Supporting Information

for

NeoPHOX - a structurally tunable ligand system for asymmetric

 catalysis

 catalysis}

Jaroslav Padevět, Marcus G. Schrems, Robin Scheil and Andreas Pfaltz*
Address: Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056
Basel, Switzerland
Email: Andreas Pfaltz - andreas.pfaltz@unibas.ch
* Corresponding author

Experimental procedures and characterization data of all compounds and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of selected molecules

1. General
 Working techniques and reagents

Synthetic procedures involving manipulation under inert atmosphere were performed in dried glassware under positive argon pressure using standard Schlenk techniques. Moisture and airsensitive compounds were handled in a glove box (MBraun Labmaster 130).

Commercially available reagents were purchased from Acros, Aldrich, Fluorochem, Strem and used without further purification. Triethylamine was distilled from calcium hydride, 2,6lutidine was distilled under reduced pressure prior to use.

Anhydrous solvents were obtained by distillation from sodium/benzophenone (diethylether, pentane, tetrahydrofuran, toluene) or purification over activated alumina columns under
nitrogen (PureSolv, Innovative Technology Inc.) or obtained from Aldrich or Fluka in septum-sealed bottles under inert atmosphere and over molecular sieves. Oxygen-free solvents were prepared by freeze-pump-thaw degassing.

Column chromatography was performed on silica gel $60(0.040-0.063 \mathrm{~mm})$ or neutral alumina obtained from Aldrich or Merck. Reagents were of technical grade and were distilled prior to use.

Analytical methods

NMR Spectroscopy: NMR spectra were recorded either on a Bruker Avance $400(400 \mathrm{MHz}$, BBO probe head) or a Bruker Avance DRX 500 (500 MHz , BBO or BBI probe heads) NMR spectrometer. Chemical shifts δ are given in ppm and they are referenced for CDCl_{3} to $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR $)$ and $77,16 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR) for $\mathrm{C}_{6} \mathrm{D}_{6}$ to $7.16 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR) and $128.1 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR) and for THF- d_{8} to $3.58 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR) or to internal standard TMS $0 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR spectra were calibrated to an external standard of phosphoric acid (85\%) to $0 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR spectra were calibrated to the chemical shift of the most downfield isotopomer of external CFCl_{3} to $0 \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR spectra were calibrated to 0 ppm with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as an external standard. The assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals was accomplished with help of DEPT135 NMR experiments or by using 2D NMR experiments (COSY, HMQC, HSQC, HMBC). Multiplets were assigned as s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet) and br s (broad singlet).

Mass spectrometry: EI (Electron Impact) and FAB (Fast atom bombardment) mass spectra were recorded by Dr. Heinz Nadig (Department of Chemistry, University of Basel). Electron Impact ionization spectra were recorded on a VG70-250 spectrometer and Fast Atom Bombardment spectra were recorded on a Finnigan MAR312 system with 3-nitrobenzyl alcohol (NBA) as matrix. Electron spray ionization (ESI) was measured on a Varian 1200L

Triple Quad MS/MS spectrometer with the sample concentrations between 10^{-4} and $10^{-5} \mathrm{M}$ (40 psi nebulizing gas, 4.9 kV spray voltage, 18 psi drying gas at $200^{\circ} \mathrm{C}, 38-75 \mathrm{~V}$ capillary voltage, $1300-1500 \mathrm{~V}$ detector voltage). MALDI (Matrix-assisted laser desorption ionization) spectra were recorded on a Voyager-DE-Pro or Bruker Microflex system with p-nitroaniline or 2,5-dihydroxybenzoic acid as matrices. The signals are given in mass-to-charge ratios (m / z) with the relative intensities in brackets.

Elemental analysis: Elemental analyses were measured by Mr. W. Kirsch (Department of Chemistry, University of Basel) on a Lenco CHN-900 system.

Melting points: Melting points were determined on a Büchi 535 melting point apparatus and are uncorrected.

Optical rotations: Optical rotations were measured on a Perkin Elmer Polarimeter 341 (l = 1 dm) at $20^{\circ} \mathrm{C}$ at 589 nm (sodium lamp). The concentration c is given in $\mathrm{g} / 100 \mathrm{~mL}$.

Infrared spectroscopy: Infrared spectra were recorded on a Perkin Elmer 1600 series FTIR spectrometer or on a Shimadzu FTIR-8400S spectrometer (Golden Gate ATR). Liquid samples were measured as a thin layer between two sodium chloride plates and solid samples were compressed into potassium bromide pellets. The absorption bands are given in wavenumbers $\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right)$. The peak intensity is given as s (strong), m (medium), w (weak). The index br stands for broad.

Gas chromatography: Gas chromatograms were recorded on Carlo Elba HRGC Mega2 Series 800 (HRGS Mega 2) instruments. Separations on an achiral stationary phase were performed on a Restek Rtx-1710 column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$); for separations on a chiral stationary phase β - and γ-cyclodextrin columns ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) were used.

Gas chromatography with mass spectrometric detection (GC-MS): A HP6890 gas chromatograph with HP5970A mass detector (EI) was used. Column: Macherey-Nagel OPTIMA1 Me2Si $(25 \mathrm{~m} \times 0.2 \mathrm{~mm} \times 0.35 \mu \mathrm{~m}, 20 \mathrm{psi}$, split ca. $20: 1$, carrier gas: $1 \mathrm{~mL} / \mathrm{min}$ helium). Shimadzu GC-MS-QP2010 SE; column: Rtx-5MS ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, 100 kPa , split ca. 40:1, carrier gas: $3 \mathrm{~mL} / \mathrm{min}$).

High-performance liquid chromatography (HPLC): A Shimadzu system with SCL-10A system controller, CTO-10AC column oven, LC10AD pump system, and DGU-14a degasser was used. Columns: Chiracel OD-H, OJ-H, AD-H ($4.6 \times 250 \mathrm{~mm}$; Daicel Chemical Industries).

2. Synthetic procedures and analytical data

8: (S)-3-Chloro- N-(1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)-2,2-dimethylpropanamide

The aminoalcohol $7\left(1.03 \mathrm{~g}, 4.03 \mathrm{mmol}, 1.00\right.$ equiv) was dissolved in 10 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, NEt_{3} ($0.61 \mathrm{~mL}, 4.43 \mathrm{mmol}, 1.10$ equiv) was added under stirring and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then, 3-chloropivaloyl chloride ($625 \mathrm{mg}, 4.03 \mathrm{mmol}, 1.00$ equiv) dissolved in 10 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added drop wise under stirring and the cooling bath was removed. The mixture was stirred over night at rt and the reaction quenched by the addition of 10 mL of a 1 m HCl solution. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 10 \mathrm{~mL})$. The combined organic phases were washed with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$. The aqueous phase was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed leaving a yellow solid. To the crude product were added 10 mL of ethyl acetate and 40 mL of
hexanes. The suspension was heated to reflux and additional ethyl acetate (12 mL) was added until all solids dissolved. The hot solution was filtered and the filter was rinsed with 20 mL of hot hexanes. The solution was cooled in a freezer $\left(-20^{\circ} \mathrm{C}\right)$ over night. A first batch of product was collected as colorless crystals ($830 \mathrm{mg}, 2.22 \mathrm{mmol}, 50 \%$, mp: $182-183{ }^{\circ} \mathrm{C}$). The mother liquor was concentrated and 10 mL of hexanes added to the solid. The obtained mixture was heated to reflux. When the mixture was cooled to rt again the mother liquor was decanted and the process repeated by addition of 5 mL of hexanes. The remaining white solid (418 mg , $1.12 \mathrm{mmol}, 28 \%$) was pure based on ${ }^{1} \mathrm{H}$ NMR analysis and had a mp of $164-165^{\circ} \mathrm{C}$. The combined yield was 1.25 g ($3.34 \mathrm{mmol}, 83 \%$).
$\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClNO}_{2}\right],(373.92 \mathrm{~g} / \mathrm{mol})$
M.p.: $182-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.59-7.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{HC}_{\mathrm{Ar}}\right)$, 7.35-7.30 (m, $\left.2 \mathrm{H}, H \mathrm{C}_{\mathrm{Ar}}\right), 7.28-7.19\left(\mathrm{~m}, 3 \mathrm{H}, H \mathrm{C}_{\mathrm{Ar}}\right), 7.18-7.12\left(\mathrm{~m}, 1 \mathrm{H}, H \mathrm{C}_{\mathrm{Ar}}\right), 6.24(\mathrm{~d}, 1 \mathrm{H}$, $J=9.4 \mathrm{~Hz}, \mathrm{~N} H), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{NCH}), 3.61(\mathrm{dd}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}$, $\left.\mathrm{ClCH}_{2}\right), 3.34\left(\mathrm{dd}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}, J=10.7 \mathrm{~Hz} \mathrm{ClCH}_{2}\right), 2.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.92(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.95\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=0.9 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \cdot{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm}) 174.3(C=\mathrm{O}), 145.8\left(C_{\mathrm{Ar}}\right)$, $145.4\left(C_{\mathrm{Ar}}\right), 128.5\left(\mathrm{HC}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{HC}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{HC}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{HC}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{HC}_{\mathrm{Ar}}\right), 125.2$ $\left(\mathrm{HC}_{\mathrm{Ar}}\right), 82.3(\mathrm{COH}), 57.9(\mathrm{NCH}), 52.6\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 44.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6$ $\left(C \mathrm{H}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 554(10), 374\left([\mathrm{M}+\mathrm{H}]^{+}, 10\right)$, 356 (100), 238 (21), 221 (20), 190 (51), 167 (20), 105 (27), 91 (56), 72 (39), 55 (28). IR (\tilde{v} $\left.\left[\mathrm{cm}^{-1}\right]\right) 3434 \mathrm{~m}, 2964 \mathrm{~m}, 2936 \mathrm{w}, 2877 \mathrm{w}, 1631 \mathrm{~s}, 1532 \mathrm{~s}, 1497 \mathrm{w}, 1480 \mathrm{w}, 1467 \mathrm{w}, 1447 \mathrm{~m}$, 1391m, 1365m, 1339w, 1323w, 1288w, 1277w, 1239w, 1219w, 1170m, 1145w, 1127m, 1099w, 1064m, 1045w, 1036w, 949w, 918m, 889m, 743s, 727m, 694s, 664m, 642m, 626m.
$[\alpha]_{\mathrm{D}}^{20}-36.0\left(c \quad 0.95, \mathrm{CHCl}_{3}\right)$. HRMS $(+\mathrm{ESI}, m / z)$ for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClNO}_{2}+\mathrm{Na}\right]^{+}:$calc.: 396.1706; found: 396.1708 .

9: (S)-2-(1-Chloro-2-methylpropan-2-yl)-4-isopropyl-5,5-diphenyl-4,5-dihydrooxazole

Amide 8 ($650 \mathrm{mg}, 1.74 \mathrm{mmol}$) was dissolved in 10 mL of CHCl_{3}. Methanesulfonic acid was added drop wise $(0.3 \mathrm{~mL})$ and the mixture heated to reflux. A solid extractor containing 4 g of activated molecular sieves ($4 \AA$) was used to remove water. After 3 h of reflux, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and 10 mL of a saturated NaHCO_{3} solution were added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was dried under high vacuum to give 615 mg of a slightly yellow oil (99% yield, pure by ${ }^{1} \mathrm{H}$ NMR). The oil was dissolved in 5 mL of hexanes, filtered and the filter was rinsed with 10 mL of hexanes. The solvent was removed and the product was dried under high vacuum to give 584 mg ($1.64 \mathrm{mmol}, 94 \%$) of product 9 as yellow oil.
[$\left.\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}\right],(355.90 \mathrm{~g} / \mathrm{mol})$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.46-7.43\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.35-7.21(\mathrm{~m}, 8 \mathrm{H}$, $\left.H_{\text {Ar }}\right), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, \mathrm{NCH}), 3.76\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{ClCH}_{2}\right), 3.68(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=10.8 \mathrm{~Hz}, \mathrm{ClCH}_{2}\right), 1.78-1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.58\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 167.7(C=\mathrm{N}), 145.6\left(C_{\mathrm{Ar}}\right), 140.5\left(C_{\mathrm{Ar}}\right), 128.2$ $\left(\mathrm{HC}_{\mathrm{Ar}}\right), 127.7\left(2\right.$ lines, $\left.\mathrm{HC} C_{\mathrm{Ar}}\right), 127.0\left(\mathrm{HC}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{HC}_{\mathrm{Ar}}\right), 126.1\left(\mathrm{HC}_{\mathrm{Ar}}\right), 92.4\left(\mathrm{OC}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right),}\right.$ $79.1(\mathrm{NCH}), 52.3\left(\mathrm{ClCH}_{2}\right), 38.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $30.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.7\left(2\right.$ lines, $\left.\mathrm{CH}_{3}\right)$, $21.8\left(\mathrm{CH}_{3}\right)$,
$16.7\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 356\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 221(13), 173$ (37), 105 (20), 77 (12), 91 (16), 55 (9). IR ($\left.\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3058 \mathrm{w}, 2957 \mathrm{~m}, 2929 \mathrm{~m}, 2871 \mathrm{~m}, 1668 \mathrm{~s}, 1599 \mathrm{w}, 1584 \mathrm{w}, 1492 \mathrm{~s}$, 1468s, 1447s, 1386s, 1366m, 1340w, 1335w, 1313w, 1290w, 1228w, 1175m, 1157w, 1139m, 1115s, 1089m, 1060w, 1035m, 1002w, 973s, 956s, 926m, 907w, 754s, 700s, 678w, 625m, $609 \mathrm{~m} .[\alpha]_{\mathrm{o}}^{30}-313.3$ (c $\left.0.93, \mathrm{CHCl}_{3}\right)$. HRMS (+ESI, m/z) for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}+\mathrm{H}\right]^{+}$: calc.: 356.1781; found: 356.1783.

