 121.6, 106.8, 104.2, 50.6, 33.6, 25.4, 21.4 ppm. The enantiomeric excess was determined by chiral GC on a Hydrodex- β -TBDAc column (130 °C isotherm, 1.1 mL/min He): S isomer t_r = 11.00 min and R isomer t_r = 11.48 min. The absolute configuration was determined by reduction to the corresponding alcohol and comparison of the optical specific rotation with reported data.⁹

Synthesis of compound 15b

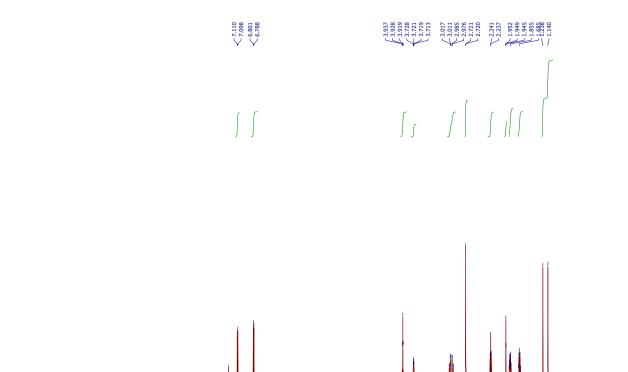
(*R*)-3-(1-Methyl-1*H*-pyrrol-2-yl)hexanal (15b). ¹⁰ Reaction conditions and work-up were as described above, using commercially available *trans*-2-hexenal (14b, 29.1 μL) and *N*-methylpyrrole (11). Purification by column chromatography on silica gel (pentane/Et₂O 8:1) gave 15b (37.2 mg, 83%). ¹H-NMR (CDCl₃, 400 MHz): δ = 9.69 (t, J= 1.6 Hz, 1H), 6.50 (dd, J= 2.4, 1.6 Hz, 1H), 6.06 (t, J= 3.2 Hz, 1H), 5.87 (dd, J= 3.2, 1.6 Hz, 1H), 3.58 (s, 3H), 3.27 (q, J= 6.8 Hz, 1H), 2.73 (ddd, J= 17.2, 7.6, 1.6 Hz, 1H), 2.69 (ddd, J= 17.2, 6.8, 2.0 Hz, 1H), 1.61–1.55 (m, 2H), 1.30–1.22 (m, 2H), 0.87 ppm (t, J= 7.3 Hz, 3H); ¹³C-NMR (CDCl₃, 175 MHz): δ = 202.1, 136.6, 121.2, 106.8, 104.8, 49.6, 38.6, 33.8, 30.5, 20.2, 14.0 ppm. The enantiomeric excess was

determined by chiral GC on a Hydrodex- β -TBDAc column (90 °C isotherm, 1.1 mL/min He): R isomer t_r = 111.97 min and S isomer t_r = 114.95 min. The absolute configuration was determined by reduction to the corresponding alcohol and comparison of the optical specific rotation with reported data.¹⁰

Synthesis of compound 15c

(S)-3-(4-Methoxyphenyl)-3-(1-methyl-1*H*-pyrrol-2-yl)propanal (15c). ¹⁰ Reaction conditions and work-up were as described above, using *trans-p*-methoxy-cinnamaldehyde (14c, 40.5 mg) and *N*-methylpyrrole (11). Purification by column chromatography on silica gel (pentane/Et₂O 6:1) gave 15c (48.6 mg, 80%). ¹H-NMR (CDCl₃, 700 MHz): δ = 9.76 (t, J = 1.8 Hz, 1H), 7.07 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.57 (t, J = 2.1 Hz, 1H), 6.12 (dd, J = 3.5, 2.8 Hz, 1H), 6.09–6.08 (m, 1H), 4.53 (t, J = 7.5 Hz, 1H), 3.79 (s, 3H), 3.33 (s, 3H), 3.14 (ddd, J = 17.1, 7.9, 2.1 Hz, 1H), 2.95 ppm (ddd, J = 17.1, 7.9, 2.1 Hz, 1H); ¹³C-NMR (CDCl₃, 175 MHz): δ = 201.3, 158.3, 134.4, 133.5, 128.7, 122.5, 114.1, 106.5, 106.4, 55.3, 50.2, 36.8, 34.0 ppm. The enantiomeric excess was determined by chiral GC on a Lipodex E column (150 °C isotherm, 1.1 mL/min He): R isomer t_r = 116.11 min and S isomer t_r = 120.75 min.

Synthesis of compound 15d


(*S*)-3-(4-Chlorophenyl)-3-(1-methyl-1*H*-pyrrol-2-yl)propanal (15d). ¹⁰ Reaction conditions and work-up were as described above, using commercially available *trans-p*-chloro-cinnamaldehyde (14d, 43.4 mg) and *N*-methylpyrrole (11). Purification by column chromatography on silica gel (pentane/Et₂O 4:1) gave 15d (53.4 mg, 86%). ¹H-NMR (CDCl₃, 700 MHz): δ = 9.73 (br t, 1H), 7.28–7.26 (m, 2H), 7.11–7.10 (m, 2H), 6.58 (br t, 1H), 6.13–6.10 (m, 2H), 4.57 (t, *J* = 7.5 Hz, 1H), 3.33 (s, 3H), 3.17 (ddd, *J* = 17.4, 7.9, 1.5 Hz, 1H), 2.95 ppm (ddd, *J* = 17.3, 7.1, 1.3 Hz, 1H); ¹³C-NMR (CDCl₃, 175 MHz): δ = 200.3, 141.1, 132.7, 132.5, 129.1, 129.0 122.7, 106.7, 50.0, 36.9, 33.8 ppm. The enantiomeric excess was determined by chiral GC on a Hydrodex-β-TBDAc column (160 °C isotherm, 1.1 mL/min He): *S* isomer t_r = 74.69 min and *R* isomer t_r = 79.00 min. The absolute configuration was determined by comparison of the optical specific rotation of the aldehyde with reported data. ¹

