Supporting Information

for

Reactivity studies of pincer bis-protic \mathbf{N}-heterocyclic carbene complexes of platinum and palladium under basic conditions

David C. Marelius ${ }^{1}$, Curtis E. Moore ${ }^{2}$, Arnold L. Rheingold ${ }^{2}$ and Douglas B. Grotjahn*1

Address: ${ }^{1}$ Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA and ${ }^{2}$ Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA

Email: Douglas B. Grotjahn - dbgrotjahn@mail.sdsu.edu
* Corresponding author

Experimental information and NMR spectroscopy figures

TABLE OF CONTENTS

1. NMR data for 6-Pd, 6-Pt, 4-PtCl, 7-Pt, 8-Pt S2-S9
2. ROESY 1D spectrum of 6-Pt S10
3. NMR spectra discussed in paper S11-S16
4. General experimental S17
5. Synthesis of 6-Pd and 6-Pt S17-S18
6. Crystal data and structure refinement for 6-Pd and 6-Pt S19-S20

Figure S1: NMR data for 6-Pt in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

$\mathrm{H}-{ }^{15} \mathrm{~N} \mathbf{g H M B C A D}$		
H	bonds	N
8.01	3	-215.3
8.01	2	-197.8
7.72	3	-197.8
7.53	3	-197.0
7.41	3	-209.9
7.41	2	-197.0
${ }^{\mathrm{a}} \mathrm{J}_{\mathrm{nxh}}=5 \mathrm{~Hz}$		
$\mathbf{J}_{1 \times \mathrm{ln}}=90 \mathrm{~Hz}$		

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$	
HSQCAD	
H	C
8.15	115.3
8.08	113.7
8.01	111.9
7.72	109.8
7.53	110.8
7.41	109.3
1.58	32.6
1.52	32.6
1.33	31.7
1.09	29.9

$\mathbf{g C O S Y}$
$8.19 \leftrightarrow 7.41$
$8.15 \leftrightarrow 7.53$
$8.08 \leftrightarrow 7.72$

Red $=$ Proton, Black $=$ carbon, Blue $=$ Nitrogen

${ }^{\mathbf{1}} \mathbf{H}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ g H M B C}$		
b		
H	bonds	C
8.19	2	166.4
8.19	2	142.2
8.19	3	109.3
8.15	3	133.1
8.15	2	$126.9(\mathrm{w})$
8.15	3	125.9
8.15	4	$124.5(\mathrm{w})$
8.15	3	110.8
8.15	3	35.4
8.08	3	133.6
8.08	3	126.9
8.08	2	$125.9(\mathrm{w})$
8.08	3	109.8
8.08	3	35.5
8.01	3	170.5
8.01	2	153.1
8.01	3	$125.8(\mathrm{w})$
7.72	2	$140.5(\mathrm{w})$
7.72	3	133.6
7.72	4	125.9
7.72	3	113.7
7.72	3	35.5

$\mathbf{H}^{\mathbf{1}}$$\mathbf{1 3} \mathbf{C ~ g H M B C A D}$ Continued		
H	bonds	C
7.53	2	$139.8(\mathrm{w})$
7.53	3	133.0
7.53	4	$126.9(\mathrm{w})$
7.53	2	124.5
7.53	3	115.3
7.53	3	35.4
7.41	3	166.4
7.41	2	142.2
7.41	3	$124.5(\mathrm{w})$
1.58	3	140.5
1.58	2	35.5
1.58	1,3	32.6
1.52	3	139.8
1.52	2	35.4
1.52	1,3	32.6
1.33	3	153.1
1.33	2	33.5
1.33	1,3	31.7
1.09	3	142.2
1.09	2	30.6
1.09	1,3	
$J_{\text {nxh }}=8.0$		
	$J_{1 \times h}=140.0$	