10: (S)-2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-4-isopropyl-5,5-diphenyl-4,5dihydrooxazole

A dry J.-Young tube was charged with oxazoline 9 ($200 \mathrm{mg}, 562 \mu \mathrm{~mol}, 1.00$ equiv) and sealed under argon $(3 \times)$. A 0.5 m solution of KPPh_{2} in THF ($1.4 \mathrm{~mL}, 0.70 \mathrm{mmol}, 1.25$ equiv) was added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h . The solution was cooled to $0^{\circ} \mathrm{C}$ and a few drops of water were added until the solution became colorless. Then 10 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution were added followed by 20 mL of MTBE. The phases were separated and the aqueous phase was extracted with $2 \times 10 \mathrm{~mL}$ of MTBE. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Silica gel was added and the solvent was removed on a rotavap. The compound was purified by filtration through silica gel ($\mathrm{h} \times \mathrm{d}, 11 \mathrm{~cm} \times 3 \mathrm{~cm}$, pentane/ethyl acetate, 20/1). The product was obtained as a colorless wax (154 mg , $0.31 \mathrm{mmol}, 54 \%)$.
[$\left.\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NOP}\right],(505.63 \mathrm{~g} / \mathrm{mol})$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.51-7.40\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.35-7.19(\mathrm{~m}, 14 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 4.58(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}, \mathrm{NCH}), 2.56\left(\mathrm{~d}, 2 \mathrm{H}, J=3.4 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.63$ (d, 3 H ,
$\left.J=6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, \quad 300 \mathrm{~K}\right): \quad \delta(\mathrm{ppm}) 170.4(\mathrm{~d}$, $J=4 \mathrm{~Hz}, C=\mathrm{N}$), due to the complexity of the aromatic region the C_{Ar} and $\mathrm{HC}_{\mathrm{Ar}}$ peaks are listed without consideration of C-P couplings, 145.8, 140.9, 140.0 (2 lines), 139.9, 139.8, 133.1, 133.0, 132.9, 132.8, 128.4, 128.3, 128.3, 128.3, 128.3, 128.2, 128.1, 127.6, 127.6, 127.0, 126.9, 126.3, $92.2\left(\mathrm{OC}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 79.1(\mathrm{NCH}), 40.4\left(\mathrm{~d}, J=17 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 37.1(\mathrm{~d}$, $\left.J=18 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{2}\right), 30.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.0\left(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{C}\left(C \mathrm{H}_{3}\right)_{2}\right), 26.8(\mathrm{~d}, J=11 \mathrm{~Hz}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.8 \quad\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.0 \quad\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathbf{P}-\mathrm{NMR}\left(162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$ $\delta(\mathrm{ppm})$-26.9. MS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}(\%): 506\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) .[\alpha]_{\mathrm{D}}^{20}-198.0\left(c 0.55, \mathrm{CHCl}_{3}\right)$. HRMS $(+\mathrm{ESI}, \mathrm{m} / \mathrm{z})$ for $\left[\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NOP}+\mathrm{H}\right]^{+}$: calc.: 506.2613; found: 506.2613.

Ir-10: (S)-2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-4-isopropyl-5,5-diphenyl-4,5-dihydrooxazole- η^{4}-(1,5-cyclooctadiene)-iridium(I) tetrakis-[3,5-bis(trifluoromethyl)phenyl)borate

The ligand ($120 \mathrm{mg}, 237 \mu \mathrm{~mol}, 1.00$ equiv) and the iridium precursor ($87.7 \mathrm{mg}, 131 \mu \mathrm{~mol}$, 0.50 equiv) were placed in a J.-Young-tube, the atmosphere was exchanged to argon and 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The solution was heated to $50^{\circ} \mathrm{C}$ for 45 min and then cooled to $\mathrm{rt} . \mathrm{NaBAr}_{\mathrm{F}}(252 \mathrm{mg}, 284 \mu \mathrm{~mol}, 1.20$ equiv) were added and the solution was stirred for 30 min . Silica gel was added and the solvent was removed on a rotovap. The complex was purified by filtration over silica ($40 \mathrm{~g}, \mathrm{~h} \times \mathrm{d}, 12 \mathrm{~cm} \times 3 \mathrm{~cm}$) using 200 mL of MTBE followed by 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex was obtained as an orange solid ($359 \mathrm{mg}, 215 \mu \mathrm{~mol}, 91 \%$).
${ }^{1} \mathbf{H}$-NMR ($500.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 7.86\left(\mathrm{dd}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, H_{\mathrm{Ar}}\right)$, $7.75\left(\mathrm{~s}, 8 \mathrm{H}, H_{\mathrm{ArF}-o}\right), 7.60-7.52\left(\mathrm{~m}, 9 \mathrm{H}, H_{\mathrm{ArF}-p}, H_{\mathrm{Ar}}\right), 7.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.42-7.38$
$\left(\mathrm{m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.37-7.29\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.28-7.24\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.09-7.05\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.91-$ 4.86 (m, 1H, COD-CH), 4.71 (d, 1H, $J=1.1 \mathrm{~Hz}, \mathrm{NCH}$), 4.20-4.15 (m, 1H, COD-CH), 3.68$3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{C} H), 2.71-2.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PCH}_{2}, \mathrm{COD}^{2} \mathrm{CH}_{2}\right), 2.55(\mathrm{dd}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\left.J=15.3 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{C} H), 2.16-2.08\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 2 \times \mathrm{COD}-\right.$ $\left.\mathrm{CH}_{2}\right), 1.96-1.82\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.73(\mathrm{td}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}$, $J=13.5 \mathrm{~Hz}$, COD-CH2 $), 1.66-1.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}^{2} \mathrm{CH}_{2}\right), 1.37-1.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.10$ $\left(\mathrm{d}, \quad 3 \mathrm{H}, \quad J=7.1 \mathrm{~Hz}, \quad \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad-0.04 \quad\left(\mathrm{~d}, \quad 3 \mathrm{H}, \quad J=6.8 \mathrm{~Hz}, \quad \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-$ NMR ($125.8 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 176.5(\mathrm{~d}, J=3 \mathrm{~Hz}, C=\mathrm{N}), 161.4(\mathrm{q}, J=51 \mathrm{~Hz}$, $C_{\text {ArF-i }}$), due to the complexity of the aromatic region the C_{Ar} and $\mathrm{HC}_{\mathrm{Ar}}$ peaks are listed without consideration of C-P couplings, 142.7, 136.1, 135.2, 135.1, 134.5 (HC Arf-o), 132.2 ($3 \times$), $131.8,131.0,130.9,130.7(2 \times), 129.2,129.1,129.0,128.9,128.8,128.6$ (qq, $J=3 \mathrm{~Hz}$, $\left.J=32 \mathrm{~Hz}, C_{\text {ArF-m }}\right), 128.6(2 \times), 128.6,128.4,128.3,128.2(3 \times), 128.1,127.9,125.0,123.4$, 117.1 (sept, $J=4 \mathrm{~Hz}, H C_{\text {ArF-p }}$), $94.9\left(\mathrm{OC}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 94.1(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}), 92.0(\mathrm{~d}$, $J=13 \mathrm{~Hz}$, COD -CH$), 77.3(\mathrm{NCH}), 63.7(\mathrm{COD}-\mathrm{CH}), 60.9(\mathrm{COD}-\mathrm{CH}), 38.7(\mathrm{~d}, J=2 \mathrm{~Hz}$, $\left.\left.C\left(\mathrm{CH}_{3}\right)_{2}\right), 36.0\left(\mathrm{~d}, J=4 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right), 33.3(\mathrm{~d}, J=32 \mathrm{~Hz}, \mathrm{PCH})_{2}\right), 32.6(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.0\left(\mathrm{~d}, J=1 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.8\left(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.6\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 13.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathbf{P}-$ NMR ($162.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \quad 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 6.4 .{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(376.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $300 \mathrm{~K}): \delta(\mathrm{ppm})-64.0 . \mathrm{MS}(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}(\%) 806\left(\left[\mathrm{M}-\left(\mathrm{BAr}_{\mathrm{F}}\right)\right]^{+}, 100\right) .[\alpha]_{0}^{20}-52(c 0.29$, CHCl_{3}). Elemental Analysis for $\mathrm{C}_{74} \mathrm{H}_{60} \mathrm{BF}_{24} \operatorname{IrNOP}(1669.24 \mathrm{~g} / \mathrm{mol})$, calc.: C, $53.25 ; \mathrm{H}, 3.62$; $\mathrm{N}, 0.84$; found: C, $53.22 ; \mathrm{H}, 3.61 ; \mathrm{N}, 0.75$.

15: (S)-Methyl 2-(3-chloro-2,2-dimethylpropanamido)-3-methylbutanoate

L-Valine methyl ester hydrochloride ($8.38 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.00$ equiv) was suspended in 75 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a three-necked sulfonation flask with mechanical stir bar. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and 20.9 mL of NEt_{3} ($150 \mathrm{mmol}, 3.00$ equiv) were added under stirring. To this mixture a solution of 7.75 g of 3 -chloropivaloylchloride ($50.0 \mathrm{mmol}, 1.00$ equiv) in 25 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added over 30 min , keeping the temperature between 0 and $10^{\circ} \mathrm{C}$. When the addition was completed, the cooling bath was removed and the reaction mixture was stirred until rt was reached. The mixture was heated to reflux for 1.5 h (brown color), cooled to rt and extracted with 50 mL of water, followed by 50 mL of a 1 m solution of HCl . The combined aqueous phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with 50 mL of a saturated NaHCO_{3} solution. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the combined organic phases were washed with 50 mL of brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed on a rotovap and the crude product was dried using an oil pump until constant pressure was obtained ($10^{-1} \mathrm{mbar}$). The crude product was obtained as a brown oil (12.44 g) which was taken up in 20 mL of hexanes. Active carbon (300 mg) was added, the mixture was refluxed for 5 min and filtered hot. The filter was rinsed with hot hexanes ($5 \times 20 \mathrm{~mL}$) and the solution was put in a freezer $\left(-20^{\circ} \mathrm{C}\right)$ over night. The mother liquor was decanted. The product was obtained as a colorless solid containing some brown material as impurity. This mixture was allowed to warm to rt causing the colorless solid to melt, while the impurity remained solid. The liquid was decanted and the flask and the impurity were rinsed with hexane $(3 \times 2 \mathrm{~mL})$ and combined with the product. The solvent was removed and the residue dried at $10^{-1} \mathrm{mbar}$. The product, a slightly yellow liquid, was cooled in a dry-ice/acetone bath and put again under
vacuum to initiate crystallization. Finally, $10.1 \mathrm{~g}(40.4 \mathrm{mmol}, 81 \%)$ of an off-white solid were obtained. The impurity and the mother liquor were combined and the mixture was cooled in a dry-ice/acetone bath under shaking. The impurity crystallized first and the cold solution was filtered to remove the impurity. The filter was washed with 4 mL of cold hexanes and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. The mother liquor was decanted and the crystalline product was dried under vacuum to give 1.47 g ($5.88 \mathrm{mmol}, 12 \%$) as a second batch. Total yield: 11.6 g ($46.3 \mathrm{mmol}, 93 \%$).
M.p.: $37-38^{\circ}{ }^{\circ}$. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=6.25(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{~N} H)$, $4.56\left(\mathrm{dd}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, \mathrm{NHCHCOOCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.67(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=10.8 \mathrm{~Hz}, \mathrm{ClCH}_{2}\right), 3.54\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{ClCH}_{2}\right), 2.17$ (d sept., $1 \mathrm{H}, J=4.9 \mathrm{~Hz}$, $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31\left(\mathrm{~d}, 6 \mathrm{H}, J=13.6 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.91(\mathrm{dd}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.J=13.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=174.5 \quad(\mathrm{C}=\mathrm{O}), 172.4$ $(\mathrm{C}=\mathrm{O}), 57.0(\mathrm{NHCH}), 52.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 52.1\left(\mathrm{COOCH}_{3}\right), 44.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.3\left(\mathrm{CH}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6\left(\mathrm{CH}_{3}\right),}\right.$ $23.1\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{FAB}), \mathrm{m} / \mathrm{z}: 250\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 190(37), 137(11), 91$ (19), 55 (11). $\mathbf{I R}\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3315 \mathrm{~m}, 2964 \mathrm{~m}, 2935 \mathrm{~m}, 2876 \mathrm{w}, 1738 \mathrm{~s}, 1636 \mathrm{~s}, 1592 \mathrm{~s}, 1568 \mathrm{~m}$, 1435m, 1391m, 1369m, 1356m, 1319w, 1294w, 1265w, 1202s, 1148s, 1080w, 1041w, $1001 \mathrm{~m}, 972 \mathrm{w}, 962 \mathrm{w}, 926 \mathrm{~m}, 912 \mathrm{w}, 885 \mathrm{w}, 847 \mathrm{w}, 810 \mathrm{w}, 775 \mathrm{~m}, 727 \mathrm{~s}, 671 \mathrm{~m}, 621 \mathrm{~m} .[\alpha]_{\mathrm{o}}^{20}+9.8$ (c 1.51, CHCl_{3}). Elemental Analysis for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{ClNO}_{3}(249.73 \mathrm{~g} / \mathrm{mol})$, calc.: C, 52.90 ; H , 8.07; N, 5.61; found: C, 52.98; H, 7.98; N, 5.49.