Synthesis of compound 15e

(*S*)-3-(1-Methyl-1*H*-pyrrol-2-yl)-3-(4-nitrophenyl)propanal, (15e). ¹⁰ Reaction conditions and work-up were as described above, using commercially available *trans-p*-nitro-cinnamaldehyde (14e, 44.3 mg) and *N*-methylpyrrole (11). Purification by column chromatography on silica gel (pentane/Et₂O 5:1) gave 15e (64.2 mg, 99%). ¹H-NMR (CDCl₃, 400 MHz): δ = 9.75 (br t, 1H), 8.13 (d, J= 8.7 Hz, 2H), 7.33 (d, J= 8.7 Hz, 2H), 6.57 (t, J= 2.2 Hz, 1H), 6.12 (d, J= 2.3 Hz, 2H), 4.69 (t, J= 7.3 Hz, 1H), 3.31 (s, 3H), 3.24 (ddd, J= 17.7, 7.5, 1.3 Hz, 1H), 3.01 ppm (ddd, J= 17.3, 6.9, 0.8 Hz, 1H); ¹³C-NMR (CDCl₃, 125 MHz): δ = 199.6, 150.3, 146.9, 131.9, 128.9, 124.2, 123.1, 107.1, 48.8, 37.0, 34.0 ppm. The enantiomeric excess was determined by chiral GC on a Hydrodex-β-TBDAc column (140 °C to 200 °C, gradient 1 °C/min, 1.1 mL/min He): *S* isomer t_r = 113.36 min and *R* isomer t_r = 116.67 min. The absolute configuration was determined by comparison of the optical specific rotation of the aldehyde with reported data. ¹⁰

5. Spectra of compounds ¹H and ¹³C-NMR of compound 5

11.0 10.5 10.0

6.0 5.5 5.0 f1 (ppm)

