Supporting Information

for

Application of heterocyclic aldehydes as components in Ugi– Smiles couplings

Katelynn M. Mason¹, Michael S. Meyers¹, Abbie M. Fox¹ and Sarah B. Luesse¹*

Address: ¹Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville,

Illinois 62026, USA

Email: Sarah Luesse - sluesse@siue.edu

* Corresponding author

Experimental procedures and analytical data for Ugi-Smiles and US-IMDA

products

Table of Contents

1. General experimental details	S 1
2. Synthesis of Ugi-Smiles adducts 1c-4b	S2
3. Stacked ¹ H NMRs for reaction monitoring (related to Scheme 2)	S13
4. ¹ H and ¹³ C NMR spectra of new compounds	S14

General experimental details

Methanol was distilled from CaH₂ under N₂ immediately before use. 2-Furaldehyde was distilled under reduced pressure (62 °C, 18 mm). Cyclohex-1-en-1-ylmethyl amine and 1-cyclohex-1-en-1-ylethyl amine were purchased as hydrochloride salts and converted to the free base form via 1.0 M NaOH prior to use. All other reagents and solvents were commercial grade (Aldrich or Acros) and used without purification. Characterization data for compounds **1a-D1**, **1a-D2**, **1b-D1**, and **1b-D2** have been reported previously [1]. Novel Ugi-Smiles and tandem US-IMDA products in this work were prepared in a similar manner to experimental procedures previously reported for known US-IMDA products [1].

^{1.} Richey, B.; Mason, K. M.; Meyers, M. S.; Luesse, S. B. Tetrahedron Lett. 2016, 57, 492-494.

Thin layer chromatography (TLC) was performed using plastic-backed silica gel (225 μ m) plates and flash chromatography utilized 230–400 mesh silica gel from Sigma-Aldrich. Some compounds were purified via automated chromatography on the Biotage IsoleraTM Flash Purification system using a gradient method with SNAP Ultra cartridges. Products were visualized by UV light, and/or the use of ceric ammonium molybdate, *p*-anisaldehyde, and potassium iodoplatinate solutions.

IR spectra were recorded on a NicoletTM iS5 FT-IR Spectrometer and are reported in wavenumbers (cm⁻¹). Liquids and oils were analyzed as neat films on a NaCl plate (transmission), whereas solids were applied to a diamond plate (ATR). Nuclear magnetic resonance spectra (NMR) were acquired on a Varian Unity Plus (300 MHz) or a Bruker Ascend (400 MHz) Spectrometer and processed with TopSpin 3.2. Chemical shifts are measured relative to residual solvent peaks as an internal standard set to δ 7.26 and δ 77.1 (CDCl₃). HRMS FAB data was collected from a JEOL MStation [JMS-700] Mass Spectrometer at the University of Missouri-St Louis. Direct infusion mass spectrometry (DIMS) was used to verify accurate masses for several compounds, using a Triversa Nanomate nanospray direct infusion robot (Advion) attached to a Q-Exactive Mass Spectrometer. These samples were analyzed at the Proteomics & Mass Spectrometry Facility at the Danforth Plant Science Center (St Louis, MO).

Synthesis of *N-(tert-*butyl)-7a-methyl-2-(2-nitrophenyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole-3-carboxamide (1c).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.4 μ L, 0.5 mmol, 1 equiv), 2-methylallylamine (45.6 μ L, 0.5 mmol, 1 equiv), and *tert*-butyl isocyanide (114 μ L, 1.0 mmol, 2 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (10% ethyl acetate in hexanes) to afford epoxyisoindolines **1c-D1** (26.0 mg, 14%) and **1c-D2** (53.9 mg, 29%).

1c-D1: $R_f = 0.40$ (40:60 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (m, 2H), 7.47 (dd, J = 8.2, 7.6 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 7.09 (dd, J = 7.8, 7.7 Hz, 1H), 6.56 (d, J = 5.9 Hz, 1H), 6.42 (d, J = 5.8 Hz, 1H), 4.97 (d, J = 5.0 Hz, 1H), 4.57 (s, 1H), 3.45 (d, J = 8.5 Hz, 1H), 2.98 (d, J = 8.2 Hz, 1H), 2.08 (dd, J = 4.9, 4.4 Hz, 1H), 1.32 (s, 9H), 1.28-1.23 (m, 1H), 1.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.3, 139.0, 137.7, 133.6, 132.5, 126.5, 118.9, 116.2, 96.9, 80.7, 65.4, 62.9, 51.4, 49.1, 38.6, 28.5, 22.6; DIMS [M+H]⁺ calcd for C₂₀H₂₆N₃O₄ 372.1923; found 372.1916.