16: (S)-1-(1-Hydroxy-3-methyl-1,1-diphenylbutan-2-yl)-3,3-dimethylazetidin-2-one

To a dry sulfination flask equipped with a mechanical stir bar, a reflux condenser, a dropping funnel and a neck closed with a stopper were added 5.00 g ($20.0 \mathrm{mmol}, 1.00$ equiv) of ester 15. Vacuum was applied and the flask was backfilled with argon. Dry THF (40 mL) was added under stirring and the solution was cooled to $0^{\circ} \mathrm{C}$. Through the dropping funnel a 1 m solution of PhMgBr in dry THF ($66 \mathrm{~mL}, 66.0 \mathrm{mmol}, 3.30$ equiv) was added over 30 min . The temperature was kept in a range between -5 and $0{ }^{\circ} \mathrm{C}$. After complete addition, the cooling bath was removed and the solution stirred for additional 30 min . Then the solution was heated to reflux for 2 h . After 2 h approximately 50 mL of THF were distilled off and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. A saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added drop wise followed by 50 mL of MTBE. The mixture was stirred for 10 min and 40 mL of a 1 M HCl solution were added. The phases were separated and the aqueous phase was washed with 50 mL of MTBE, then again with 25 mL of MTBE. The combined organic phases were washed with 50 mL of saturated NaHCO_{3} solution and the aqueous phase was extracted with 25 mL of ethyl acetate. The combined organic phases were washed with 50 mL of brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed on a rotovap. During this process the product started to crystallize. Approximately 100 mL of hexanes were added to the residue and the mixture was heated to reflux. Ethyl acetate was added portion wise to the refluxing mixture until most of the compound had dissolved (approx. 40 mL). The solution was filtered hot and placed in a refrigerator $\left(+5^{\circ} \mathrm{C}\right)$ over night. The mother liquor was decanted and the colorless crystals were rinsed with 6 mL of hexane. A fraction ($2.98 \mathrm{~g}, 7.97 \mathrm{mmol}, 40 \%$) was collected having a mp of $183-184{ }^{\circ} \mathrm{C}$.
M.p.: ${ }^{183-184}{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=7.62-7.59\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.31-$ $7.27\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.15\left(\mathrm{ddt}, 2 \mathrm{H}, J=3.5 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $4.02(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{NHCH}), 3.21\left(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.00(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.15\left(\mathrm{~d}\right.$ sept., $\left.1 \mathrm{H}, J=2.7 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=175.2(C=\mathrm{O}), 147.2\left(C_{\mathrm{Ar}}\right), 144.8\left(C_{\mathrm{Ar}}\right), 128.2$ $\left(2 \times \mathrm{H} C_{\mathrm{Ar}}\right), 128.0\left(2 \times \mathrm{H} C_{\mathrm{Ar}}\right), 126.5\left(2 \times \mathrm{H} C_{\mathrm{Ar}}\right), 125.2\left(2 \times \mathrm{H} C_{\mathrm{Ar}}\right), 125.0\left(2 \times \mathrm{H} C_{\mathrm{Ar}}\right), 80.9$ $\left(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{COH}\right), 70.4(\mathrm{NCH}), 58.8\left(\mathrm{CH}_{2}\right), 48.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 29.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \text {, }}\right.$ $21.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathrm{MS}(\mathrm{FAB}, \mathrm{NBA}), \mathrm{m} / \mathrm{z}: 338\left([\mathrm{M}+\mathrm{H}]^{+}, 42\right)$, 320 (100), 292 (19), 250 (15), 221 (19), 126 (43), 105 (29), 55 (21). IR ($\left.\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3256 \mathrm{w}$, 2968w, 2953w, 2925w, 1707s, 1700s, 1448m, 1418m, 1349m, 1333w, 1293w, 1208w, 1187w, 1094w, 1063m, 1019m, 998w, 962w, 987m, 820m, 754s, 747s, 737m, 700s, 687s, 668s, 652s, 635s. $[\alpha]_{\mathrm{D}}^{20}-94.2$ (c 1.04, CHCl_{3}). Elemental Analysis for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ (337.46 g/mol), calc.: C, 78.30; H, 8.06; N, 4.15; found: C, 78.15; H, 8.00; N, 3.96.

Threonine derived NeoPHOX ligands

11: (2S,3R)-Methyl 2-(3-chloro-2,2-dimethylpropanamido)-3-hydroxybutanoate

Methylthreonine hydrochloride ($5.00 \mathrm{~g} ; 29.5 \mathrm{mmol}, 1.00$ equiv) was dissolved in 50 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 12.5 mL of NEt_{3} ($88.4 \mathrm{mmol}, 3.00$ equiv) were added at $0{ }^{\circ} \mathrm{C}$, followed by drop wise addition of 3.8 mL of 3-chloropivaloyl chloride ($29.48 \mathrm{mmol}, d=1.199$, 1.00 equiv). After stirring at rt over night the reaction mixture was poured into 10 mL sat. NaHCO_{3} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phases were
dried over MgSO_{4} and after concentration the remaining oil was distilled in a Kugelrohr oven ($170^{\circ} \mathrm{C} / 0.1$ Torr) yielding 7.13 g ($28.3 \mathrm{mmol}, 96 \%$ yield) of colorless oily product, which was used in the subsequent step without further purification. An analytically pure sample was obtained by column chromatography on silica gel with EtOAc $\left(R_{\mathrm{f}} 0.45\right)$.
${ }^{1} \mathbf{H}$-NMR ($\left.400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 6.51(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{~N} H), 4.61(\mathrm{~d}, 1 \mathrm{H}$, $J=8.6 \mathrm{~Hz}, \mathrm{NCH}), 4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 3.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6,6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 175.4(C=\mathrm{O}), 171.5$ $(\mathrm{COO}), 68.0(\mathrm{CHOH}), 57.2(\mathrm{CH}), 52.7\left(\mathrm{COOCH}_{3}\right), 52.6\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 44.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.8$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.1\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}(\%) 254(33), 253(13), 252\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100), 234 (16), 202 (8), 192 (12), 119 (7), 116 (10), 102 (22), 93 (8), 91 (22) . IR ($\tilde{v}\left[\mathrm{~cm}^{-1}\right]$) 3387m, 2974m, 2956m, 2936w, 2875w, 1744s, 1648s, 1523m, 1475w, 1437m, 1391w, 1349w, 1290m, 1208m, 1083w, 1021w, 997w, 853w, 811w, 731w. $[\alpha]^{20}{ }_{\mathbf{D}}-7.0(c 1.01$, CHCl_{3}). Elemental analysis for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClNO}_{4}(251.71 \mathrm{~g} / \mathrm{mol})$ calcd $\%: \mathrm{C}, 47.72 ; \mathrm{H}, 7.21 ; \mathrm{N}$, 5,56; found: C, 47.47 ; H, 7.12; N, 5.54.

12: (4S,5S)-Methyl 2-(1-chloro-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazole-4carboxylate

Amide 11 ($1.12 \mathrm{~g} ; 4.45 \mathrm{mmol}, 1.00$ equiv) and Burgess reagent ($1.38 \mathrm{~g}, 5.79 \mathrm{mmol}$, 1.30 equiv) were dissolved in 40 mL THF and the mixture refluxed for 4 h . Afterwards THF was removed under reduced pressure, the obtained residue treated with $\mathrm{Et}_{2} \mathrm{O}$ and remaining solids were filtered off. The remaining yellowish oil (1.20 g) was distilled in a Kugelrohr
oven $\left(110^{\circ} \mathrm{C} / 0.08\right.$ Torr) to give $924 \mathrm{mg}(3.96 \mathrm{mmol}, 89 \%$ yield $)$ of the product as colorless oil, which was used in the next step without further purification. When using DAST for the oxazoline-ring closure the product yield was 93%. An analytically pure sample was obtained by column chromatography with $\mathrm{EtOAc} / \mathrm{Hex}\left(1: 5, R_{\mathrm{f}} 0.25\right)$.
${ }^{1} \mathbf{H}$-NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 4.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 4.76(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, $\mathrm{NCH}), 3.73$ (s, $3 \mathrm{H}, \mathrm{COOCH}_{3}$), 3.63 (m, 2H, CH2Cl), 1.33 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}$), $1.26(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 173.2$ (C (quart)), $170.3(\mathrm{COO}), 77.8(\mathrm{OCH}), 71.3(\mathrm{NCH}), 52.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 52.0\left(\mathrm{COOCH}_{3}\right), 39.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6}\right.$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.0\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%): 233\left(\mathrm{M}^{+}, 1\right), 198(22$, $\left.[\mathrm{M}-\mathrm{Cl}]^{+}\right), 174\left(100,[\mathrm{M}-(\mathrm{COOMe})]^{+}\right), 140(9), 84(65), 55(15) . \mathbf{I R}\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2984 \mathrm{~m}$, 2957m, 1736s, 1655s, 1439m, 1386m, 1362w, 1321w, 1290w, 1253w, 1196s, 1174s, 1141w, $1118 \mathrm{~m}, 1044 \mathrm{~s}, 1000 \mathrm{w}, 973 \mathrm{w}, 945 \mathrm{w}, 917 \mathrm{w}, 892 \mathrm{w}, 832 \mathrm{~m}, 751 \mathrm{w}, 634 \mathrm{w} .[\alpha]^{\mathbf{2 0}}{ }_{\mathrm{D}}+51,7^{\circ}(c 1.12$, $\left.\mathrm{CHCl}_{3}\right)$. Elemental analysis for $\left.\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClNO}_{3}(233.69 \mathrm{~g} / \mathrm{mol})\right)$ calcd \%: C, $51.40 ; \mathrm{H}, 6.90 ; \mathrm{N}$, 5.99; found: C, $51.22 ; \mathrm{H}, 6.82 ; \mathrm{N}, 6.11$.

13: 2-((4S,5S)-2-(1-Chloro-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazol-4-yl)propan-2ol

Oxazoline $12(2.00 \mathrm{~g}, 8.58 \mathrm{mmol}, 1.00$ equiv) was dissolved in 30 mL dry THF and 5.7 mL MeMgCl (3 M in THF, 2.00 equiv) were added drop wise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up slowly in the dry ice cooling bath overnight. After quenching with $\mathrm{NH}_{4} \mathrm{Cl}$ the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phases were dried over MgSO_{4} and
concentrated to give 1.88 g of crude product. Kugelrohr distillation ($100^{\circ} \mathrm{C} / 0.2 \mathrm{Torr}$) afforded $1.60 \mathrm{~g}(6.86 \mathrm{mmol}, 80 \%)$ of the product 13.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 4.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.89(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, $\mathrm{NCH}), 3.63(\mathrm{~d}, 2 \mathrm{H}, J=2.5 \mathrm{~Hz} \mathrm{CH} 2 \mathrm{Cl}), 1.46\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\right.$, $1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$) ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): \delta(\mathrm{ppm}) 171.0(C($ quart.)), $79.4(\mathrm{OCH}), 71.8(\mathrm{NCH}), 71.8(\mathrm{COH}($ quart.)), 52.6
 $16.1\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}(\%) 237(5), 236(32), 235(13), 234\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 218(13), 216$ (10), 174 (15), 91 (16), 59 (12), 55 (14). IR ($\left.\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3449 \mathrm{~m}, 2977 \mathrm{~s}, 2939 \mathrm{~m}, 2873 \mathrm{~m}$, 2353w, $2343 \mathrm{w}, 1718 \mathrm{~m}, 1657 \mathrm{~s}, 1468 \mathrm{~m}, 1444 \mathrm{~m}, 1383 \mathrm{~m}, 1364 \mathrm{~m}, 1284 \mathrm{~m}, 1227 \mathrm{w}, 1180 \mathrm{~m}$, $1137 \mathrm{~m}, 1118 \mathrm{~m}, 1076 \mathrm{w}, 1019 \mathrm{~m}, 948 \mathrm{~m}, 924 \mathrm{w}, 882 \mathrm{w}, 825 \mathrm{w}, 792 \mathrm{w}, 745 \mathrm{w} .\left[\mathrm{L}^{\mathbf{2 0}}{ }^{\mathrm{D}}+22.6^{\circ}(c\right.$ $\left.1,15, \mathrm{CHCl}_{3}\right)$.