Figure S2: NMR data for 6-Pd in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathbf{g H M B C A D}{ }^{\text {a }}$		
H	bonds	N
8.06	2	-195.8
8.06	3	-193.5
7.73	4	-284.0
7.73	3	-195.8
7.50	4	-284.0
7.50	3	-192.6
7.35	3	-208.3
7.35	2	-192.6
$\begin{aligned} & { }^{\mathrm{a}} \mathrm{~J}_{\mathrm{nxh}}=5 \mathrm{~Hz} \\ & \mathrm{~J}_{\mathrm{lxh}}=90 \mathrm{~Hz} \end{aligned}$		

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQCAD	
H	C
8.13	115.3
8.07	113.6
8.06	112.1
7.73	109.6
7.50	110.7
7.35	110.2
1.58	32.6
1.51	32.6
1.36	31.8
1.01	29.7

gCOSY
$8.13 \leftrightarrow 7.50$
$8.07 \leftrightarrow 7.73$
$8.02 \leftrightarrow 7.35$

${ }^{\mathbf{1}} \mathbf{H}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ g H M B C}$		
H	bonds	C
8.13	3	134.8
8.13	3	126.0
8.13	3	110.7
8.13	3	35.4
8.07	3	134.9
8.07	3	127.1
8.07	2	$126.0(\mathrm{w})$
8.07	3	109.6
8.07	3	35.5
8.06	3	169.9
8.06	2	155.1
8.02	2	$170.9(\mathrm{w})$
8.02	2	$142.5(\mathrm{w})$
8.02	3	$110.2(\mathrm{w})$
7.73	3	134.9
7.73	2	$125.9(\mathrm{w})$
7.73	3	113.6
7.73	3	35.5
7.50	3	134.8
7.50	2	$124.5(\mathrm{w})$
7.50	3	115.3
7.50	3	35.4

$\begin{gathered} { }^{1} \mathrm{H}-{ }^{{ }^{13} \mathrm{C} \text { gHMBCAD }} \\ \text { Continued }{ }^{\mathrm{b}} \end{gathered}$		
H	bonds	C
7.35	3	170.9
7.35	2	142.5
1.58	3	140.3
1.58	2	35.5
1.58	1,3	326
1.51	3	139.6
1.51	2	35.4
1.51	1,3	32.6
1.36	3	155.1
1.36	2	33.0
1.36	1,3	31.8
1.01	3	142.5
1.01	2	30.7
1.01	1,3	29.7
$\begin{gathered} J_{\mathrm{nxx}}=8.0 \mathrm{~Hz} \\ J_{1 \times \mathrm{h}}=146.0 \mathrm{~Hz} \end{gathered}$		

Figure S3: NMR data for $\mathbf{4 - P t C I}$ in $\operatorname{THF}(0.6 \mathrm{~mL})$ and d_{6}-benzene $(0.1 \mathrm{~mL})$.

$\mathbf{H} \mathbf{~}^{\mathbf{1 3}} \mathbf{C} \mathbf{~ g H M B C A D}$		
H	bonds	C
8.11	3	35.5
8.11	3	111.3
8.11	2	$127.0(\mathrm{w})$
8.11	3	131.8
7.91	2	142.5
7.91	3	$160.6(\mathrm{w})$
7.74	3	35.5
7.74	3	115.2
7.74	2	$124.5(\mathrm{w})$
7.74	3	131.8
1.43	1,3	32.5
1.43	2	35.5
1.43	3	140.2
1.28	1,3	29.8
1.28	2	31.2
1.28	3	142.5
${ }^{\mathrm{b}} J_{\mathrm{nxh}}=8.0 \mathrm{~Hz}$		
$J_{1 \times \mathrm{h}}=146.0 \mathrm{~Hz}$		

${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathbf{~ g H M B C A D}$		
H	bonds	N
7.91	2	-197.9
7.91	3	-211.0
7.74	3	-197.9
7.74	4	-299.5
${ }^{\mathrm{a}} \mathrm{J}_{\mathrm{nxh}}=5 \mathrm{~Hz}$		
$\mathrm{~J}_{1 \times \mathrm{hh}}=90 \mathrm{~Hz}$		

$\mathbf{g C O S Y}$
$10.92 \leftrightarrow 7.92$
$8.11 \leftrightarrow 7.74$

Figure S4: NMR data for $\mathbf{7 - P t}$ in $\operatorname{THF}(0.6 \mathrm{~mL})$ and d_{6}-benzene $(0.1 \mathrm{~mL})$.