1c-D2: $R_f = 0.29$ (40:60 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 1H), 7.42 (dd, J = 8.1, 7.8 Hz, 1H), 7.07 (d, J = 8.5 Hz, 1H), 6.90 (dd, J = 7.9, 7.6 Hz, 1H), 6.56 (d, J = 5.6 Hz, 1H), 6.48 (d, J = 5.7 Hz, 1H), 6.45 (s, 1H), 5.08 (s, 1H), 4.75 (s, 1H), 3.70 (d, J = 9.6 Hz, 1H), 2.63 (d, J = 9.6 Hz, 1H), 2.19 (dd, J = 4.7, 4.6 Hz, 1H), 1.19 (s, 9H), 1.05 (d, J = 11.6 Hz, 1H), 0.82 (s, 3H); ¹³C NMR (CDCl₃) δ 168.2, 142.1, 135.7, 134.0, 133.1, 125.8, 122.8,

121.9, 98.5, 79.7, 65.1, 65.3, 51.3, 48.6, 39.8, 29.3, 28.6, 23.2; HR-FAB MS $[M+Na]^+$ calcd for $C_{20}H_{25}N_3NaO_4$ 394.1743; found 394.1746.

Synthesis of *N*-cyclohexyl-7a-methyl-2-(2-nitrophenyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole-3-carboxamide (1d).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.8 mg, 0.50 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.4 μ L, 0.5 mmol, 1 equiv), 2-methylallylamine (45.6 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (15% ethyl acetate in hexanes) to give epoxylsoindolines **1d-D1** (36.9 mg, 19%) and **1d-D2** (67.5 mg, 34%).

1d-D1: $R_f = 0.35$ (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.8 Hz, 1H, NH), 7.72 (dd, J = 8.1, 1.4 Hz, 1H), 7.46 (dd, J = 7.9, 7.7 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.09 (dd, J = 7.3, 7.3 Hz, 1H), 6.56 (d, J = 5.8 Hz, 1H), 6.43 (dd, J = 5.8, 1.6 Hz, 1H), 4.98 (dd, J = 4.6, 1.5 Hz, 1H), 4.70 (s, 1H), 3.81-3.69 (m, 1H), 3.43 (d, J = 8.4 Hz, 1H), 3.00 (d, J = 8.4 Hz, 1H), 2.08 (dd, J = 11.5, 4.8 Hz, 1H), 1.95-1.87 (m, 1H), 1.74-1.59 (m, 4H), 1.41-1.11 (m, 5H), 1.00 (s, 3H), 0.94-0.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 141.8, 135.6, 133.9, 132.9, 125.6, 122.8, 121.9, 98.2, 79.6, 65.3, 64.7, 48.6, 48.0, 39.6, 32.9, 32.5, 30.9, 25.3, 24.6(2), 23.0; HR-FAB MS [M+Na]⁺ calcd for C₂₂H₂₇N₃NaO₄ 420.1899; found 420.1907.

1d-D2: $R_f = 0.18$ (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 1H), 7.42 (dd, J = 7.8, 7.8 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.90 (dd, J = 7.4, 7.4 Hz, 1H), 6.59 (d, J = 5.7 Hz, 1H), 6.54 (s, 1H), 6.50 (d, J = 5.7 Hz, 1H), 5.08 (s, 1H), 4.87 (s, 1H), 3.73-3.70 (m, 2H), 2.65 (d, J = 9.6 Hz, 1H), 2.23-2.14 (m, 1H), 1.85-1.76 (m, 1H), 1.65-1.49 (m, 2H), 1.49-1.35 (m, 2H), 1.35-1.00 (m, 5H), 0.94-0.78 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 142.2, 139.0, 137.8, 133.6, 132.4, 126.5, 118.9, 116.2, 96.9, 80.7, 65.3, 62.6, 49.0, 47.8, 38.6, 32.5, 32.5, 25.5, 24.3, 24.2, 22.5; HR-FAB MS [M+Na]⁺ calcd for C₂₂H₂₇N₃NaO₄ 420.1899; found 420.1907.