14: 2-((4S,5S)-2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazol-4-yl)propan-2-ol

Neopentyl chloride $\mathbf{1 3}$ ($107 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.00$ equiv) was dissolved in 5 mL dry THF and $0.29 \mathrm{~mL} n-\operatorname{BuLi}\left(1.6 \mathrm{M}\right.$ in n-hexanes, $0.46 \mathrm{mmol}, 1.00$ equiv) was added at $0^{\circ} \mathrm{C}$, followed by 0.92 mL of KPPh_{2} (0.5 M in THF, $0.46 \mathrm{mmol}, 1.00$ equiv). Then the reaction mixture was warmed to rt and subsequently refluxed for 15 h . The solvent was evaporated and the residue dissolved in 20 mL MTBE. The solution was washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and the aqueous layer extracted with MTBE $(3 \times 10 \mathrm{~mL})$. The combined organic phases were
washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chromatography on silica gel with $\mathrm{EtOAc} / \mathrm{Hex}$ (1:2) afforded 120 mg ($0.31 \mathrm{mmol}, 68 \%$ yield) of the product as a transparent oil which solidified in the refrigerator at $+5^{\circ} \mathrm{C}$ within a few days.
${ }^{1} \mathbf{H}-\mathrm{NMR} \quad\left(500.1 \quad \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 300 \mathrm{~K}\right): \quad \delta(\mathrm{ppm}) 7.50\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad H_{\mathrm{Ar}}\right), 7.41(\mathrm{~m}, \quad 2 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 7.31\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{NCH}), 2.72(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 2.55\left(\mathrm{dd}, 1 \mathrm{H}, J=14.3, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.37\left(\mathrm{dd}, 1 \mathrm{H}, J=14.4, J=3.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right)$, $1.49\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\right.$, $1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 173.2(\mathrm{C}=\mathrm{N}), 140.0$ $\left(\mathrm{d}, J=11.0 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 139.0\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 133.3\left(\mathrm{~d}, J=20 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 132.8(\mathrm{~d}$, $\left.J=20 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 128.7\left(C_{\mathrm{ArH}}\right), 128.5\left(C_{\mathrm{ArH}}\right), 128.4\left(\mathrm{~d}, J=2 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 128.3(\mathrm{~d}, J=2 \mathrm{~Hz}$, $\left.C_{\text {ArH }}\right), 79.2(\mathrm{OCH}), 75.6(\mathrm{NCH}), 72.2(\mathrm{COH}), 41.0\left(\mathrm{~d}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 37.2(\mathrm{~d}, J=18 \mathrm{~Hz}$, $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 29.0\left(\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.7\left(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.4\left(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{C}\left(C \mathrm{H}_{3}\right)_{2}\right)$, $26.15\left(\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.1\left(\mathrm{CHCH}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(202.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})$ -21.3. MS (FAB) m/z (\%) 386 (4), 385 (25), 384 ($[\mathrm{M}+\mathrm{H}]^{+}, 100$), 326 (2), 325 (13), 324 (43), 306 (11), 285 (17), 284 (32), 228 (6), 227 (38), 202 (10), 201 (18), 199 (11), 185 (27), 183 (13), 136 (7), $91(6) .[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}+16.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

14-TMS: (4S,5S)-2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4-(2-((trimethylsilyl)oxy)propan-2-yl)-4,5-dihydrooxazole

To a solution of alcohol $\mathbf{1 4}\left(50.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00\right.$ equiv) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \mu \mathrm{~L}$ ($0.65 \mathrm{mmol}, 5.00$ equiv) of 2,6-lutidine were added drop wise at $20^{\circ} \mathrm{C}$. Then $67 \mu \mathrm{~L}$ TMSOTf
($58.0 \mathrm{mg}, 0.26 \mathrm{mmol} ; 2.00$ equiv) were added and the solution stirred for 1 h . The solvent was evaporated under high vacuum and the residue was treated with $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was filtered off and the sample dried under high vacuum. Column chromatography on silica gel with $\mathrm{EtOAc} / \mathrm{Hex}^{2} / \mathrm{Et}_{3} \mathrm{~N}(1: 10: 0,5)$ gave $40 \mathrm{mg}(0.08 \mathrm{mmol}, 67 \%$ yield $)$ of product $\mathbf{1 4 - T M S}$ as a colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.47\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.31\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.28(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{OCH}), 3.63(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.46(\mathrm{ddd}, J=51.0 \mathrm{~Hz}, J=14.3 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.47\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}-\mathrm{NMR}\left(162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): ~ \delta(\mathrm{ppm})-22.3$.

14-TES: (4S,5S)-2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4-(2-((triethylsilyl)oxy)propan-2-yl)-4,5-dihydrooxazole

To a solution of alcohol 14 ($50.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \mu \mathrm{~L}$ ($0.65 \mathrm{mmol}, 5.00$ equiv) of 2,6-lutidine were added drop wise at $20^{\circ} \mathrm{C}$. Then $59 \mu \mathrm{~L}$ TESOTf ($69.0 \mathrm{mg}, 0.26 \mathrm{mmol}, 2.0$ equiv) were added and the solution stirred for 3 h . The solvent was evaporated under high vacuum and the residue treated with $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was filtered off and the sample dried under vacuum. Column chromatography on silica gel with EtOAc/Hex (1:9) afforded 47 mg ($0.09 \mathrm{mmol}, 73 \%$ yield) of the product $\mathbf{1 4}$-TES as a colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.46\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.30(\mathrm{~m}, 6 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.46(\mathrm{ddd}, J=60.7 \mathrm{~Hz}, J=14.3 \mathrm{~Hz}$, $\left.J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.60(\mathrm{q}$, $\left.J=8.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 172.8$ $(C=\mathrm{N}), 140.1\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 139.9\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 133.3\left(\mathrm{~d}, J=19.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Ar}}\right)$, $133.0\left(\mathrm{~d}, J=19.5 \mathrm{~Hz}, \mathrm{H} C_{\mathrm{Ar}}\right), 128.5\left(C_{\mathrm{ArH}}\right), 128.4\left(C_{\mathrm{ArH}}\right), 128.4\left(C_{\mathrm{ArH}}\right), 128.4\left(C_{\mathrm{ArH}}\right), 79.9$ $(\mathrm{OCH}), 76.1(\mathrm{NCH}), 75.7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.1\left(\mathrm{~d}, J=16.6 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 36.9(\mathrm{~d}, J=17.3 \mathrm{~Hz}$, $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 30.7\left(\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.5\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.4\left(\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.3\left(\mathrm{CHCH}_{3}\right), 7.2\left(\mathrm{CH}_{3}\right.$, ethyl), $7.0\left(\mathrm{CH}_{2}\right.$, ethyl). ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $(202.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-22.3$. IR ($\left.\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3054 \mathrm{w}, 2956 \mathrm{w}, 2911 \mathrm{w}, 2875 \mathrm{w}, 1655 \mathrm{w}$, $1433 \mathrm{w}, 1382 \mathrm{w}, 1236 \mathrm{w}, 1163 \mathrm{~m}, 1037 \mathrm{~m}, 857 \mathrm{w}, 738 \mathrm{~s}, 694 \mathrm{~s}, 506 \mathrm{w} \cdot[\alpha]^{\mathbf{2 0}}{ }_{\mathrm{D}}+8.1\left(c 1.06, \mathrm{CHCl}_{3}\right)$.

14-TBDMS: (4S,5S)-4-(2-((tert-Butyldimethylsilyl)oxy)propan-2-yl)-2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazole

To a solution of alcohol 14 ($50.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \mu \mathrm{~L}$ ($0.65 \mathrm{mmol}, 5.00$ equiv) of 2,6 -lutidine were added drop wise at $20{ }^{\circ} \mathrm{C}$. Then $60 \mu \mathrm{~L}$ TBDMSOTf ($69.0 \mathrm{mg}, 0.26 \mathrm{mmol}, 2.00$ equiv) were added and the solution stirred for 1 h . Then the solvent was evaporated under high vacuum and the residue treated with $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was filtered off and the solution concentrated. Column chromatography on silica
gel with EtOAc/Hex (1:9, $R_{\mathrm{f}} 0.25$) afforded $44 \mathrm{mg}(0.09 \mathrm{mmol}, 68 \%$ yield $)$ of the product 14 TBDMS as a colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.56-7.40\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.38-7.23(\mathrm{~m}, 6 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 4.43-4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OC} H), 3.62(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.47(\mathrm{ddd}, J=55.6 \mathrm{~Hz}$, $\left.J=14.4 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.46\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right), 0.86(\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{BuSiO}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{BuSiO}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{BuSiO}\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 172.6(C=\mathrm{N}), 140.1\left(\mathrm{~d}, J=13 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 139.89(\mathrm{~d}$, $\left.J=13 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 133.3\left(\mathrm{~d}, J=20 \mathrm{~Hz}, C_{\mathrm{ArHo}}\right), 133.0\left(\mathrm{~d}, J=20 \mathrm{~Hz}, C_{\mathrm{ArHo}}\right), 128.6-128.2(\mathrm{~m}$, $\left.C_{\text {ArHm,p }}\right), 79.7(\mathrm{OCH}), 76.2(\mathrm{NCH}), 76.0\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.1\left(\mathrm{~d}, J=17 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 36.8(\mathrm{~d}, J=$ $\left.17 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{2}\right), 30,7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.5\left(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{C}\left(C \mathrm{H}_{3}\right)_{2}\right), 27.1(\mathrm{~d}, J=11 \mathrm{~Hz}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $16.5\left(\mathrm{CHCH}_{3}\right),-1.7\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.7\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (202.5 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-22.9$. IR $\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right)$ 3054w, 2956w, 2929w, 2856w, 1656w, 1434w, 1383w, 1252m, 1162s, 1029s, 834s, 772s, $740 \mathrm{~s}, 694 \mathrm{~s}, 507 \mathrm{w} .[\alpha]^{\mathbf{2 0}}{ }_{\mathrm{D}}+6.8\left(c 0.99, \mathrm{CHCl}_{3}\right)$.

14-OAc: 2-((4S,5S)-2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazol-4-yl)propan-2-yl acetate

To a solution of ligand $\mathbf{1 4}\left(50.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00\right.$ equiv) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \mu \mathrm{~L}$ ($70 \mathrm{mg}, 0.65 \mathrm{mmol}, 5.00$ equiv) of 2,6 -lutidine were added drop wise at $20^{\circ} \mathrm{C}$ followed by
$20 \mu \mathrm{~L}$ ($0.29 \mathrm{mmol}, 2.20$ equiv) of AcCl . After stirring overnight (16 h) at rt , the reaction mixture was concentrated and subjected to column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{Hex}$ $1: 4)$ to afford 42 mg ($0.10 \mathrm{mmol}, 76 \%$ yield) of $\mathbf{1 4 - O A c}$ as a colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 295 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.45\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.31\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.30(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{OCH}), 4.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.45(\mathrm{ddd}, J=52.9 \mathrm{~Hz}, J=14.3 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}$), $1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}), $1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 295 \mathrm{~K}$): $\delta(\mathrm{ppm})$ 22.08. MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%): 425\left(\mathrm{M}^{+}, 1\right), 366(13), 324$ (31), 284 (95), 227 (100), 183 (30), 121 (20), 91 (5).