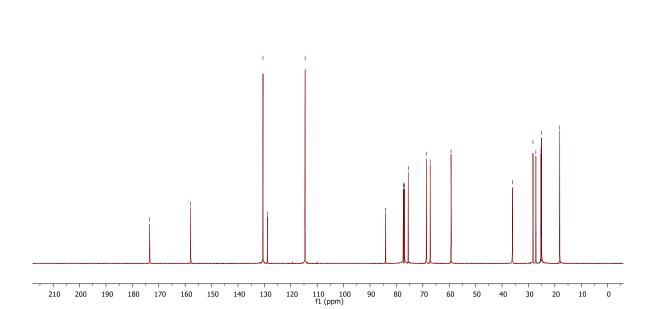
- 114.6

2.02H 1.00H

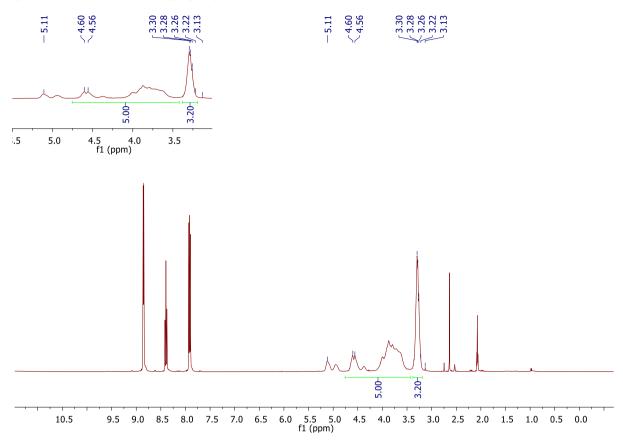
4.0

2.014

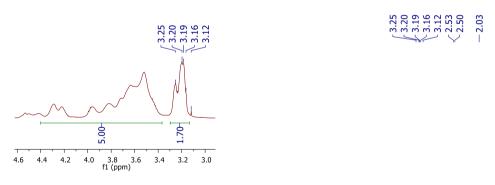
2.01H

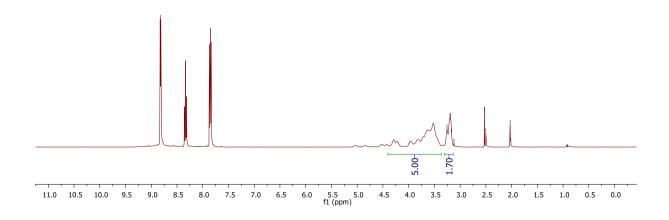

8.0

- 157.9

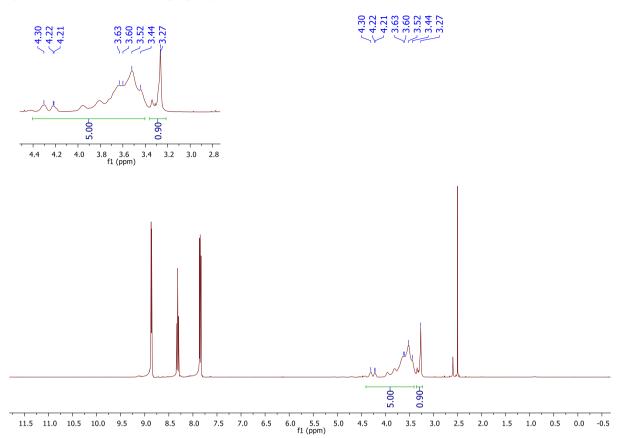

-173.4

7.0

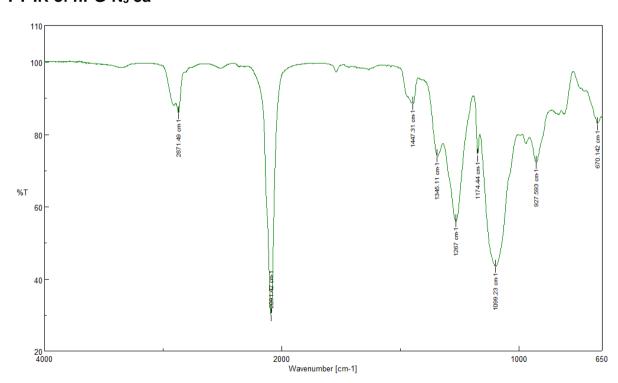

— 130.5 — 128.8

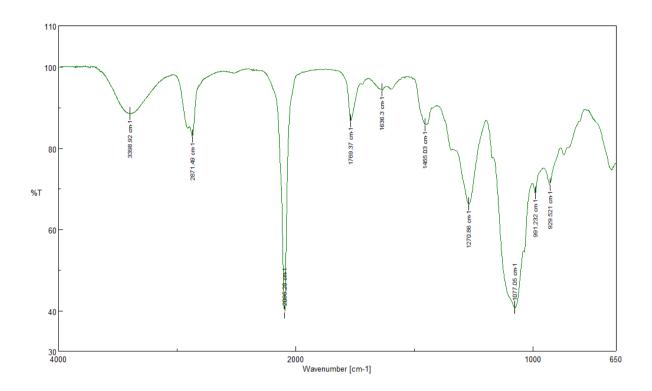


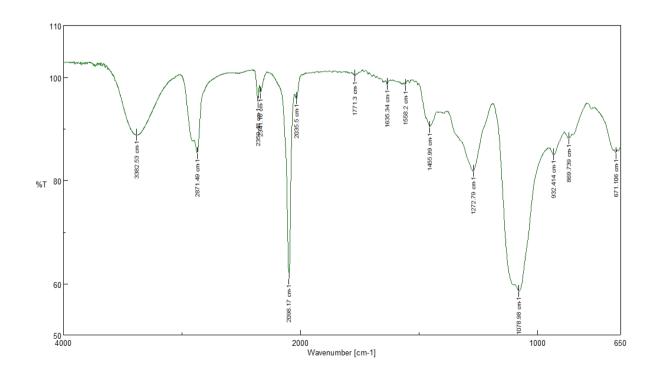
Crude ¹H-NMR of hPG-OMs 2a

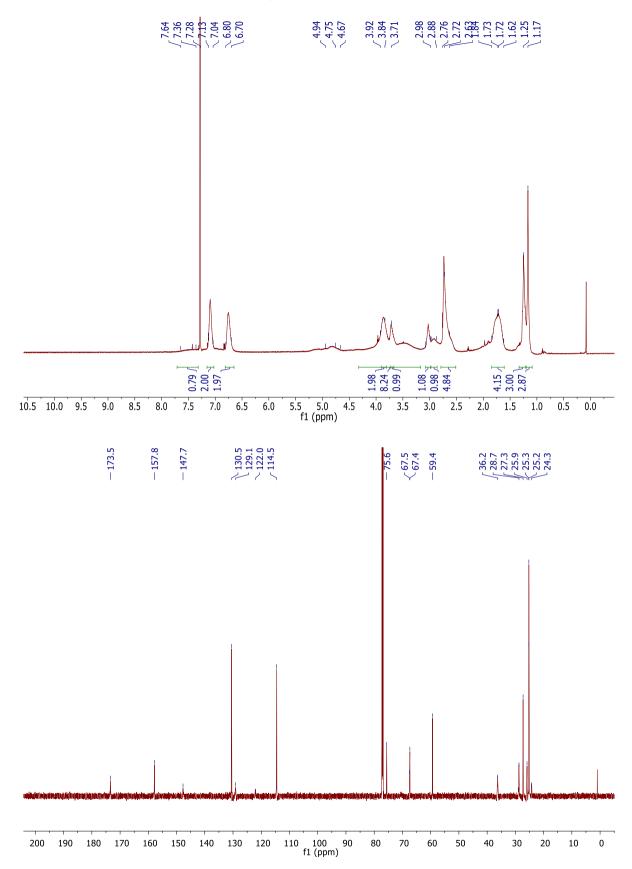


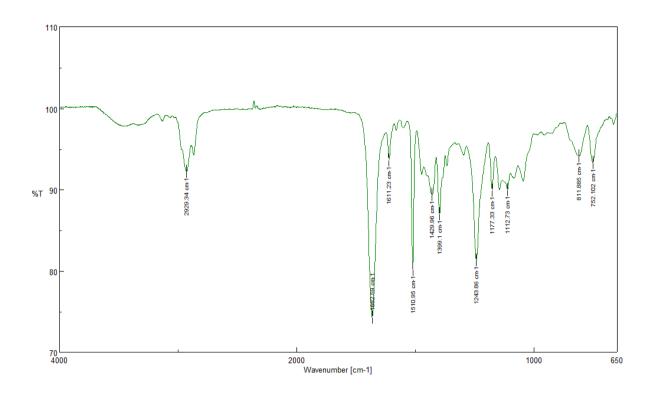
Crude ¹H-NMR of hPG-OMs 2b