$\mathrm{H}-{ }^{15} \mathrm{~N}$ gHMBCAD ${ }^{\mathrm{a}}$		
H	bonds	N
7.77	3	-212.7
7.77	2	-198.4
7.57	4	-304.9
7.57	3	-198.4
7.55	2	-197.3
7.55	3	-129.9
7.54	4	-304.9
7.54	3	-197.3
${ }^{\mathrm{a}} \mathrm{J}_{\mathrm{nxh}}=5 \mathrm{~Hz}$		
$\mathrm{~J}_{1 \times \mathrm{h}}=90 \mathrm{~Hz}$		

${ }^{1} \mathrm{H}-^{13} \mathrm{C}$ HSQCAD	
H	C
8.00	114.6
7.85	111.9
7.77	109.2
7.57	110.0
7.55	107.5
7.54	110.2
1.41	32.6
1.40	32.7
1.28	30.9
1.26	29.8

${ }^{1} \mathrm{H} \cdot{ }^{15} \mathrm{~N}$ gHSQC	
H	N
10.90	-212.7

Red $=$ Proton, Black $=$ carbon, Blue $=$ Nitrogen

${ }^{\mathbf{H}} \mathbf{H}^{\mathbf{1 3}} \mathbf{C}$ gHMBCAD		
H	bonds	\mathbf{C}
8.00	3	110.0
8.00	4	$124.3(\mathrm{w})$
8.00	3	125.8
8.00	2	$127.5(\mathrm{w})$
8.00	3	132.0
8.00	3	35.4
7.85	3	110.2
7.85	2	$125.8(\mathrm{w})$
7.85	3	127.5
7.85	3	132.0
7.85	3	35.4
7.77	2	141.6
7.77	3	163.9
7.57	3	114.6
7.57	2	$124.3(\mathrm{w})$
7.57	4	$127.5(\mathrm{w})$
7.57	3	132.0
7.57	2	$138.8(\mathrm{w})$
7.57	3	35.4
7.55	2	152.1
7.55	3	162.8

$\begin{gathered} { }^{1} \mathrm{H}-{ }_{-13}{ }^{13} \text { Continued }{ }^{\mathrm{b}} \end{gathered}$		
H	bonds	C
7.54	3	111.9
7.54	4	125.8(w)
7.54	2	127.0
7.54	3	132.0
7.54	2	139.6(w)
7.54	3	35.4
1.41	1,3	32.6
1.41	2	35.4
1.41	3	138.8
1.40	1,3	32.7
1.40	2	35.4
1.40	3	139.6
1.28	1,3	30.9
1.28	2	32.2
1.28	3	152.1
1.26	1,3	29.8
1.26	2	31.0
1.26	3	141.6
$\begin{gathered} J_{\text {bxh }}=8.0 \mathrm{~Hz} \\ J_{1 \times \mathrm{hh}}=146.0 \mathrm{~Hz} \end{gathered}$		

Figure S5: NMR data for 8-Pt in THF (0.6 mL) and d_{6}-benzene $(0.1 \mathrm{~mL})$.

$\mathrm{H} \cdot{ }^{\mathbf{1} 5} \mathrm{~N}$ gHMBCAD ${ }^{\mathrm{a}}$		
H	bonds	N
7.74	4	-189.2
7.44	2	-192.0
7.44	3	-127.4
7.38	3	-192.0
${ }^{\mathbf{a}} \mathbf{J}_{\text {nxh }}=5 \mathrm{~Hz}$		
$\mathbf{J}_{1 \times \mathrm{h}}=90 \mathrm{~Hz}$		