Ir-14-OH

Ligand 14 ($30.0 \mathrm{mg}, 78.0 \mu \mathrm{~mol}, 1.00$ equiv) and bis(1,5-cyclooctadiene)diiridium(I) dichloride (26.0 mg , $39.0 \mu \mathrm{~mol}$, 0.50 equiv) were dissolved in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and refluxed for 2.5 h under argon. Then of $\mathrm{NaBAr}_{\mathrm{F}}(90.0 \mathrm{mg}, 101 \mathrm{mmol}, 1.30$ equiv) were added and the mixture stirred for 30 min at rt . Silica gel (2 g) was added and the solvent removed on a rotavap. The immobilized complex was transferred to a silica gel column $(2 \times 12 \mathrm{~cm})$. The column was flushed with 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ followed by 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The orange product, eluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was collected in one fraction. The resulting orange solution was concentrated under vacuum and the resulting solid dissolved in CHCl_{3} and concentrated again to remove residual water. The addition/evaporation of CHCl_{3} was repeated three times. After
drying the residue under high vacuum, 119 mg ($78.0 \mu \mathrm{~mol}, 99 \%$ yield) of complex $\mathbf{I r} \mathbf{- 1 4 - \mathbf { O H }}$ was obtained as an orange solid.
${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.82\left(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $7.72\left(\mathrm{~s}, 8 \mathrm{H}, H_{\text {ArF-o }}\right), 7.62-7,54\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.53\left(\mathrm{~s}, 4 \mathrm{H}, H_{\mathrm{ArF}-p}\right), 7.39\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.05-7.01$ $\left(\mathrm{m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.27(\mathrm{~m}, 1 \mathrm{H}, \operatorname{COD}-\mathrm{C} H), 4.84(\mathrm{~m}, 1 \mathrm{H}, \operatorname{COD}-\mathrm{CH}), 4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.78(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.50(\mathrm{dd}, J=7.1 \mathrm{~Hz}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{C} H), 2.61(\mathrm{~m}, 3 \mathrm{H}, \mathrm{COD}-\mathrm{H}$, COD-CH2), $2.55\left(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 2.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}^{2} \mathrm{CH}_{2}\right), 1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-$ $\left.\mathrm{CH}_{2}\right), 1.57\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.49\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43(\mathrm{~m}, 1 \mathrm{H}$, COD-CH2), $1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-\mathrm{NMR}(125.8 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 180.3(C=\mathrm{N}), 161.7\left(\mathrm{q}, J=50 \mathrm{~Hz}, C_{\mathrm{ArFi}}\right), 134.9\left(C_{\mathrm{ArH}}\right), 134.8$ $\left(\mathrm{H}_{\mathrm{ArF}-o}\right), 132.8\left(C_{\mathrm{ArH}}\right), 132.5\left(\mathrm{~d}, J=55 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 131.3\left(C_{\mathrm{ArH}}\right), 131.2\left(\mathrm{~d}, J=10 \mathrm{~Hz}, C_{\mathrm{ArH}}\right)$, $130.0\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 129.1\left(\mathrm{qq}, J=3 \mathrm{~Hz}, J=32 \mathrm{~Hz}, \mathrm{H} C_{\mathrm{ArF}-m}\right), 129.1\left(C_{\mathrm{ArH}}\right), 128.3(\mathrm{~d}$, $\left.J=54 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 124.6\left(\mathrm{q}, J=273 \mathrm{~Hz}, C \mathrm{~F}_{3}\right) 117.5\left(\mathrm{H}_{\mathrm{ArF}-p}\right), 96.1(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{COD}-C \mathrm{H})$, $94.2(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{COD}-C \mathrm{H}), 82.8(\mathrm{OCH}), 75.00(\mathrm{NCH}), 70.7\left(\mathrm{OC}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right), 63.6(\mathrm{COD}-\mathrm{CH})$, $60.8(\mathrm{COD}-\mathrm{CH}), 38.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 36.3\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 33.9\left(\mathrm{~d}, J=6 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.5(\mathrm{~d} \text {, }}\right.$ $\left.J=32 \mathrm{~Hz}, C H_{2} \mathrm{P}\right), 32.0\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 28.5\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 26.9\left(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.1\left(\mathrm{COD}^{2} \mathrm{CH}_{2}\right), 24.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.8\left(\mathrm{CHCH}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $(202.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 9.5 .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}-\mathbf{N M R}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-62.6 . \mathbf{M S}$ (MALDI-TOF) m/z (\%): 684 ([M-($\left.\left.\mathrm{BAr}_{\mathrm{F}}\right)\right]^{+}, 100$).

IR $\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2971 \mathrm{w}, 1610 \mathrm{w}, 1439 \mathrm{w}, 1353 \mathrm{~m}, 1271 \mathrm{~s}, 1110 \mathrm{~s}, 1000 \mathrm{w}, 886 \mathrm{~m}, 838 \mathrm{~m}, 744 \mathrm{w}$, $711 \mathrm{~m}, 681 \mathrm{~m}, 667 \mathrm{~m} .[\alpha]^{20}{ }_{\mathbf{D}}+1.3\left(c 0.70, \mathrm{CHCl}_{3}\right)$.

Ir-14-TMS

Following the general procedure for the preparation of $\mathbf{I r} \mathbf{- 1 4 - O H}$, using 15.0 mg of ligand $\mathbf{1 4}$ TMS $\left(33.0 \mu \mathrm{~mol}, 1.00\right.$ equiv), 11.0 mg of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(16.0 \mu \mathrm{~mol}, 0.50$ equiv $)$ in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 37.0 mg of $\mathrm{NaBAr}_{\mathrm{F}}$ ($42.0 \mu \mathrm{~mol}, 1.30$ equiv), 43.0 mg ($22.4 \mu \mathrm{~mol}, 80 \%$ yield) of Ir-14-TMS were obtained as an orange solid. Crystallization of the product $\mathbf{I r}$-14-TMS from CHCl_{3} overlaid by n-heptane afforded crystals suitable for X-ray crystal analysis.
${ }^{1} \mathbf{H}$-NMR ($\left.500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.75\left(\mathrm{~m}, 10 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.58\left(\mathrm{~m}, 7 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.37$ $\left(\mathrm{m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.01\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \mathrm{OCH}), 3.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}, \mathrm{COD}-\mathrm{CH})$, $2.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{COD}), 2.28\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}, \mathrm{COD}-\mathrm{CH}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.08(\mathrm{~m}$, 1H, COD-CH2), $1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.70\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.61(\mathrm{~m}, 1 \mathrm{H}$, COD-CH2 $), 1.51\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-$ $\left.\mathrm{CH}_{2}\right), 0.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right){ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): \delta(\mathrm{ppm}) 180.3(C=\mathrm{N}), 161.7\left(\mathrm{q}, J=50 \mathrm{~Hz}, C_{\mathrm{ArFi}}\right), 135.0\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 134.8$ $\left(\mathrm{H}_{\mathrm{ArF}-o}\right), 132.6\left(C_{\mathrm{ArH}}\right), 131.2\left(\mathrm{~d}, J=5 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 131.1\left(C_{\mathrm{ArH}}\right), 129.6\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\mathrm{ArH}}\right)$, $129.1\left(C_{\text {ArH }}\right), 128.8\left(\mathrm{q}, J=32 \mathrm{~Hz}, \mathrm{HC}_{\text {ArF-m }}\right), 124.6\left(\mathrm{q}, J=273 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 117.5\left(\mathrm{HC}_{\text {ArF-p }}\right), 94.2$ (d, $J=12 \mathrm{~Hz}, \mathrm{COD}-C \mathrm{H}), 93.1(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}), 84.2(\mathrm{OCH}), 74.4\left(\mathrm{SiOC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $74.2(\mathrm{NCH}), 63.0(\mathrm{COD}-\mathrm{CH}), 59.7(\mathrm{COD}-\mathrm{CH}), 38.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 36.3\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 33.3$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.9\left(\mathrm{COD}-\mathrm{CH}_{2}\right) 32.2\left(\mathrm{~d}, \mathrm{~J}=32 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.7\left(\mathrm{SiOC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.3\left(\mathrm{COD}-\mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.6\left(\mathrm{CH}_{3} \mathrm{COSi}\right)$, $25.8\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}\right), 1.08\left(\mathrm{SiMe}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}-$ NMR (202.5 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 8.8 .{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$
$\delta(\mathrm{ppm})-62.6 . \mathrm{MS}(\mathrm{MALDI-TOF}) \mathrm{m} / \mathrm{z}(\%): 756\left(\left[\mathrm{M}-\left(\mathrm{BAr}_{\mathrm{F}}\right)\right]^{+}, 100\right)$. IR $\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2971 \mathrm{w}$, 2903w, 1610w, 1588w, 1438w, 1351m, 1272s, 1159m, 1117s, 1047w, 1028w, 989m, 886m, 837m, $744 \mathrm{w}, 715 \mathrm{~m}, 681 \mathrm{~m}$, 667s. $[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}-17.0\left(c 0.69, \mathrm{CHCl}_{3}\right)$. Elemental analysis for $\mathrm{C}_{66} \mathrm{H}_{62} \mathrm{NO}_{2} \mathrm{BF}_{24} \mathrm{SiPIr}(1619.27 \mathrm{~g} / \mathrm{mol})$ calcd \%: C, $48.96 ; \mathrm{H}, 3.86 ; \mathrm{N}, 0.87$; found: C, 48.69; H, 3.92; N, 1.12.

Ir-14-TES

Following the general procedure for the preparation $\mathbf{I r} \mathbf{- 1 4 - \mathbf { O H }}$, starting from 20.0 mg of ligand 14-TES ($40.0 \mu \mathrm{~mol}, 1.00$ equiv), 11.0 mg of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(20.0 \mu \mathrm{~mol}, 0.50$ equiv) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 37.0 mg of $\mathrm{NaBAr}_{\mathrm{F}}$ ($52.0 \mu \mathrm{~mol}$, 1.30 equiv), $65.0 \mathrm{mg}(40.0 \mu \mathrm{~mol}, 99 \%$ yield) of $\mathbf{I r} \mathbf{- 1 4 - T E S}$ were obtained as an orange solid. Crystallization of the product $\mathbf{I r}$-14TES from CHCl_{3} overlaid by n-heptane afforded crystals suitable for X-ray crystal analysis.
${ }^{1} \mathbf{H}-$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.76\left(\mathrm{dd}, J=10.9 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $7.72\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{ArF}-}\right), 7.60\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.54\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.52\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ArF}-p}\right), 7.39(\mathrm{~m}, 3 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 7.01\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 4.76(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{COD}-\mathrm{CH}), 3.57(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCH}, \mathrm{COD}-\mathrm{CH}), 2.58\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{COD}-\mathrm{CH}_{2}\right), 2.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$, $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.51\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 0.80\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.40(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 180.5(\mathrm{C}=\mathrm{N}), 161.9(\mathrm{q}$, $\left.J=50 \mathrm{~Hz}, C_{\mathrm{ArFi}}\right), 134.9\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 134.8\left(\mathrm{HC}_{\mathrm{ArF}-\mathrm{o}}\right), 132.8\left(C_{\mathrm{ArH}}\right), 131.2(\mathrm{~d}$,
$\left.J=5 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 131.1\left(C_{\mathrm{ArH}}\right), 129.6\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 129.0\left(C_{\mathrm{ArH}}\right), 128.8(\mathrm{q}, J=32 \mathrm{~Hz}$, $\left.C_{\text {Arf-m }}\right), 124.6\left(\mathrm{q}, J=273 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 117.5\left(\mathrm{H}_{\text {ArF-p }}\right), 94.4(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}), 93.1(\mathrm{~d}$, $J=12 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}), 84.5(\mathrm{OCH}), 74.2\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 74.0(\mathrm{NCH}), 63.0(\mathrm{COD}-\mathrm{CH}), 59.9$ $(\mathrm{COD}-\mathrm{CH}), 38.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 36.4\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 33.4\left(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.5(\mathrm{~d}, ~}^{\text {, }}\right.$ $\left.J=34 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 30.0\left(\mathrm{CH}_{3} \mathrm{COSi}\right), 28.4\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 27.1\left(\mathrm{~d}, J=12 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{2}\right), 26.1$ $\left(\mathrm{CH}_{3} \mathrm{COSi}\right)$, $25.9\left(\mathrm{COD}-\mathrm{CH}_{2}\right)$, $15.2\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $6.9\left(\mathrm{CH}_{3}\right.$ ethyl $)$, $6.5\left(\mathrm{CH}_{2}\right.$ ethyl). ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}-$ NMR (202.5 MHz, $\mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 9.0 .{ }^{\mathbf{1}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$ $\delta(\mathrm{ppm})-62.6 .{ }^{11} \mathbf{B}-\mathrm{NMR}\left(160.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-6.6$. MS (MALDI-TOF) m/z (\%): $798\left(\left[\mathrm{M}-\left(\mathrm{BAr}_{\mathrm{F}}\right)\right]^{+}, 100\right) . \mathbf{I R}\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2959 \mathrm{w}, 2923 \mathrm{w}, 2883 \mathrm{w}, 2855 \mathrm{w}, 1611 \mathrm{w}, 1574 \mathrm{w}$, $1460 \mathrm{w}, 1439 \mathrm{w}, 1352 \mathrm{~s}, 1273 \mathrm{~s}, 1215 \mathrm{w}, 1158 \mathrm{~s}, 1115 \mathrm{~s}, 1047 \mathrm{w}, 1027 \mathrm{w}, 890 \mathrm{~m}, 837 \mathrm{~m}, 803 \mathrm{w}$, $715 \mathrm{~m}, 680 \mathrm{~m} .[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-19.1\left(c 0.73, \mathrm{CHCl}_{3}\right)$.

$$
\rceil^{\Theta_{B A r_{F}}}
$$

Ir-14-TBDMS

Following the general procedure for the preparation of $\mathbf{I r} \mathbf{- 1 4 - \mathbf { O H }}$, starting from 44.0 mg ($88 \mu \mathrm{~mol}, 1.00$ equiv) of $\mathbf{1 4 - T B D M S}, 30.0 \mathrm{mg}(44.0 \mu \mathrm{~mol}, 0.50$ equiv) of bis(1,5cyclooctadiene)diiridium(I) dichloride and 102 mg ($115 \mu \mathrm{~mol}, 1.30$ equiv) of $\mathrm{NaBAr}_{\mathrm{F}}$, $109 \mathrm{mg}(66.0 \mu \mathrm{~mol}, 75 \%$ yield $)$ of product $\mathbf{I r}$ - $\mathbf{1 4}$-TBDMS were obtained as a yellow solid.
${ }^{1} \mathbf{H}-$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.81-7.75\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times H_{\mathrm{Ar}}, 8 \times \mathrm{H}_{\text {ArF-o }}\right)$, $7.60-7.58\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.55-7.52\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times H_{\mathrm{Ar}}, 4 \times \mathrm{H}_{\mathrm{ArF}-p}\right), 7.40-7.36\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $7.06-7.02\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.88(\mathrm{~m} \mathrm{1H}, \mathrm{OCH}), 4.78(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{COD}-\mathrm{C} H), 3.60-3.59(\mathrm{~m}, 1 \mathrm{H}$,