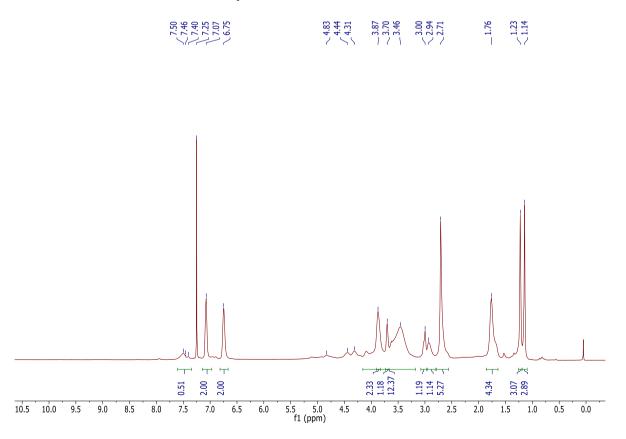

Crude ¹H-NMR of hPG-OMs 2c

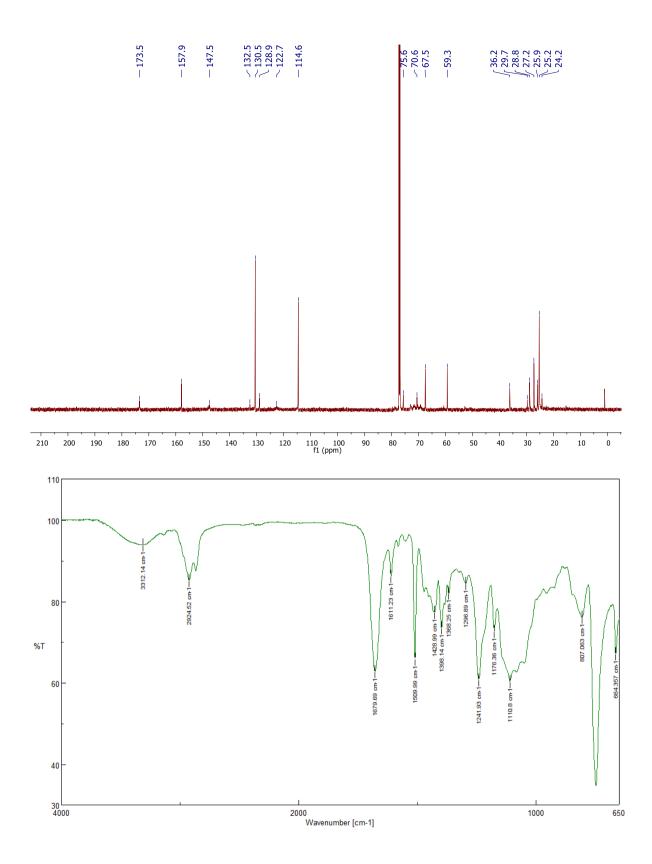

FT-IR of hPG-N₃ 3a

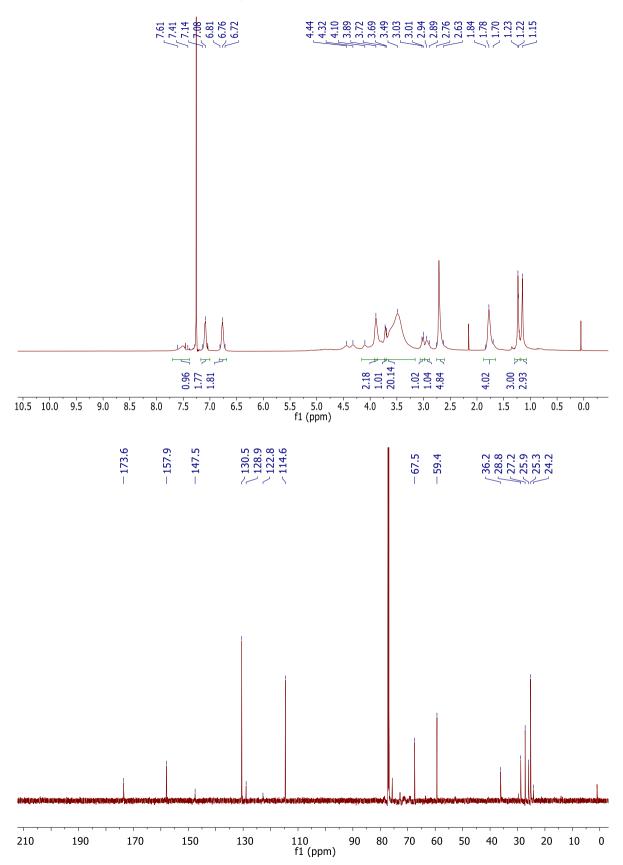

FT-IR of hPG-N₃ 3b

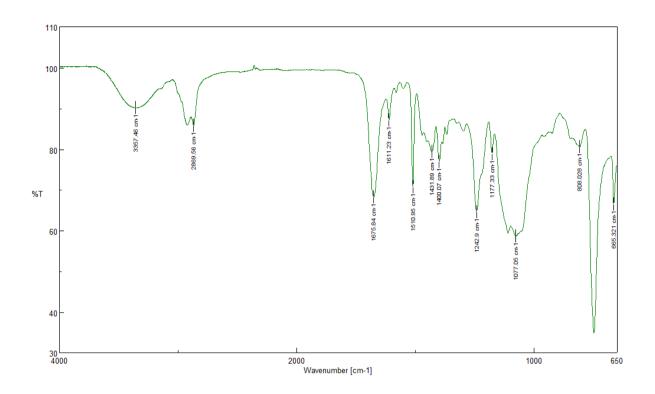


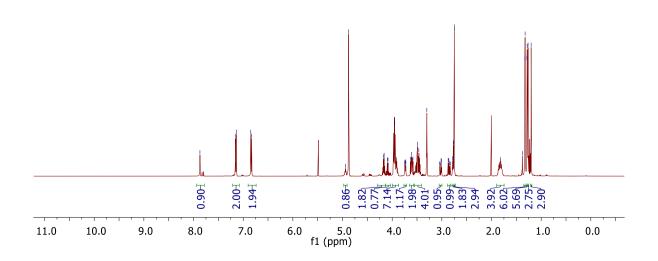
FT-IR of hPG-N₃ 3c

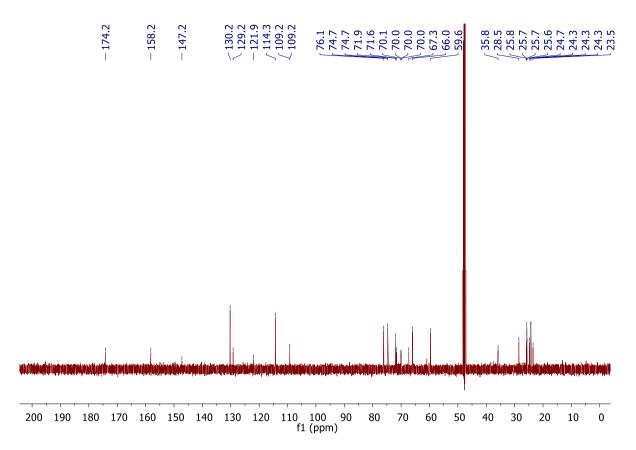



¹H, ¹³C-NMR and FT-IR of compound 4a

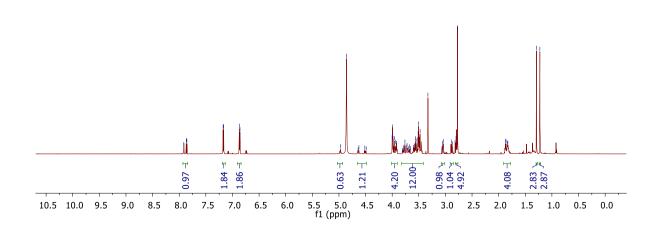


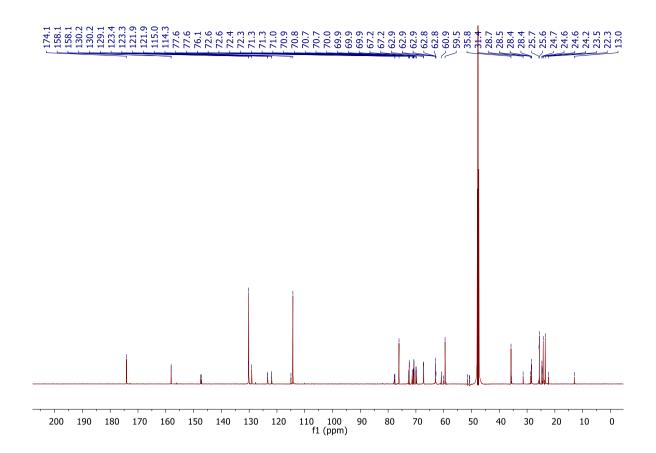

¹H, ¹³C-NMR and FT-IR of compound 4b

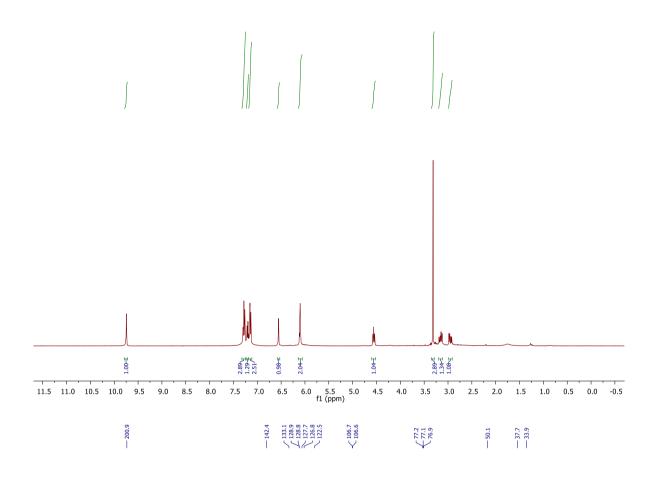

¹H, ¹³C-NMR and FT-IR of compound 4c