Synthesis of 2-(but-3-en-1-yl(2-nitrophenyl)amino)-*N*-(*tert*-butyl)-2-(furan-2-yl)acetamide (2a).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.4 μ L, 0.5 mmol, 1 equiv), 3-

butenylamine (45.8 μL, 0.5 mmol, 1 equiv), and *tert*-butyl isocyanide (114 μL, 1.0 mmol, 2 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (10% ethyl acetate/hexanes) to afford *N*-arylamide **2a** (71.1 mg, 40%). $R_f = 0.20$ (20:80 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.49 (dd, *J* = 7.8, 7.7 Hz, 1H), 7.40 (s, 1H), 7.34 (br s, 1H, NH), 7.25-7.18 (m, 2H), 6.36-6.28 (m, 2H), 5.69-5.52 (m, 1H), 4.97-4.82 (m, 3H), 3.03 (dd, *J* = 7.7, 7.0 Hz, 2H), 2.06-1.82 (m, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 149.4, 147.5, 142.8, 142.1, 135.0, 133.0, 126.9, 125.4, 125.1, 117.2, 111.4, 110.5, 66.6, 51.4, 50.8, 32.0, 28.7; HR-FAB MS [M+Na]⁺ calcd for C₂₀H₂₅N₃NaO₄ 394.1743; found 394.1748.

Synthesis of 2-(but-3-en-1-yl(2-nitrophenyl)amino)-*N*-cyclohexyl-2-(furan-2-yl)acetamide (2b).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.5 μ L, 0.5 mmol, 1 equiv), 3-butenylamine (45.8 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (20% ethyl acetate in hexanes) to afford *N*-arylamide **2b** (68.2 mg, 34%). R_f = 0.51 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 6.9 Hz, 1H), 7.50-7.41 (m, 2H), 7.36 (s, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.22 (dd, *J* = 7.4, 7.3 Hz, 1H), 6.32 (s, 2H), 5.59-5.48 (m, 1H), 5.02 (s, 1H), 4.92 (d, *J* = 10.1 Hz, 1H), 4.84 (d, *J* = 16.1 Hz, 1H), 3.80-3.73 (m, 1H), 3.06-2.93 (m, 2H), 1.96-1.84 (m, 3H), 1.80-1.67 (m, 3H), 1.59 (d, *J* = 12.5 Hz, 1H), 1.40-1.11 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 149.1, 147.2, 142.6, 142.0, 134.7, 132.9, 126.6, 125.1 124.9, 117.1, 111.2, 110.4, 65.7, 50.7, 48.3, 32.9, 32.5, 31.7, 25.4, 24.74, 24.67; HR-FAB MS [M+H]⁺ calcd for C₂₂H₂₈N₃O₄ 398.2080; found 398.2068.

Synthesis of (E)-*N*-cyclohexyl-2-((3,7-dimethylocta-2,6-dien-1-yl)(2-nitrophenyl)amino)-2-(furan-2-yl)acetamide (2c).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.5 μ L, 0.5 mmol, 1 equiv), geranylamine (92.4 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column on silica gel (40% ethyl acetate in hexanes) to afford *N*-arylamide **2c** (83.2 mg, 35%). R_f = 0.16 (40:60 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.2 Hz, 1H), 7.44 (dd, *J* = 8.2, 8.1 Hz, 1H), 7.35-7.31 (m, 2H), 7.17 (dd, *J* = 7.3, 7.2 Hz, 1H), 6.40 (d, *J* = 2.9 Hz, 1H), 6.30 (d, *J* = 3.0 Hz, 1H), 5.06 (s, 1H), 4.95 (dd, *J* = 6.9, 6.8 Hz, 1H), 4.87 (dd, *J* = 6.8, 6.7 Hz, 1H), 3.73-3.66 (m, 1H), 3.55 (dd, *J* = 14.9, 7.6 Hz, 1H), 3.44 (dd, *J* = 14.8, 6.8 Hz, 1H), 1.91-1.84 (m, 5H), 1.72-1.51 (m, 10H), 1.37-1.13 (m, 7H), 1.12-1.01 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 149.6, 147.0, 142.7, 142.5, 141.3, 132.8, 131.7, 126.6, 124.74, 124.73, 123.9, 117.9, 110.9, 110.6, 64.8, 50.2, 48.2, 39.7, 32.8, 32.6, 26.3, 25.7, 25.5, 24.8, 24.7, 17.7, 15.9; HR-FAB MS [M+Na]⁺ calcd for C₂₈H₃₇N₃NaO₄ 502.2682; found 502.2684.