COD-CH), $3.56(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.70-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}, \mathrm{COD}-\mathrm{CH}_{2}\right), 2.51-2.45$ (m, 1H, COD-CH), 2.31-2.29 (m, 2H, COD-CH2), $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}$, COD-CH2 $), 1.90-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.79\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.66-1.61(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.55\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40-1.34(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.74\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right),-$ 0.28 (s, 1H, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 180.6(\mathrm{C}=\mathrm{N})$, $161.7\left(\mathrm{q}, J=50 \mathrm{~Hz}, C_{\mathrm{ArFi}}\right), 135.2\left(\mathrm{~d}, J=12 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 134.8\left(\mathrm{H} C_{\mathrm{ArF}-\mathrm{o}}\right), 132.6(\mathrm{~d}, J=2 \mathrm{~Hz}$, $\left.C_{\mathrm{ArH}}\right), 132.2\left(\mathrm{~d}, J=55 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 131.2\left(C_{\mathrm{ArH}}\right), 131.1\left(C_{\mathrm{ArH}}\right), 129.6\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 129.0$ $\left(\mathrm{d}, J=10 \mathrm{~Hz}, C_{\text {ArH }}\right), 128.9\left(\mathrm{q}, J=32 \mathrm{~Hz}, \mathrm{H} C_{\text {ArF-m }}\right), 128.8\left(\mathrm{~d}, J=54 \mathrm{~Hz}, C_{\text {ArH }}\right), 124.6(\mathrm{q}$, $\left.J=273 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 117.5\left(\mathrm{HC}_{\text {ArF-p }}\right), 94.2(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{COD}-C \mathrm{H}), 93.0(\mathrm{~d}, J=13 \mathrm{~Hz}, \mathrm{COD}-$ $C H), 84.5(\mathrm{OCH}), 74.4(\mathrm{NCH}), 74.4\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 62.8(\mathrm{COD}-\mathrm{CH}), 59.7(\mathrm{COD}-\mathrm{CH}), 38.9(\mathrm{~d}$, $J=2 \mathrm{~Hz},\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 36.4\left(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right), 33.7\left(\mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.0(\mathrm{~d}$, $\left.J=32 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 32.2\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 28.3\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 29.7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8(\mathrm{~d}, J=12 \mathrm{~Hz}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.7\left(\mathrm{COD}-\mathrm{CH}_{2}\right)$, $25.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.1\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 15.0$ $\left(\mathrm{CHCH}_{3}\right),-2.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right),-2.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(202.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$: $\delta(\mathrm{ppm}) 8.6 .{ }^{11} \mathbf{B}-\mathrm{NMR}\left(160.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-6.6 . \mathrm{MS}$ (MALDI-TOF) m/z
 1353m, 1273s, 1158m, 1115s, 1047w, 1019w, 1001w, 966w, 886m, 837m, 778w, 744w, 734w, $712 \mathrm{~m}, ~ 682 \mathrm{~m}, ~ 671 \mathrm{~m} .[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-21.8\left(c \quad 0.86, \mathrm{CHCl}_{3}\right)$. Elemental analysis for $\mathrm{C}_{69} \mathrm{H}_{68} \mathrm{NO}_{2} \mathrm{BF}_{24} \mathrm{SiPIr}(1661.35 \mathrm{~g} / \mathrm{mol})$ calcd $\%: \mathrm{C}, 49.88 ; \mathrm{H}, 4.13 ; \mathrm{N}, 0.84$; found: C, 49.59; H, 4.19; N, 0.91 .

Ir-14-OAc

Following the general procedure for the preparation of $\mathbf{I r} \mathbf{- 1 4 - \mathbf { O H }}$, starting from 42.0 mg ($99.0 \mu \mathrm{~mol}, 1.00$ equiv) of ligand 14-OAc, $67.0 \mathrm{mg}(44.5 \mu \mathrm{~mol}, 0.50$ equiv) of bis($1,5-$ cyclooctadiene)diiridium(I) dichloride and 113 mg ($128 \mu \mathrm{~mol}, 1.30$ equiv) of $\mathrm{NaBAr}_{\mathrm{F}}$, $128 \mathrm{mg}(81.2 \mu \mathrm{~mol}, 82 \%$ yield $)$ of product $\mathbf{I r}$-14-OAc were obtained as an orange solid.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.76\left(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $7.72\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{ArF}-}\right), 7.60\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.53\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times H_{\mathrm{Ar}}, 4 \times \mathrm{H}_{\mathrm{ArF}-p}\right), 7.38\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $7.02\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.94(\mathrm{~m}, 1 \mathrm{H}$, COD-CH), $4.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 4.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH})$, $4.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 2.57\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}, \mathrm{COD}^{2} \mathrm{CH}_{2}\right.$, COD-CH), 2.31 (m, 2H, COD-CH2), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.93(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.61(\mathrm{~d}$, $\left.J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 0.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right) \cdot{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 181.0(\mathrm{C}=\mathrm{N}), 170.1(\mathrm{C}=\mathrm{O})$ $161.7\left(\mathrm{q}, J=50 \mathrm{~Hz}, C_{\mathrm{ArFi}}\right), 134,9\left(C_{\mathrm{ArH}}\right), 134.8\left(\mathrm{H} C_{\mathrm{ArF}-\mathrm{o}}\right), 132.8\left(\mathrm{~d}, J=3 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 131.9(\mathrm{~d}$, $\left.J=55 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 131.3\left(\mathrm{~d}, J=3 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 131.2\left(C_{\mathrm{ArH}}\right), 131.1\left(C_{\mathrm{ArH}}\right), 129.7(\mathrm{~d}, J=11 \mathrm{~Hz}$, $\left.C_{\text {ArH }}\right), 129.2\left(\mathrm{~d}, J=11 \mathrm{~Hz}, C_{\text {ArH }}\right), 128.9\left(\mathrm{qq}, J=3 \mathrm{~Hz}, J=32 \mathrm{~Hz}, \mathrm{HC}_{\text {ArF-m }}\right), 124.6(\mathrm{q}$, $\left.J=273 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 117.5\left(\mathrm{H} C_{\text {Arf-p }}\right), 94.7(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{COD}-C \mathrm{H}), 93.5(\mathrm{~d}, J=13 \mathrm{~Hz}, \mathrm{COD}-$ $C H), 83.9(\mathrm{OCH}), 80.9\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 70.3(\mathrm{NCH}), 63.7(\mathrm{COD}-\mathrm{CH}), 60.6(\mathrm{COD}-\mathrm{CH}), 39.0(\mathrm{~d} \text {, }}\right.$ $\left.J=2 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{2}\right), 36.5\left(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right), 33.4\left(\mathrm{~d}, J=6 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.1(\mathrm{~d}$, $\left.J=32 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 32.3\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 28.3\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 27.0\left(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8$
$\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 25.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.1\left(\mathrm{C}=\mathrm{OCH}_{3}\right), 21.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.7\left(\mathrm{CHCH}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}-$ NMR (202.5 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 9.1 .{ }^{19} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$ $\delta(\mathrm{ppm})-62.6 .{ }^{11} \mathbf{B}-\mathrm{NMR}\left(160.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-6.6$. MS (MALDI-TOF) m/z (\%): $726\left(\left[\mathrm{M}^{-}\left(\mathrm{BAr}_{\mathrm{F}}\right)\right]^{+}, 100\right) . \mathbf{I R}\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2972 \mathrm{w}, 1739 \mathrm{~m}, 1609 \mathrm{w}, 1582 \mathrm{w}, 1474 \mathrm{w}, 1437 \mathrm{w}$, 1353s, 1272s, 1114s, 1049w, 1020w, 1000w, 938w, 886m, 838m, 736m, $710 \mathrm{~m}, 681 \mathrm{~m}, 669 \mathrm{~m}$. $[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-15.6$ (c 1.00, CHCl_{3}). Elemental analysis for $\mathrm{C}_{65} \mathrm{H}_{56} \mathrm{NO}_{3} \mathrm{BF}_{24} \mathrm{PIr}(1589.13 \mathrm{~g} / \mathrm{mol})$ calcd \%: C, 49.13; H, 3.55; N, 0.88; found: C, 48.86; H, 3.50; N, 0.93.

Serine-derived NeoPHOX ligands

17: (S)-Methyl 2-(3-chloro-2,2-dimethylpropanamido)-3-hydroxypropanoate

To a solution of L-serine methylester hydrochloride ($1.00 \mathrm{~g} ; 6.43 \mathrm{mmol}, 1.00$ equiv) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.7 \mathrm{~mL}\left(19.3 \mathrm{mmol}, 3.00\right.$ equiv) of NEt_{3} were added at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}, 0.83 \mathrm{~mL}$ ($6.43 \mathrm{mmol}, 1.00$ equiv) of 3-chloropivaloyl chloride was added drop wise and the mixture was stirred for 1 h at rt . The reaction mixture was poured into a saturated solution of NaHCO_{3} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over MgSO_{4} and concentrated. Column chromatography on silica gel using EtOAc as eluent $\left(R_{\mathrm{f}} 0.4\right)$ gave $1.21 \mathrm{~g}(5.08 \mathrm{mmol}, 79 \%$ yield $)$ of product 17 as a colorless oil.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.64-4.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, 3.92 (ddd, $\left.J=43.8 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.61(\mathrm{dd}$, $\left.J=38.7 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR
($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 175.3(C=\mathrm{O}), 171.0(\mathrm{COO}), 62.8\left(\mathrm{CH}_{2} \mathrm{OH}\right), 54.9(\mathrm{CH})$, $52.7\left(\mathrm{COOCH}_{3}\right)$, $52.7\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 44.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathrm{MS}(\mathrm{FAB})$ $\mathrm{m} / \mathrm{z}(\%) 239$ (10), $238\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 220$ (19), 178 (14), 102 (70), 91 (28), 55 (9). IR (\tilde{v} $\left.\left[\mathrm{cm}^{-1}\right]\right) 3382 \mathrm{br} \mathrm{w}, 2954 \mathrm{w}, 1739 \mathrm{~m}, 1651 \mathrm{~s}, 1517 \mathrm{~m}, 1252 \mathrm{w}, 1248 \mathrm{w}, 1286 \mathrm{~m}, 1209 \mathrm{~m}, 1101 \mathrm{w}$, $1078 \mathrm{~m} \cdot[\alpha]^{\mathbf{2 0}}{ }_{\mathrm{D}}=+21.0\left(c 1.10, \mathrm{CHCl}_{3}\right)$. Elemental analysis: calc.: C, $45.48 ; \mathrm{H}, 6.79 ; \mathrm{N}, 5.89$; found: C, 45.15; H, 6.72; N, 5.80.

18: (S)-Methyl 2-(1-chloro-2-methylpropan-2-yl)-4,5-dihydrooxazole-4-carboxylate

To a solution of 700 mg ($2.95 \mathrm{mmol}, 1.00$ equiv) of amide 17 in 15 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}, 0.43 \mathrm{~mL}$ DAST ($3.24 \mathrm{mmol}, 1.10$ equiv) was added drop wise. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}, 610 \mathrm{mg}$ ($4.42 \mathrm{mmol}, 1.50$ equiv) of solid anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added and the reaction mixture was allowed to warm to rt . The reaction mixture was poured into a saturated aqueous solution of NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. After drying over MgSO_{4}, the solvent was removed to give 660 mg of crude product as an ochre-colored oil. Kugelrohr distillation ($110^{\circ} \mathrm{C} / 0.08 \mathrm{Torr}$) afforded $612 \mathrm{mg}(2.80 \mathrm{mmol}, 95 \%$ yield) of product 18 as a colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.75(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NC} H), 4.50(\mathrm{dd}, J=8.7$ $\left.\mathrm{Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.41\left(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{Me}$), $3.62\left(\mathrm{q}, \mathrm{J}=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.27(\mathrm{OC}=\mathrm{N}), 171.58(\mathrm{C}=\mathrm{O}), 69.69\left(\mathrm{OCH}_{2}\right), 68.14(\mathrm{NCH}), 52.65$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $52.28\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 39.06\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 23.73\left(\mathrm{CH}_{3}\right), 23.65\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$
(\%): $219\left(\mathrm{M}^{+}, 33\right), 187$ (30), 119 (18), 91 (100), 55 (41). IR ($\left.\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3406 \mathrm{w}, 2955 \mathrm{w}$, $1728 \mathrm{~m}, 1649 \mathrm{~s}, 1633 \mathrm{~m}, 1499 \mathrm{~m}, 1472 \mathrm{w}, 1435 \mathrm{~m}, 1387 \mathrm{w}, 1364 \mathrm{w}, 1329 \mathrm{w}, 1244 \mathrm{~m}, 1171 \mathrm{~m}$, $1140 \mathrm{w}, 962 \mathrm{w}, 905 \mathrm{w}, 770 \mathrm{~m} .[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}=108.4\left(c \quad 0.95, \mathrm{CHCl}_{3}\right)$. Elemental analysis: calc.: C , 49.21; H, 6.42; N, 6.38; found: C, 48.27; H, 6.13; N, 6.08.