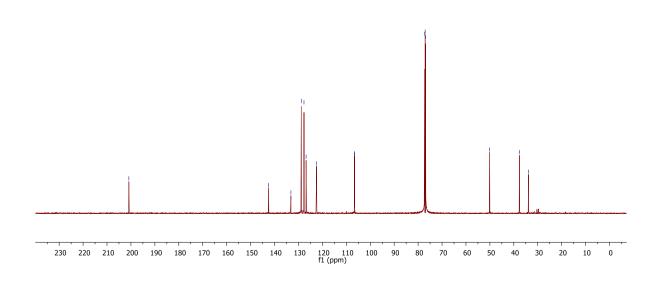


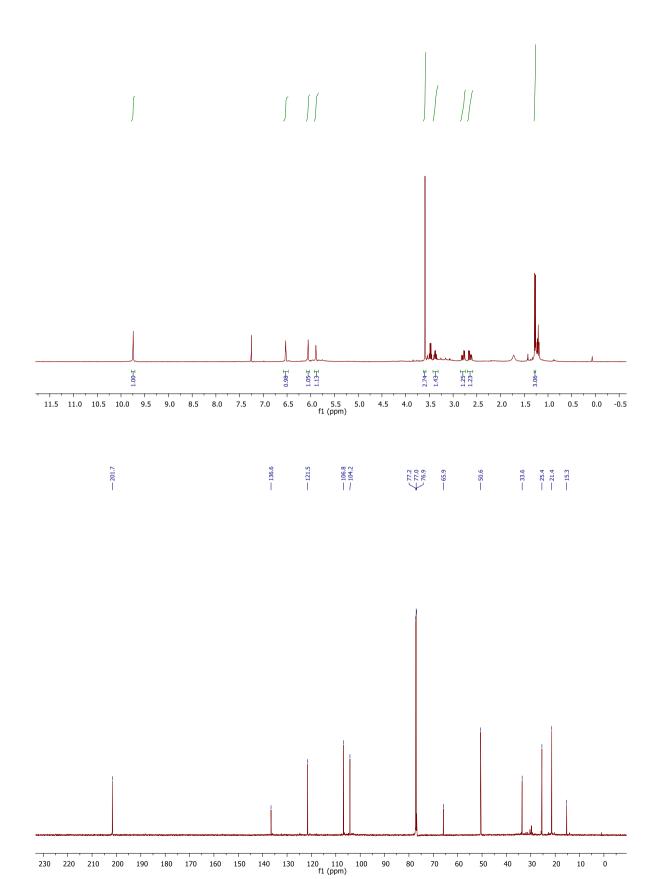
¹H and ¹³C-NMR of compound 7



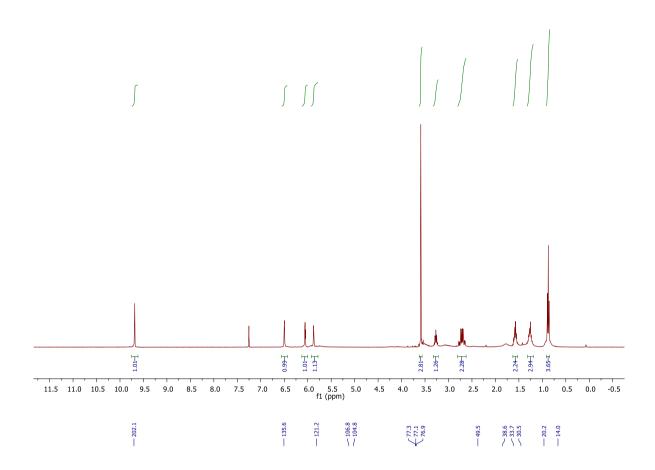


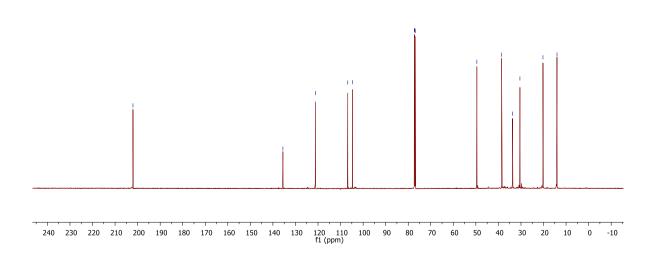

¹H and ¹³C-NMR of compound 8



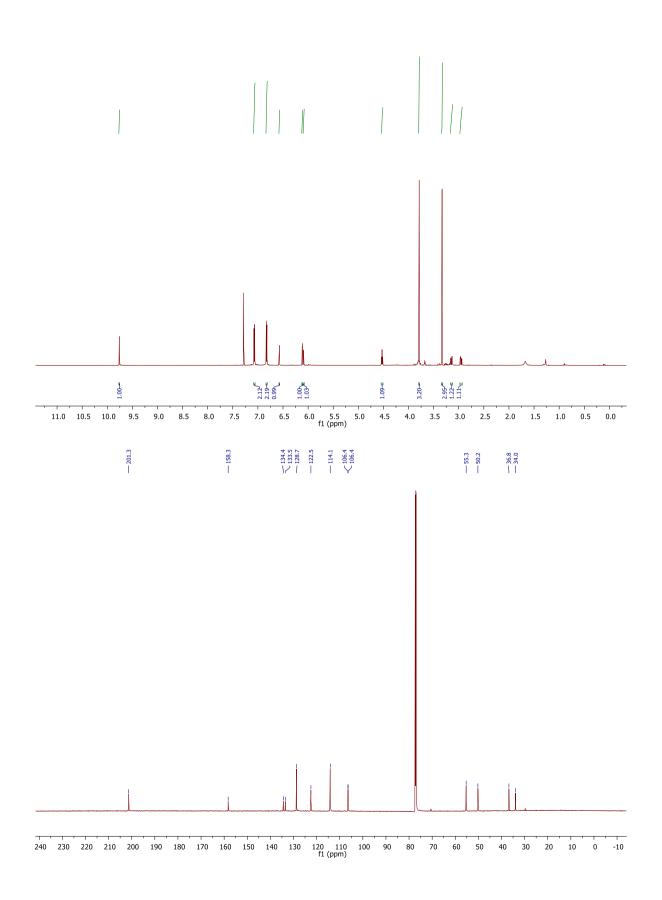


Friedel–Crafts alkylations products ¹H and ¹³C-NMR of compound 13

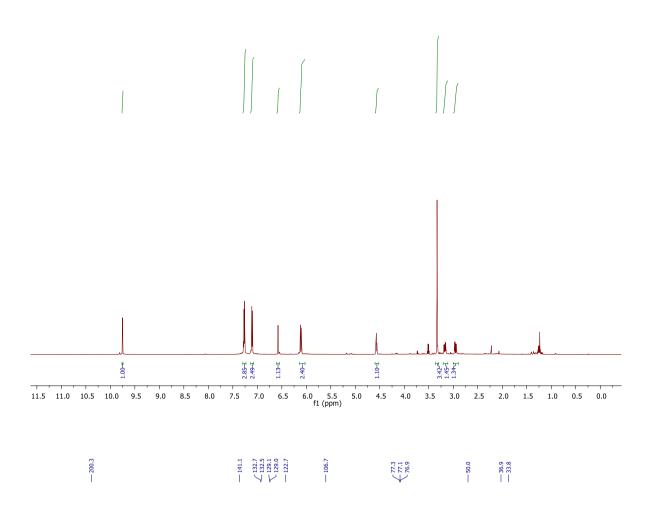


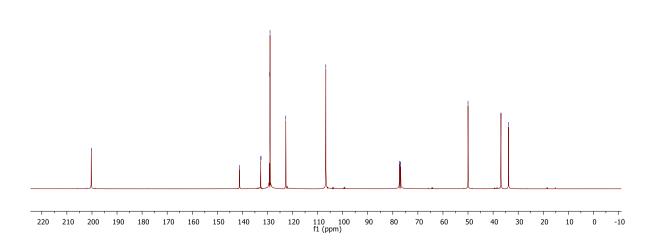


¹H and ¹³C-NMR of compound 15a

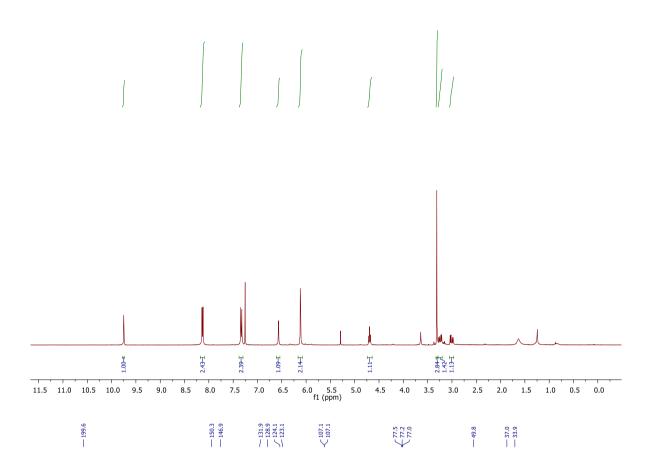


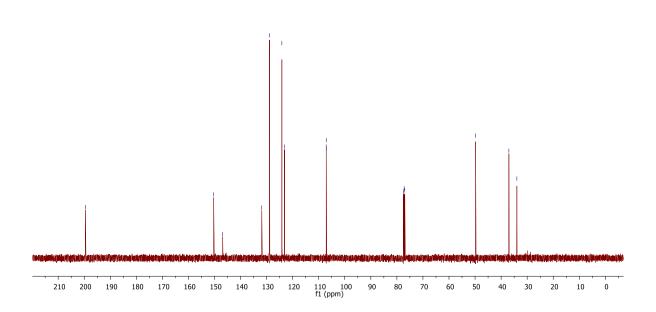