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$	
HSQCAD	
H	C
7.74	111.4
7.44	107.1
7.38	109.1
1.39	32.8
1.26	30.9

gCOSY
$7.74 \leftrightarrow 7.38$

Red $=$ Proton, Black $=$ carbon, Blue $=$ Nitrogen

${ }^{\mathbf{1}} \mathbf{H}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{~ H M B C A D}$		
H	bonds	C
7.74	3	109.1
7.74	2	126.2
7.74	4	$127.2(\mathrm{w})$
7.74	3	132.5
7.44	2	151.6
7.44	3	166.7
7.38	3	111.4
7.38	2	127.2
7.38	3	132.5
1.39	1,3	32.8
1.39	2	35.2
1.39	3	138.3
1.26	1,3	30.9
1.26	2	32.2
1.26	3	151.6
$J_{\text {nxh }}=8.0 \mathrm{~Hz}$		
$J_{\text {lxh }}=146.0 \mathrm{~Hz}$		

Figure S6: ROESY 1D spectrum of $\mathbf{6 - P t}$, irradiating peak at $8.01, \mathrm{C} 4$ on MNHC imidazole and seeing the correlating peaks at 7.72 ppm from the carbazole, and 8.19 ppm from the NH on the PNHC.

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectra of 4-PtCl (red, 1), 7-Pt (green, 2), 19 h after bubbling H_{2} in solution (blue, 3) mostly still 7-Pt with some 4-PtCl, NMR after addition of AgOTf (1.25 equiv) (purple, 4), formation of dimer 6-Pt.

Figure S8: ${ }^{1} \mathrm{H}$ NMR spectra of 4-PtCl (red) in THF (0.6 mL) and d_{6}-benzene $(0.1 \mathrm{~mL}),{ }^{1} \mathrm{H}$ NMR of 7-Pt (green), formed from 4-PtCl and $n-\mathrm{BuLi}$ ($2.5 \mathrm{M}, 1$ equiv), ${ }^{1} \mathrm{H}$ NMR after bubbling ethylene gas through solution for 4 minutes (blue), showing mostly $\mathbf{4}-\mathbf{P t C l}$.

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8 - P t}($ red, 1$)$ in THF $(0.6 \mathrm{~mL})$ and d_{6}-benzene $(0.1 \mathrm{~mL})$, after addition of 1-heptene (20 equiv) (green, 2), after heating for 4 h at $70^{\circ} \mathrm{C}$ (purple, 3).

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectra of 4-PtOTf (red, 1) in THF $(0.6 \mathrm{~mL})$ and d_{6}-benzene $(0.1 \mathrm{~mL})$, after addition of $\operatorname{LiN}(\mathrm{iPr})_{2}(1$ equiv) (green, 2), after sitting at room temperature for 27 h (blue, 3), 6-Pt (purple, 4) from Figure S7.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4}-\mathrm{PtOTf}(r e d, 1)$ in THF $(0.6 \mathrm{~mL}) d_{6}$-benzene (0.1 mL); $\left[\mathbf{4 - P t}\left(\mathbf{C H}_{3} \mathbf{C N}\right)\right]^{+}$OTf (green, 2), after addition of $\mathrm{CH}_{3} \mathrm{CN}$ (10 equiv); 5 minutes after addition of $\operatorname{LiN}(\mathrm{iPr})_{2}$ (1 equiv) (blue, 3); 24 hours after addition of $\mathrm{LiN}(\mathrm{iPr})_{2}$ (1 equiv) (purple, 4).

Figure S12: Starting 4-PdCI complex in THF (0.6 mL) and d_{6}-benzene $(0.1 \mathrm{~mL})($ red, 1$)$; after addition of $\operatorname{LiN}(\mathrm{iPr})_{2}(\sim 1$ equiv), giving a mixture of 7-Pd and $\mathbf{8 - P d}$ (light green, 2); after addition of 1 -heptene and heating at $70^{\circ} \mathrm{C}$ for 16 h (green, 3) giving the same mixture of 7-Pd and $\mathbf{8 - P d}$; after addition of more $\operatorname{LiN}\left(\mathrm{iPr}_{2}\right.$ (1 equiv), giving $\mathbf{8}$-Pd with impurities; after addition of AgOTf (1.5 equiv), giving what appears to be deprotonated dimer 6-Pd.