19: (S)-2-(2-(1-Chloro-2-methylpropan-2-yl)-4,5-dihydrooxazol-4-yl)propan-2-ol

To a solution of 270 mg (3.19 mmol , 1.00 equiv) of oxazoline 18 in 15 mL dry THF, 2.55 mL of MeMgCl solution (3 M in THF; 7.65 mmol , 2.40 equiv) were added drop wise at $0^{\circ} \mathrm{C}$ and the solution was stirred at this temperature for 1.5 h . After quenching with $\mathrm{NH}_{4} \mathrm{Cl}$ and extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 245 mg of a yellowish oil. Column chromatography on silica gel with EtOAc/MeOH (9:1) afforded 210 mg ($2.45 \mathrm{mmol}, 78 \%$) of product 19 as a colorless oil.
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.24\left(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$), $4.04(\mathrm{dd}$, $J=10.0 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NC} H), 3.65-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 1.92(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 1.33(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7(\mathrm{OC}=\mathrm{N}), 75.3(\mathrm{NCH}),. 71.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 69.1\left(\mathrm{OCH}_{2}\right)$, $52.9\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$, $39.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $24.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $24.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 23.9 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathbf{M S}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%): 219\left(\mathrm{M}^{+}, 33\right), 187$ (30), 119 (18), 91 (100), 55 (41). IR $\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 3406 \mathrm{w}, 2955 \mathrm{w}, 1728 \mathrm{~m}, 1649 \mathrm{~s}, 1633 \mathrm{~m}, 1499 \mathrm{~m}, 1472 \mathrm{w}, 1435 \mathrm{~m}, 1387 \mathrm{w}, 1364 \mathrm{w}$, $1329 \mathrm{w}, 1244 \mathrm{~m}, 1171 \mathrm{~m}, 1140 \mathrm{w}, 962 \mathrm{w}, 905 \mathrm{w}, 770 \mathrm{~m} .[\alpha]^{\mathbf{2 0}}{ }_{\mathrm{D}}=+52.2\left(c 1.04, \mathrm{CHCl}_{3}\right)$.

20: (S)-2-(2-(1-(Diphenylphosphino)-2-methylpropan-2-yl)-4,5-dihydrooxazol-4-yl)propan-2ol

A solution of KPPh_{2} in dry THF ($1.1 \mathrm{~mL} ; 0.5 \mathrm{M}, 546 \mu \mathrm{~mol}, 1.2$ equiv) was added to a solution of 100 mg ($455 \mu \mathrm{~mol}, 1.00$ equiv) of 19 in 15 mL of dry THF and the reaction mixture was refluxed overnight. The solvent was evaporated and the residue dissolved in a mixture of 15 mL of $\mathrm{Et}_{2} \mathrm{O}, 3 \mathrm{~mL}$ of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and 2 mL of water. The phases were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product (210 mg) was purified by column chromatography on silica gel using EtOAc/Hex 1:2 ($R_{\mathrm{f}} 0.25$) and then EtOAc/Hex 1:1 (R_{f} $0.35)$ as eluent to afford $65 \mathrm{mg}(177 \mu \mathrm{~mol}, 39 \%$ yield $)$ of product $\mathbf{2 0}$ as a white solid.
${ }^{1}$ H-NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 7.51-7.58\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 7.34-7.28\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.26-4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OC} H)$,), 4.05-4.02 (m, 1H, OCH), 3.953,93 (m, 1H, NCH), 2.63 (br s, 1H, OH), 2.57 (dd, 1H, $\left.J=14.2 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.37$ (dd, $\left.1 \mathrm{H}, J=14.2 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24$ (s, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 174.0(C=\mathrm{N}), 139.1\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 138.6\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 133.1(\mathrm{~d}$, $\left.J=19 \mathrm{~Hz}, H C_{\mathrm{Ar}}\right), 132.8\left(\mathrm{~d}, J=19 \mathrm{~Hz}, \mathrm{HC}_{\mathrm{Ar}}\right), 128.7\left(C_{\mathrm{ArH}}\right), 128.5\left(C_{\mathrm{ArH}}\right), 128.5\left(C_{\mathrm{ArH}}\right), 128.4$ $\left(C_{\text {ArH }}\right), 74.8(\mathrm{NCH}), 71.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 68.7\left(\mathrm{OCH}_{2}\right), 41.2\left(\mathrm{~d}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 37.3(\mathrm{~d}$, $J=8 \mathrm{~Hz},\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 27.9\left(\mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.4\left(\mathrm{OC}\left(C \mathrm{H}_{3}\right)_{2}\right), 27.3(\mathrm{~d}, J=9 \mathrm{~Hz}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.0\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right) \cdot{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (202.5 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})$ 21.4. IR $(\tilde{v}$ $\left.\left[\mathrm{cm}^{-1}\right]\right) 3370 \mathrm{w}, 3060 \mathrm{w}, 2974 \mathrm{w}, 2929 \mathrm{w}, 1641 \mathrm{~m}, 1433 \mathrm{~m}, 1370 \mathrm{w}, 1185 \mathrm{~m}, 1130 \mathrm{~m}, 969 \mathrm{~m}, 747 \mathrm{~m}$, $697 \mathrm{~s}, 505 \mathrm{~m} .[\alpha]^{\mathbf{2 0}}{ }_{\mathrm{D}}=+29.2\left(c 1.09, \mathrm{CHCl}_{3}\right)$.

20-TBDMS: (S)-4-(2-((tert-Butyldimethylsilyl)oxy)propan-2-yl)-2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-4,5-dihydrooxazole

2,6-Lutidine ($70 \mu \mathrm{~L} ; 610 \mu \mathrm{~mol}, 5.00$ equiv) was added drop wise to a solution of 45.0 mg ($122 \mu \mathrm{~mol}, 1.00$ equiv) of alcohol 20 in 3 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. Then $56 \mu \mathrm{~L}(d=1.151$; $244 \mathrm{mmol}, 2.00$ equiv) of TBDMSOTf were added and the solution was stirred for 1 h at rt . The solvent was evaporated and the residue dissolved in $\mathrm{Et}_{2} \mathrm{O}$. After evaporation of the solvent and drying in high vacuum, 60 mg of crude product was obtained, which was purified by column chromatography on silica gel with $\mathrm{EtOAc} / \mathrm{Hex}\left(1: 9 ; R_{\mathrm{f}} 0.25\right)$ to afford 32.0 mg ($329 \mu \mathrm{~mol}, 54 \%$ yield) of ligand 20-TBDMS.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.48-7.44\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H}$, $\left.H_{\text {Ar }}\right), 4.20-4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.77-3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}, 1 \times \mathrm{OCH}_{2}\right), 2.52-2.41(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{P}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.82\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{BuOSi}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{BuOSi}\right), 0.07(\mathrm{~s}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{BuOSi}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 173.3(\mathrm{C}=\mathrm{N}), 139.7(\mathrm{~d}$,
$\left.J=13 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 139.6\left(\mathrm{~d}, J=13 \mathrm{~Hz}, C_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, J=20 \mathrm{~Hz}, C_{\mathrm{ArH})}\right), 132.8(\mathrm{~d}, J=20 \mathrm{~Hz}$, $\left.C_{\text {ArHo }}\right), 128.4-128.3\left(\mathrm{~m}, C_{\text {ArHm,p }}\right), 75.7\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 74.7(\mathrm{NCH}), 68.7\left(\mathrm{OCH}_{2}\right), 41.1(\mathrm{~d}, ~}^{\text {, }}\right.$ $\left.J=17 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right), 36.7\left(\mathrm{~d}, J=17 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{2}\right), 28,7\left(\mathrm{OC}\left(C \mathrm{H}_{3}\right)_{2}\right), 27.5(\mathrm{~d}, J=9 \mathrm{~Hz}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.1\left(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-2.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-2.2\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(202.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})-23.4$. MS (EI, 70 eV): m/z (\%): 483 (M+, 2), 468 (8), 426 (46), 406 (42), 310 (78), 274 (12), 227 (53), 173 (100) 121 (21), 73 (38). IR ($\left.\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2963 \mathrm{~m}, 2947 \mathrm{~m}, 2927 \mathrm{~m}, 2883 \mathrm{~m}, 2853 \mathrm{~m}$, 1733w, 1680m, 1580w, 1470m, 1437m, 1359m, 1303w, 1251m, 1186s, 1160s, 1118s, 1102m, $1051 \mathrm{~s}, ~ 1034 \mathrm{~s}, 1004 \mathrm{~m}, ~ 985 \mathrm{~m}, ~ 897 \mathrm{w}, ~ 822 \mathrm{~s}, 772 \mathrm{~s}, 738 \mathrm{~s}, 714 \mathrm{~s}, 652 \mathrm{~s} .[\alpha]^{20}{ }_{\mathrm{D}}=+12.5(c 1.05$, CHCl_{3}).

Ir-20-TBDMS:

Following the general procedure for the preparation $\mathbf{I r} \mathbf{- 1 4 - O H}$, using $30.0 \mathrm{mg}(62.0 \mu \mathrm{~mol}$, 1.00 equiv) of 20-TBDMS, $21.0 \mathrm{mg}(31.0 \mu \mathrm{~mol}, \quad 0.50$ equiv) of bis(1,5cyclooctadiene)diiridium(I) dichloride in 3 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $72.0 \mathrm{mg}(81.0 \mu \mathrm{~m}$, 1.30 equiv) of $\mathrm{NaBAr}_{\mathrm{F}}, 79.0 \mathrm{mg}$ ($47.7 \mu \mathrm{~mol}, 77 \%$ yield) of complex $\mathbf{I r}$-20-TBDMS were obtained as a yellow solid.
${ }^{1} \mathbf{H}$-NMR ($\left.500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 7.81-7.72\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times H_{\mathrm{Ar}}, 8 \times \mathrm{H}_{\mathrm{ArF-o}}\right)$, $7.60-7.55\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.55-7.49\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times H_{\mathrm{Ar}}, 4 \times \mathrm{H}_{\mathrm{ArF}-p}\right), 7.41-7.35\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $7.08-6.96\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.88\left(\mathrm{dd}, J=9.7 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-$
$\mathrm{CH}), 4.81$ - 4.75 (m, 1H, COD-CH), $4.37\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.81(\mathrm{dd}, J=9.8 \mathrm{~Hz}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 2.68-2.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}, \mathrm{COD}^{2}-\mathrm{CH}_{2}\right)$, 2.48 - $2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13-2.02$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.51(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43-1.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right) 0.84(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.69\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 180.2(\mathrm{~d}, J=2 \mathrm{~Hz}, C=\mathrm{N}), 161.8(\mathrm{q}$, $\left.J=50 \mathrm{~Hz}, C_{\mathrm{ArFi}}\right), 135.1\left(\mathrm{~d}, J=12 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 134.8\left(\mathrm{H}_{\mathrm{ArF}-\mathrm{o}}\right), 132.8\left(\mathrm{~d}, J=2 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 132.3$ (d, $\left.J=55 \mathrm{~Hz}, C_{\mathrm{Ar}}\right) 131.2\left(\mathrm{~d}, J=2 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 131.1\left(\mathrm{~d}, J=10 \mathrm{~Hz}, C_{\mathrm{ArH}}\right) 129.6(\mathrm{~d}, J=11 \mathrm{~Hz}$, $\left.C_{\text {ArH }}\right), 129.1\left(\mathrm{~d}, J=10 \mathrm{~Hz}, C_{\mathrm{ArH}}\right), 128.9\left(\mathrm{q}, J=32 \mathrm{~Hz}, \mathrm{HC}_{\mathrm{ArF}-m}\right), 128.7\left(\mathrm{~d}, J=54 \mathrm{~Hz}, C_{\mathrm{ArH}}\right)$, $124.6\left(\mathrm{q}, J=273 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 117.5\left(\mathrm{HC}_{\text {ArF-p }}\right), 94.2(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{COD}-C \mathrm{H}), 92.1(\mathrm{~d}, J=13 \mathrm{~Hz}$, COD- CH), $73.9(\mathrm{NCH}), 73.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 71.6\left(\mathrm{OCH}_{2}\right), 63.3(\mathrm{COD}-\mathrm{CH}), 60.3(\mathrm{COD}-\mathrm{CH})$, $38.9\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 36.4\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 33.8\left(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.2\left(\mathrm{~d}, J=32 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{P}\right)$, $32.4\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 28.7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.1\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 27.0\left(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.6$ $\left(\mathrm{COD}-\mathrm{CH}_{2}\right), 25.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.2\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-2.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right),-2.9$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right) \cdot{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}\left(202.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})$ 9.2. MS (MALDI-TOF) $\mathrm{m} / \mathrm{z}(\%): 784\left(\left[\mathrm{M}^{-}\left(\operatorname{BAr}_{\mathrm{F}}\right)\right]^{+}, 100\right) . \mathbf{I R}\left(\tilde{v}\left[\mathrm{~cm}^{-1}\right]\right) 2963 \mathrm{w}, 2947 \mathrm{w}, 1610 \mathrm{w}, 1580 \mathrm{w}, 1437 \mathrm{w}$, $1351 \mathrm{~m}, 1271 \mathrm{~s}, 1160 \mathrm{~m}, 1114 \mathrm{~s}, 1103 \mathrm{~s}, 1199 \mathrm{~s}, 1196 \mathrm{~s}, 1001 \mathrm{~m}, ~ 970 \mathrm{~m}, ~ 895 \mathrm{w}, 886 \mathrm{~m}, 838 \mathrm{~m}$, $777 \mathrm{~m}, 743 \mathrm{~m}, 715 \mathrm{~s}, 710 \mathrm{~s}, 668 \mathrm{~s} .[\alpha]^{20}{ }_{\mathrm{D}}=-17.4\left(c 0.70, \mathrm{CHCl}_{3}\right)$. Elemental analysis: calc.: C , 49.88; H, 4.13; N, 0.84; found: C, 49.59; H, 4.19; N, 0.91.