¹H and ¹³C-NMR of compound 15b





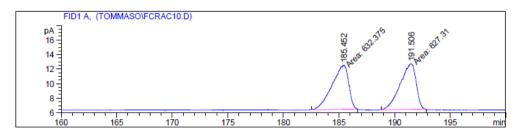
¹H and ¹³C-NMR of compound 15c




¹H and ¹³C-NMR of compound 15d

¹H and ¹³C-NMR of compound 15e

6. GC reports

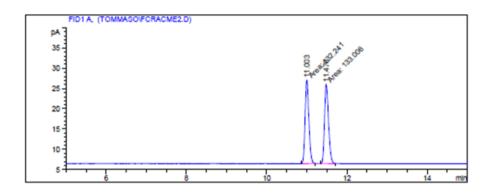

Racemic 13.

: Hydrodex-B-TBDAc 120 °C 200 min 1.1 mL/min He

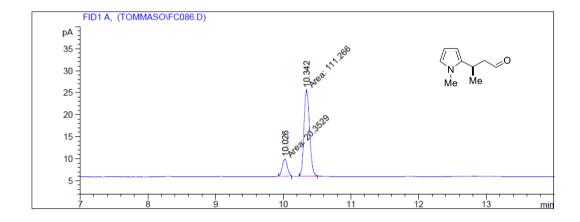
50:1 split, 5 µL injection


racemic

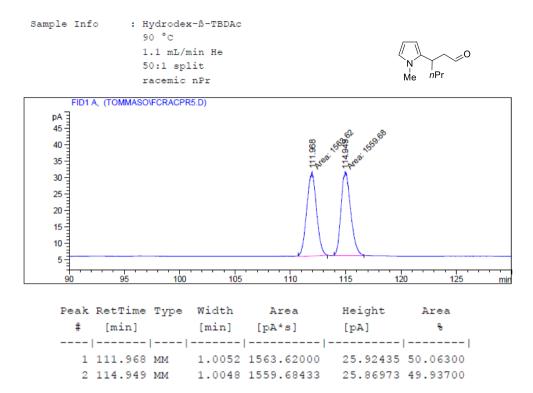
Peak RetTime Ty	pe Width	Area	Height	Area
# [min]	[min]	[pA*s]	[Aq]	્ર
1 185.456 MM	1.7632	656.13544	6.20205	50.27559
2 191.506 MM	1.6850	648.94202	6.41878	49.72441


