Supporting Information

for

Amidofluorene-appended lower rim 1,3-diconjugate of calix[4]arene: synthesis, characterization and highly selective sensor for Cu²⁺

Rahman Hosseinzadeh^{*1}, Mohammad Nemati¹, Reza Zadmard², Maryam Mohadjerani³ Address: ¹Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran, ²Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran and ³Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran

Email: Rahman Hosseinzadeh - r.hosseinzadeh@umz.ac.ir

*Corresponding author

¹H NMR and ¹³C NMR spectra of compounds 1, 2, 3, 4 and L, HRMS of L, UV–vis and fluorescene titration spectra of L with Cu²⁺ ion solutions

Spectroscopic and analytical data

Figure S1: ¹HNMR (400 MHz in CDCl₃) of **1**.

Figure S2: ¹³CNMR (100 MHz in $CDCI_3$) of **1**.

Figure S3: ¹HNMR (400 MHz in CDCl₃) of **2**.

Figure S4: ¹³CNMR (100 MHz in $CDCI_3$) of **2**.

Figure S5: ¹HNMR (400 MHz in CDCl₃) of **3**.

Figure S6: 13 CNMR (100 MHz in CDCl₃) of **3**.

Figure S7: ¹HNMR (400 MHz in CDCl₃) of **4**.

Figure S8: ¹³CNMR (100 MHz in CDCl₃) of **4**.

Figure S9: ¹HNMR (400 MHz in CDCl₃) of L.

Figure S10: ¹³CNMR (100 MHz in CDCl₃) of L.

Figure S11: HRMS (m/z) of L.

Figure S12: Absorption spectra of (L) $(1.0 \times 10^{-5}$ M) and Absorption spectra of L $(1.0 \times 10^{-5}$ M) with Cu²⁺ (100 equiv) in MeCN.

Figure S13: Absorption spectral in region 500–800 nm when **L** was titrated with varying amounts of Cu²⁺ concentration.

Figure S14: (a) Fluorescence spectra obtained during the titration of **L** with Cu²⁺ ion in MeCN. (b) Relative fluorescence intensity (*I*–*I*₀) as a function of $[Cu^{2+}]/[L]$ mole ratio. Fluorescence intensity data for the complexes were plotted according to the Benesi-Hildebrand equation [1]: $1/(F - F_0) = 1/\{K_a \times (F_{max} - F_0) \times [M^{n+}]\} + 1/(F_{max} - F_0)$.

Figure S15: Job plot for determining the stoichiometry of **L** and Cu^{2+} (1.0 × 10⁻⁴M) in MeCN. (X = Mole fractions, I = intensity of fluorescence).

Figure S16: Calibration curve (Hill Plot) of fluorescence intensity of **L** with Cu^{2+} ion concentrations. The detection limit was determined from the fluorescence titration data based on a reported method [2,3]. The fluorescence spectrum of probe **L** was measured by 5 times repeat and the standard deviation of blank measurement was obtained. To gain the slope, the fluorescent intensity data at 365 nm was plotted as a function of the concentration of Cu^{2+} . The detection limit was calculated with the following equation:

Detection limit = $3\sigma/K$

Where σ is the standard deviation of blank measurement, and K is the slope between the fluorescence versus Cu²⁺ concentration. The fluorescent intensity at 365 nm has a good linearity with concentrations of Cu²⁺ in the range from 1×10⁻⁶ M to 10×10⁻⁶ M. The linear equation was found to be y = -15.935x - 154.38 (R = 0.9907), where y is the fluorescent intensity at 365 nm and x represents the concentration of Cu²⁺ added. So the detection limit for Cu²⁺ was calculated to be 9.6 × 10⁻⁸ M (detection limit = 3 σ /K = (3 × 0.513)/15.935 × 10⁻⁶).

Reference:

1. Benesi, H.A.; Hildebrand, J.H. J. Am. Chem. Soc. 1949, 71, 2703.

2. Yamin Li, Y.M.; Zhang, X.L.; Zhu, B.C.; Yan, J.L.; Xu, W.P. *Analyt. Sci.* **2010**, 26, 1077.

3. Ma, Q.J.; Zhang, X.B.; Zhao, X.H.; Jin, Z.; Mao, G.J.; Shen, G.L.; Yu, R.Q. *Analyt. Chim. Acta.* **2010**, 663, 85.