General procedure for allylic substitution

A solution of 1.8 mg of $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}(0.01 \mathrm{mmol})$ and 0.025 mmol of the appropriate ligand in 1.2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was degassed in a Young tube by three freeze-pump-thaw cycles and then stirred for 2 h at $50^{\circ} \mathrm{C}$. In a second Young tube, 1.00 mmol of the substrate was
dissolved in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 396 mg of dimethyl malonate (3.00 mmol), BSA ($0.73 \mathrm{~mL} ; 610 \mathrm{mg} ; 3.00 \mathrm{mmol}$) and 1 mg of dried KOAc were added. The mixture was degassed by three freeze-pump-thaw cycles and then the catalyst solution was added. The resulting reaction mixture was stirred at rt for 24 h under argon. For workup the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and quenched by addition of 20 mL of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and the combined organic extracts were dried over MgSO_{4}. After removal of the solvent and column chromatography on silica gel (hexanes/EtOAc/Et ${ }_{3} \mathrm{~N}$ 18:1:1) the product was obtained as a white solid.

Determination of the enantiomeric excess

HPLC (Daicel Chiracel AD-H, heptane/isopropanol 97:3, $0.9 \mathrm{mLimin}^{-1}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}$); $t_{\mathrm{R}}=16.3(R), 17.9(S) \mathrm{min}$.

GC $\left(\beta\right.$-cyclodextrin $\left.\mathrm{PM}, 130^{\circ} \mathrm{C}, 100 \mathrm{kPa}\right) ; t_{\mathrm{R}}=21.7(R), 23.7(S) \mathrm{min}$.

Integration of the OMe peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum using $\mathrm{Eu}(\mathrm{hfc})_{3}$ as chiral shift reagent.

Asymmetric hydrogenation

All hydrogenation reactions were performed according to a published procedure [1] at rt under 50 bar of H_{2} gas with $1 \mathrm{~mol} \%$ of catalyst (substrate concentration $0.2 \mathrm{~mol} / \mathrm{L}$) in dichloromethane (Aldrich, crown cap).

Product analyses

Hydrogenation of E-1,2-diphenylpropene:
GC: Restek Rtx-1710 column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), $60 \mathrm{kPa} \mathrm{He},\left(100{ }^{\circ} \mathrm{C}-2 \mathrm{~min}-\right.$ $\left.7 \mathrm{~K} / \mathrm{min}-250^{\circ} \mathrm{C}-10 \mathrm{~min}\right): t_{\mathrm{R}}=18.2 \mathrm{~min}($ product $), 23.8 \mathrm{~min}($ starting material)

HPLC: (Diacel Chiracel OJ ($2.6 \times 250 \mathrm{~mm}$), heptane/isopropanol 99:1, $0.5 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $220 \mathrm{~nm}, t_{R}=15.6 \mathrm{~min}(R), 23.8 \mathrm{~min}(S)$

Hydrogenation of ethyl E-2-methylcinnamate:
GC: Chiraldex γ-cyclodextrin TFA G-TA $(30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.12 \mu \mathrm{~m}) 60 \mathrm{kPa} \mathrm{H}_{2},\left(85{ }^{\circ} \mathrm{C}-\right.$ $\left.50 \mathrm{~min}-10 \mathrm{~K} / \min -160^{\circ} \mathrm{C}\right): t_{\mathrm{R}}=42.9 \mathrm{~min}((R)$-product $), 44.9 \mathrm{~min}((S)$-product $), 57.0 \mathrm{~min}$ (starting material).

Hydrogenation of E-2-methyl-3-phenylprop-2-enol:
GC: Restek Rtx-1710 column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), $60 \mathrm{kPa} \mathrm{He},\left(100{ }^{\circ} \mathrm{C}-2 \mathrm{~min}-\right.$ $\left.7 \mathrm{~K} / \mathrm{min}-250^{\circ} \mathrm{C}-10 \mathrm{~min}\right): t_{\mathrm{R}}=14.6 \mathrm{~min}($ product $), 16.5 \mathrm{~min}($ starting material).

HPLC: (Diacel Chiracel OD-H ($2.6 \times 250 \mathrm{~mm}$), heptane/isopropanol $95: 5,0.5 \mathrm{~mL} / \mathrm{min}$, $40^{\circ} \mathrm{C}, 200 \mathrm{~nm}, t_{\mathrm{R}}=15.3 \min (+), 17.5 \min (-)$.

Hydrogenation of E-phenyl-(1-phenylethylidene)amine:
GC: Restek Macherey-Nagel Optima 5-Amin ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.5 \mu \mathrm{~m}$), 60 kPa He , $\left(150{ }^{\circ} \mathrm{C}-7 \mathrm{~K} / \mathrm{min}-250^{\circ} \mathrm{C}-10 \mathrm{~min}\right): t_{\mathrm{R}}=12.8 \mathrm{~min}($ product $), 13.2 \mathrm{~min}($ starting material $)$

HPLC: (Diacel Chiracel OD-H ($2.6 \times 250 \mathrm{~mm}$), heptane/isopropanol 99:1, $0.5 \mathrm{~mL} / \mathrm{min}$, $20^{\circ} \mathrm{C}, 210 \mathrm{~nm}, t_{\mathrm{R}}=24.6 \min (S), 33.0 \mathrm{~min}(R)$.

Crystallographic data

X-ray crystal structures were measured by Dr. Markus Neuburger (Department of Chemistry, University of Basel) on a Bruker Nonius KappaCCD diffractometer using graphitemonochromated $\mathrm{MoK} \alpha$ radiation and solved using direct methods (Sir97, [2] Superflip [3] or SHELX [4]) and refined in Crystals [5]. Least-squares refinement against F was carried out on all non-hydrogen atoms. Chebychev polynomial weights were used to complete the refinement [6]. The absolute configuration was be determined by definition of the flack parameter [7]. Data were recorded at 123 K . Crystals were usually grown by dissolving the
complex in dichloromethane or chloroform and carefully overlaying the solution with n heptane. The crystals were mounted with paraffin on a glass fiber goniometer head.

Crystallographic data of the complexes ser-PHOX-OMe (CCDC 1473372), Ir-14-TES (CCDC 1473373), Ir-14-TMS (CCDC 1473374), Ir-14-TBDMS (CCDC 1473375), Ir-20TBDMS (CCDC 1473376), and Ir-1b (CCDC 1473377) have been deposited at the Cambridge Crystallographic Data Center. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_req.uest/cif.

Compound	Ir-14-TES	Ir-14-TMS
formula	$\mathrm{C}_{70} \mathrm{H}_{69} \mathrm{BCl}_{3} \mathrm{~F}_{24} \mathrm{IrNO}_{2} \mathrm{PSi}$	$\mathrm{C}_{67} \mathrm{H}_{63} \mathrm{BCl}_{3} \mathrm{~F}_{24} \mathrm{IrNO} 2 \mathrm{PSi}$
formula weight (gmol^{-1})	1780.72	1738.64
shape	block	block
color	orange	orange
temperature [K]	123	123
crystal size [mm^{3}]	$0.060 \cdot 0.130 \cdot 0.240$	$0.070 \cdot 0.150 \cdot 0.240$
crystal system	orthorhombic	orthorhombic
space group	P $2_{1} 2_{1} 2_{1}$	P $2_{1} 2_{1} 2_{1}$
$\mathrm{a}[\AA]$	14.8070(10)	15.1113(5)
b [Å]	17.4577(12)	17.7434(7)
c [\AA]	28.8726(19)	27.3178(10)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90
volume $[\AA]^{3}$	7463.5(9)	7324.6(5)
Z	4	4
density (calc.) $\left[\mathrm{g} \mathrm{cm}^{-1}\right]$	1.585	1.577
$\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	2.038	2.075
transmission (min/max)	0.77 / 0.88	0.73 / 0.86
Θ range for data collection [$\left.{ }^{\circ}\right]$	1.546-27.899	1.770-29.136
radiation (λ [\AA] $)$	0.71073	0.71073
F(000)	3560	3464
measured reflections	68593	113578
independent reflections	17796 (merging r $=0.028$)	19676 (merging r $=0.032$)
observed reflections	16608 (I>2.0\%(I))	16944 (I>2.06(I))
parameters refined	938	1022
R	0.0239	0.0252
R_{w}	0.0286	0.0329
goodness of fit on F	1.0808	1.1085
flack parameter	-0.010(2)	-0.008(2)

Compound	Ir-14-TBDMS	Ir-20-TBDMS
formula	$\mathrm{C}_{69} \mathrm{H}_{68} \mathrm{BF}_{24} \mathrm{IrNO}_{2} \mathrm{PSi}$	$\mathrm{C}_{68} \mathrm{H}_{66} \mathrm{BF}_{24} \mathrm{IrNO}_{2} \mathrm{PSi}$
formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	1661.35	1647.32
shape	block	block
color	orange	orange
temperature [K]	123	123
crystal size $\left[\mathrm{mm}^{3}\right]$	$0.060 \cdot 0.170 \cdot 0.220$	$0.070 \cdot 0.180 \cdot 0.210$
crystal system	orthorhombic	orthorhombic
space group	P $212_{1} 2_{1}$	P $212_{1} 2_{1}$
a [Å]	13.0330(3)	12.9974(3)
b [A]	19.5152(4)	19.2190(4)
c [\AA]	27.7197(6)	27.4554(5)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90
volume $[\mathrm{A}]^{3}$	7050.3(3)	6858.3(2)
Z	4	4
density (calc.) $\left[\mathrm{g} \mathrm{cm}^{-1}\right]$	1.565	1.595
$\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	2.042	2.098
transmission (min/max)	0.71 / 0.88	0.69 / 0.86
Θ range for data collection [$\left.{ }^{\circ}\right]$	1.727-37.789	1.733-37.789
radiation $(\lambda[\AA])$	0.71073	0.71073
$\mathrm{F}(000)$	3328	3296
measured reflections	297104	296707
independent reflections	37854 (merging $\mathrm{r}=0.044$)	36782 (merging $\mathrm{r}=0.042$)
observed reflections	30699 ($\mathrm{l}>2.0 \sigma(\mathrm{I})$)	31942 ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
parameters refined	1031	930
R	0.0246	0.0222
$\mathrm{R}_{\text {w }}$	0.0326	0.0265
goodness of fit on F	1.0931	1.0944
flack parameter	-0.0085(19)	-0.0087(15)

References

[1] Woodmansee, D. H.; Müller, M.-A.; Tröndlin, L.; Hörmann, E.; Pfaltz, A. Chem. Eur. J. 2012, 18, 13780-13786.
[2] Altomare, A.; Caserano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343-350.
[3] Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786-790.
[4] Sheldrick, G. Acta Crystallographica Section A 2008, 64, 112-122.
[5] Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.
[6] Carruther, J. R.; Watkin, D. J. Acta Crystallographica Section A 1979, 35, 698-699.
[7] Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143-1148.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR 11

${ }^{13} \mathrm{C}$ NMR 11

${ }^{1} \mathrm{H}$ NMR 12

${ }^{13} \mathrm{C}$ NMR 12

${ }^{1} \mathrm{H}$ NMR 13

${ }^{13} \mathrm{C}$ NMR 13

${ }^{1} \mathrm{H}$ NMR 14

${ }^{13} \mathrm{C}$ NMR 14

${ }^{1} \mathrm{H}$ NMR 14-TES

${ }^{13} \mathrm{C}$ NMR 14-TES

${ }^{1} \mathrm{H}$ NMR Ir-14-TES

${ }^{13} \mathrm{C}$ NMR Ir-14-TES

${ }^{1} \mathrm{H}$ NMR 14-TBDMS

${ }^{13} \mathrm{C}$ NMR 14 -TBDMS

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR $\operatorname{Ir}-14$-TBDMS

${ }^{1} \mathrm{H}$ NMR 17

${ }^{13} \mathrm{C}$ NMR 17

${ }^{1} \mathrm{H}$ NMR 18

${ }^{13} \mathrm{C}$ NMR 18

${ }^{1} \mathrm{H}$ NMR 19

${ }^{13} \mathrm{C}$ NMR 19

${ }^{1}$ H NMR 20

${ }^{13} \mathrm{C}$ NMR 20