Synthesis of 2-((2-(cyclohex-1-en-1-yl)ethyl)(2-nitrophenyl)amino)-*N*-cyclohexyl-2-(furan-2-yl)acetamide (2d).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.5 μ L, 0.5 mmol, 1 equiv), 2-(1-cyclohexenyl)ethylamine (69.7 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (40% ethyl acetate in hexanes) to afford *N*-arylamide **2d** (85.8 mg, 35%). R_f = 0.13 (40:60 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 1H), 7.49-7.45 (m, 2H), 7.37 (s, 1H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.19 (dd, *J* = 7.3, 7.3 Hz, 1H), 6.38 (d, *J* = 2.5 Hz, 1H), 6.35-6.31 (m, 1H), 5.16 (s, 1H), 5.09 (s, 1H), 3.78-3.70 (m, 1H), 1.33-1.06 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 149.3, 146.6, 142.7, 142.5, 134.3, 133.0, 126.4, 125.0, 124.7, 123.4, 111.3, 110.6, 65.2, 50.4, 48.3, 35.9, 32.9, 32.6, 28.1, 25.5, 25.2, 24.8, 24.7, 22.8, 22.2; HR-FAB MS [M+H]⁺ calcd for C₂₆H₃₄N₃O₄ 452.2544; found 452.2560.

Synthesis of 2-((cyclohex-1-en-1-ylmethyl)(2-nitrophenyl)amino)-*N*-cyclohexyl-2-(furan-2-yl)acetamide (2e).

Cyclohex-1-en-1-ylmethyl amine hydrochloride (95.3 mg) was treated with aqueous NaOH (1.0 M, 1 equiv), extracted with diethyl ether, and concentrated in vacuo to afford the free cyclohex-1-en-1-ylmethyl) amine (74.0 mg). In a similar manner as described in [1], to a solution of 2nitrophenol (93.2 mg, 0.67 mmol, 1 equiv) in methanol (0.67 mL) was added 2-furaldehyde (55.5 µL, 0.67 mmol, 1 equiv), cyclohex-1-en-1-ylmethyl amine (74.0 mg, 0.67 mmol, 1 equiv), and cyclohexyl isocyanide (83.5 μ L, 0.67 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (20% ethyl acetate in hexanes) to afford N-arylamide 2e (105.1 mg, 36%). $R_f = 0.55$ (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 6.9 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.46 (dd, J = 8.4, 8.4 Hz, 1H), 7.37-7.33 (m, 2H), 7.13 (dd, J = 7.3, 7.3 Hz, 1H), 6.40 (d, J = 2.9 Hz, 1H), 6.34-6.31 (m, 1H), 5.28 (s, 1H), 5.16 (s, 1H), 3.81-3.73 (m, 1H), 5.28 (s, 1H), 5.16 (s, 1H), 5.28 (s, 1 1H), 3.50 (d, J = 14.2 Hz, 1H), 3.44 (d, J = 14.2 Hz, 1H), 1.97-1.90 (m, 1H), 1.78-1.58 (m, 6H), 1.52-1.49 (m, 2H), 1.42-1.24 (m, 7H), 1.20-1.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 149.5, 145.5, 142.6, 142.4, 133.1, 132.4, 128.4, 126.1, 125.2, 123.8, 111.3, 110.5, 66.0, 57.2, 48.4, 33.0, 32.6, 26.5, 25.5, 25.1, 24.80, 24.78. 22.4, 21.9; DIMS [M+H]⁺ calcd for C₂₅H₃₂N₃O₄ 438.2393; found 438.2387.