General experimental

Manipulations were carried out in a nitrogen-filled glovebox or using Schlenk techniques unless otherwise specified. THF and diethyl ether were distilled from sodium and benzophenone, whereas dichloromethane and hexane were distilled from calcium hydride under nitrogen. d_{6}-benzene and CDCl_{3} were purchased from Cambridge Isotope Labs, dried over calcium hydride, and vacuum transferred prior to use. d_{6}-acetone and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were purchased from Cambridge Isotope Labs, was further deoxygenated by bubbling nitrogen gas through the liquid and transferred to a glovebox. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Varian spectrometers, $600 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR and 2D NMR spectra were obtained on the same instrument. Both ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported in parts per million downfield from tetramethylsilane and referenced to the solvent resonances (${ }^{1} \mathrm{H}$ NMR: 7.16 ppm for $\mathrm{C}_{6} \mathrm{HD}_{5} 7.27 \mathrm{ppm}$ for $\mathrm{CHCl}_{3}, 5.32 \mathrm{ppm}$ for CHDCl_{2} and 2.05 ppm for d_{5}-acetone . ${ }^{13} \mathrm{C}$ NMR: 128.39 ppm for $C_{6} \mathrm{D}_{6}, 77.23$ ppm for $\mathrm{CDCl}_{3}, 54.00 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and 29.92 ppm for d_{6}-acetone), where ${ }^{1} \mathrm{H}$ NMR chemical shifts are followed by multiplicity, coupling constants J in hertz, and integration in parentheses.
${ }^{15} \mathrm{~N}$ chemical shifts on unlabeled materials were determined from gradient HSQC or HMBC experiments run on a Varian INOVA 600 MHz spectrometer. Sweep widths and the number of increments in the ${ }^{15} \mathrm{~N}$ dimension were chosen so as to give digital resolutions in the ${ }^{15} \mathrm{~N}$ dimension of less than 1.5 ppm . The ${ }^{15} \mathrm{~N}$ chemical shift of a standard reference sample of formamide solution in d_{6}-dimethylsulfoxide (90%) was determined and set to be -267.8 ppm . Then, using the same sweep width and offsets, samples of nitromethane (1.0 M in CDCl_{3}) and quinine (0.5 M in CDCl_{3}) gave ${ }^{15} \mathrm{~N}$ chemical shifts of -4.2 for $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and -72.4 and -349.2 ppm for the sp^{2} and sp^{3} hybridized nitrogens of quinine, respectively.

Synthesis of 6-Pd

To a J. Young NMR tube in a glovebox was added $\mathbf{4 - P d C l}(40.1 \mathrm{mg}, 0.060 \mathrm{mmol})$, sodium tert-butoxide ($7.0 \mathrm{mg}, 0.072 \mathrm{mmol}$), and $\mathrm{C}_{6} \mathrm{D}_{6}(2.0 \mathrm{~mL})$. After 45 minutes the reaction was transferred to a vial in the glovebox and solvent was reduced to approximately 0.75 mL . $\mathrm{Et}_{2} \mathrm{O}$ was then allowed to mix by vapor diffusion in a freezer. The yellow crystals were filtered through a pipet loaded with cotton and washed with pentanes ($3 \times 0.25 \mathrm{~mL}$), then dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and transferred to a vial and dried under oil pump vacuum with $\mathrm{P}_{2} \mathrm{O}_{5}$ yielding 6-Pd ($19.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 50 \%$ yield). Anal. calcd. for $\mathrm{C}_{68} \mathrm{H}_{86} \mathrm{~N}_{10} \mathrm{Pd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (mol. wt. 1274.36): C, 64.09; H, 6.96; N, 10.99. Found C, 63.95; H, 6.91; N, 10.93.