Enantioenriched 13 (optimized conditions: Table 4, entry 4).

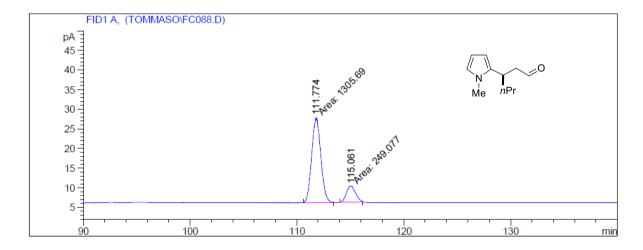
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[Aq]	용
1	186.368	MM	1.9155	1037.09875	9.02356	84.80318
2	191.076	MM	1.4762	185.84918	2.09825	15.19682


Racemic 15a.

50:1 split racemic from crotonaldehyde

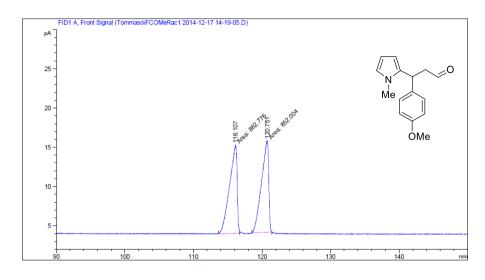

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	11.004	MM	0.1064	131.61288	20.62437	50.38513
2	11.475	MM	0.1107	129.60085	19.50818	49.61487

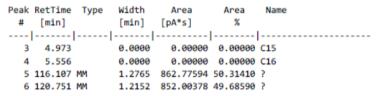
Enantioenriched 15a.