Synthesis of 2-(benzyl(2-nitrophenyl)amino)-N-cyclohexyl-2-(furan-2-yl)acetamide (2f).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.5 μ L, 0.5 mmol, 1 equiv), benzylamine (54.6 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography (gradient 10-40% ethyl acetate in hexanes, 36 mL/min, Biotage Isolera, SNAP-Ultra cartridge) to afford *N*-arylamide **2f** (60.9 mg, 28%). R_f = 0.62 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 1H), 7.44 (br s, 1H, NH), 7.40-7.33 (m, 2H), 7.19-7.14 (m, 3H), 7.13-7.09 (m, 2H), 6.92-6.87 (m, 2H), 6.40 (d, *J* = 2.8 Hz, 1H), 6.35-6.32 (m, 1H), 5.06 (s, 1H), 4.20-4.06 (m, 2H), 3.80-3.69 (m, 1H), 1.93-1.84 (m, 1H), 1.77-1.64 (m, 3H), 1.63-1.58 (m, 1H), 1.36-1.28 (m, 2H), 1.27-1.21 (m, 2H), 1.18-1.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 149.3, 146.9, 142.9, 142.0, 135.6, 132.8, 129.0, 129.0, 128.4, 128.4, 127.7, 127.0, 125.1, 125.0, 111.4, 110.7, 65.7, 55.9, 48.4, 32.9, 32.7, 25.6, 24.9, 24.8; DIMS [M+H]⁺ calcd for C₂₅H₂₈N₃O₄ 434.2080; found 434.2075.

Synthesis of *N*-cyclohexyl-2-(furan-2-yl)-2-((2-nitrophenyl)(phenethyl)amino)acetamide (2g).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.5 μ L, 0.5 mmol, 1 equiv), phenethylamine (62.9 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography (gradient 13-40% ethyl acetate in hexanes, 36 mL/min, Biotage Isolera, SNAP-Ultra cartridge) to afford *N*-arylamide **2g** (62.7 mg, 28%). R_f = 0.55 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.52 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.43-7.37 (m, 2H), 7.34 (br s, 1H, NH), 7.25-7.14 (m, 4H), 6.89 (d, *J* = 6.8 Hz, 2H), 6.40 (dd, *J* = 11.3, 2.2 Hz, 2H), 5.14 (s, 1H), 3.78-3.67 (m, 1H), 3.21-3.04 (m, 2H), 1.22-1.13 (m, 2H), 1.10-0.98 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 149.3, 146.7, 142.8, 142.2, 138.5, 133.2, 128.7, 128.6, 126.5, 126.2, 125.3, 125.0, 111.5, 110.7, 65.4, 53.0, 48.4, 33.9, 32.9, 32.5, 25.5, 24.9(2C); DIMS [M+H]⁺ calcd for C₂₆H₃₀N₃O₄ 448.2236; found 448.2232.

Synthesis of N-cyclohexyl-2-(cyclohexyl(2-nitrophenyl)amino)-2-(furan-2-yl)acetamide (2h).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41.5 μ L, 0.5 mmol, 1 equiv), cyclohexylamine (57.3 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography (gradient 12-40% ethyl acetate in hexanes, 36 mL/min, Biotage Isolera, SNAP-Ultra cartridge) to afford *N*-arylamide **2h** (53.2 mg, 25%). R_f = 0.57 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (br s, 1H, NH), 7.60 (d, *J* = 8.0 Hz, 1H), 7.37 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.25-7.17 (m, 3H), 6.33 (d, *J* = 2.9 Hz, 1H), 6.18-6.14 (m, 1H), 5.06 (s, 1H), 3.77-3.65 (m, 1H), 2.80-2.70 (m, 1H), 1.91-1.83 (m, 2H), 1.77-1.62 (m, 6H), 1.61-1.54 (m, 1H), 1.52-1.45 (m, 1H), 1.36-1.18 (m, 4H), 1.16-1.05 (m, 3H), 0.96-0.74 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 150.1, 150.0, 142.3, 139.4, 131.8, 131.2, 126.4, 124.3, 110.8, 110.3, 64.8, 63.0, 48.1, 32.8, 32.7, 30.6, 29.2, 26.1, 25.9, 25.5, 24.9; DIMS [M+H]⁺ calcd for C₂₄H₃₂N₃O₄ 426.2393; found 426.2388.

Synthesis of 2-(allyl(2-nitrophenyl)amino)-N-cyclohexyl-2-(furan-2-yl)acetamide (2i).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.5 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-furaldehyde (41 μ L, 0.5 mmol, 1 equiv), allyl amine (38 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 6 h. Removal of volatiles gave the crude material, which was purified via flash column chromatography on silica gel (35% ethyl acetate in hexanes) to afford **2i** for characterization. R_f = 0.10 (40:60 Et₂O:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.1 Hz, 1H), 7.48 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.38 (d, *J* = 1.8 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.19 (dd, *J* = 7.8, 7.7 Hz, 1H), 6.42 (d, *J* = 3.2 Hz, 1H), 6.33 (dd, *J* = 3.3, 1.4 Hz, 1H), 5.54-5.44 (m, 1H), 5.10 (s, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 4.92 (d, *J* = 17.1 Hz, 1H), 3.79-3.69 (m, 1H), 3.59-3.49 (m, 2H), 1.92-1.88 (m, 1H), 1.74-157 (m, 5H), 1.38-1.07 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 149.2, 142.7, 142.1, 133.0, 132.2, 126.3, 125.0, 124.7, 119.5, 111.2, 110.6, 77.2, 65.0, 54.5, 48.2, 32.9, 32.5, 25.5, 24.8, 24.7.