Synthesis of 6-Pt

To a J. Young NMR tube in a glove box was added $4-\mathbf{P t C l}(50.0 \mathrm{mg}, 0.066 \mathrm{mmol})$, sodium tert-butoxide $(6.7 \mathrm{mg}, 0.070 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{D}_{6}(2.5 \mathrm{~mL})$. The solution was heated in a $70^{\circ} \mathrm{C}$ oil bath for 25 minutes,
which was then transferred into a vial in the glovebox and solvent was reduced to approximately 0.75 mL . $\mathrm{Et}_{2} \mathrm{O}$ was allowed to mix by vapor diffusion in a freezer where crystals formed. The yellow crystals were filtered through a pipet loaded with cotton and washed with pentanes ($3 \times 0.1 \mathrm{~mL}$), then transferred to a vial by dissolving in $\mathrm{Et}_{2} \mathrm{O}$ and dried under oil pump vacuum with $\mathrm{P}_{2} \mathrm{O}_{5}$ yielding 6-Pt ($27.4 \mathrm{mg}, 0.019$ $\mathrm{mmol}, 56 \%$ yield). Anal. calcd. for $\mathrm{C}_{68} \mathrm{H}_{86} \mathrm{~N}_{10} \mathrm{Pt}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (mol. wt. 1469.70): C, $55.57 ; \mathrm{H}, 6.17 ; \mathrm{N}, 9.53$. Found C, 55.43; H, 6.03; N, 9.60.

Table S1: Crystal data and structure refinement for 6-Pd.

Identification code	6-Pd
Empirical formula	C46.50 H56 Cl N5 Pd
Formula weight	826.81
Temperature	100(2) K
Wavelength	1.54178 £
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a=28.1402(8) \AA$ A $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=15.7664(5) \AA \quad \beta=94.048(2)^{\circ}$.
	$\mathrm{c}=19.0083(6) \AA \quad \gamma=90^{\circ}$.
Volume	8412.4(4) \AA^{3}
Z	8
Density (calculated)	$1.306 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.424 \mathrm{~mm}^{-1}$
F(000)	3464
Crystal size	$0.15 \times 0.11 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	3.15 to 64.88°.
Index ranges	$-28<=\mathrm{h}<=32,-18<=\mathrm{k}<=18,-21<=1<=22$
Reflections collected	25380
Independent reflections	$6990[\mathrm{R}(\mathrm{int})=0.0355]$
Completeness to theta $=64.88^{\circ}$	97.9 \%
Absorption correction	Multi-scan
Max. and min. transmission	0.7185 and 0.5566
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6990 / 37 / 502
Goodness-of-fit on F^{2}	1.052
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0473, \mathrm{wR} 2=0.1300$
R indices (all data)	$\mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1394$
Largest diff. peak and hole	1.071 and -1.478 e. \AA^{-3}

Table S2: Crystal data and structure refinement for 6-Pt.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color, habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

6-Pt

C43 H56 N5 Pt
838.02

100(2) K
$0.71073 \AA$
Monoclinic
C2/c
$\mathrm{a}=28.6827(19) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=15.2306(10) \AA \quad \beta=93.9130(10)^{\circ}$.
$\mathrm{c}=19.5645(13) \AA \quad \gamma=90^{\circ}$.
$8526.9(10) \AA^{3}$
8
$1.306 \mathrm{Mg} / \mathrm{m}^{3}$
$3.324 \mathrm{~mm}^{-1}$
3416
$0.34 \times 0.13 \times 0.11 \mathrm{~mm}^{3}$
Orange Block
1.87 to 27.49°.
$-37<=\mathrm{h}<=36,-19<=\mathrm{k}<=19,-19<=1<=25$
48497
$9509[\mathrm{R}(\mathrm{int})=0.0411]$
99.6 \%

Multi-scan
0.7113 and 0.3978

Full-matrix least-squares on F^{2}
9509 / 0 / 526
1.048
$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0675$
$R 1=0.0403, w R 2=0.0752$
1.246 and -0.696 e.\AA^{-3}