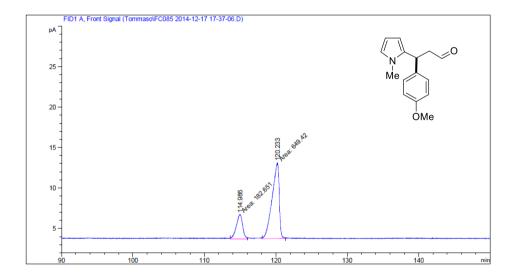


Peak :	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[Aq]	용
		-		-		
1	10.026	MM	0.0861	20.35293	3.93884	15.46349
2	10.342	MM	0.0946	111.26637	19.60088	84.53651

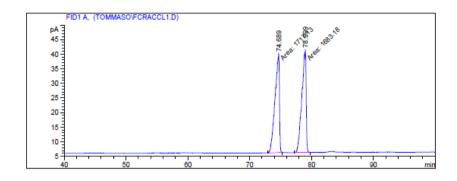
Racemic 15b.



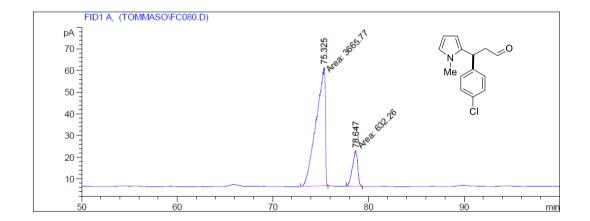

Enantioenriched 15b.


Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[Aq]	용
		-				
1	111.774	MM	0.9970	1305.69275	21.82700	83.97980
2	115.061	MM	0.9835	249.07718	4.22106	16.02020

Racemic 15c.

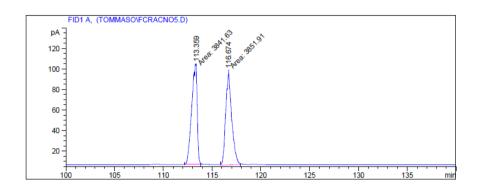


Enantioenriched 15c.

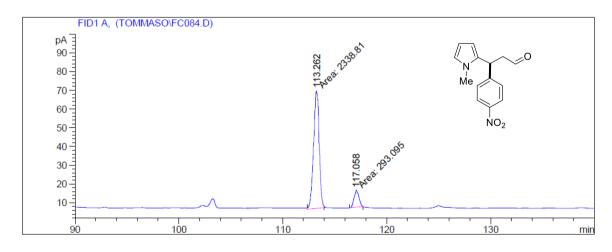


Racemic 15d.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[Aq]	96
1	74.689	MM	0.8409	1714.01038	33.97167	50.14686
2	78.999	MM	0.7999	1703.97095	35.50229	49.85314


Enantioenriched 15d.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[Aq]	%
1	75.325	MM	1.1146	3665.77295	54.81347	85.28955
2	78.647	MM	0.6337	632.25977	16.62761	14.71045


Racemic 15e.

Sample Info : Hydrodex-B-TBDAc 140 °C to 200 °C, 1 °C/min 1.1 mL/min He 50:1 split racemic

Ρ	eak	RetTime	Type	Width	Area	Height	Area
	#	[min]		[min]	[pA*s]	[Aq]	양
-							
	1	113.359	MM	0.6509	3841.62915	98.36903	49.93319
	2	116.674	MM	0.6930	3851.90869	92.63337	50.06681

Enantioenriched 15e.

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[pA*s]	[Aq]	용	
1	0.165	BV	0.1011	7.02994e-1	9.20222e-2	0.02670	
2	113.262	MM	0.6214	2338.81006	62.72633	88.84003	
3	117.058	MM	0.5343	293.09525	9.14316	11.13326	

7. References

 Zhang, Y.; Zhao, L.; Lee, S. S.; Ying, J. Y. Adv. Synth. Catal. 2006, 348, 2027– 2032.

doi: 10.1002/adsc.200600240

Sunder, A.; Mülhaupt, R.; Haag, R.; Frey, H. Adv. Mater. 2000, 12, 235–239.
 doi: 10.1002/(SICI)1521-4095(200002)12:3<235::AID-ADMA235>3.0.CO;2-Y

Roller, S.; Zhou, H; Haag, R. Molec. Divers. 2005, 9, 305–316.
 doi: 10.1007/s11030-005-8117-y

Paez, J. I.; Brunetti, V.; Strumia, M. C.; Becherer, T.; Solomun, T.; Miguel, J.;
 Hermanns, C. F.; Calderón, M.; Haag, R. J. Mater. Chem. 2012, 22, 19488–19497.

doi: 10.1039/c2jm32486e

Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; K. B. Sharpless, *Angew. Chem. Int. Ed.* 2002, *41*, 2596–2599.

doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

Wyszogrodzka, M.; Haag, R. Chem. Eur. J. 2008, 14, 9202–9214.
 doi: 10.1002/chem.200800892

7) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2000**, *122*, 4243–4244.

doi: 10.1021/ja000092s

8) Sonoda, Y.; Goto, M.; Tsuzuki, S.; Tamaoki, N. *J. Phys. Chem. A* **2006**, *110*, 13379–13387.

doi: 10.1021/jp064937j

Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370–4371.
 doi: 10.1021/ja015717g

10) Riente, P.; Yadav, J.; Pericàs, M. A. Org. Lett. 2012, 14, 3668-3671.

doi: 10.1021/ol301515d