Synthesis of 2-(allyl(2-nitrophenyl)amino)-N-(tert-butyl)-2-(furan-3-yl)acetamide (3a).

In a similar manner as described in [1], to a solution of 2-nitrophenol (50.1 mg, 0.37 mmol, 1 equiv) in methanol (0.37 mL) was added 3-furaldehyde (31.2 μ L, 0.37 mmol, 1 equiv), allylamine (27 μ L, 0.37 mmol, 1 equiv), and *tert*-butyl isocyanide (81.5 μ L, 0.74 mmol, 2 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (20% ethyl acetate in hexanes) to afford *N*-arylamide **3a** (79.9 mg, 45%). R_f = 0.76 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.4 Hz, 1H), 7.47-7.39 (m, 2H), 7.33 (s, 1H), 7.24-7.15 (m, 3H), 6.35 (s, 1H), 5.66-5.53 (m, 1H), 5.04 (d, *J* = 10.1 Hz, 1H), 4.95-4.89 (m, 1H), 4.76 (s, 1H), 3.58 (dd, *J* = 6.7, 6.6 Hz, 1H), 3.47 (dd, *J* = 6.5, 6.5 Hz, 1H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 147.2, 143.4, 142.2, 142.1, 132.7, 131.9, 126.6, 125.1, 124.8, 120.4, 120.0, 110.1, 64.0, 55.1, 51.1, 28.5; HR-FAB MS [M+H]⁺ calcd for C₁₉H₂₄N₃O₄ 358.1767; found 358.1767.

Synthesis of 2-(allyl(2-nitrophenyl)amino)-N-cyclohexyl-2-(furan-3-yl)acetamide (3b).

TIn a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 3-furaldehyde (43.3 µL, 0.5 mmol, 1 equiv), allylamine (38.0 µL, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 µL, 0.5 mmol, 1 equiv). The reaction mixture warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (15% ethyl acetate in hexanes) to afford *N*-arylamide **3b** (123.8 mg, 64%). $R_f = 0.51$ (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.53-7.50 (m, 2H), 7.41 (s, 1H), 7.34-7.28 (m, 3H), 6.44 (s, 1H), 5.72-5.62 (m, 1H), 5.13 (d, *J* = 10.1 Hz, 1H), 5.02 (d, *J* = 17.1 Hz, 1H), 4.96 (s, 1H), 3.79-3.71 (m, 1H), 3.65 (dd, *J* = 6.7, 6.6 Hz, 1H), 3.55 (dd, *J* = 6.6, 6.5 Hz, 1H), 1.94-1.86 (m, 1H), 1.78-1.62 (m, 4H), 1.44-1.19 (m, 4H), 1.15-1.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 147.1, 143.3, 142.1, 141.8, 132.6, 131.6, 126.3, 125.0, 124.6, 120.3, 120.0, 109.9, 63.0, 55.1, 47.9, 32.7, 32.5, 25.4, 24.6, 24.5; HR-FAB MS [M+Na]⁺ calcd for C₂₁H₂₅N₃NaO₄ 406.1743; found 406.1743.

Synthesis of 2-(but-3-en-1-yl(2-nitrophenyl)amino)-*N*-(*tert*-butyl)-2-(furan-3-yl)acetamide (3c).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 3-furaldehyde (43.2 μ L, 0.5 mmol, 1 equiv), 3-butenylamine (45.8 μ L, 0.5 mmol, 1 equiv), and *tert*-butyl isocyanide (113.1 μ L, 1.0 mmol, 2 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (15% ethyl acetate in hexanes) to afford *N*-arylamide **3c** (108.1 mg, 58%). R_f = 0.18 (20:80 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.9 Hz, 1H), 7.40 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.30-7.23 (m, 2H), 7.23-7.08 (m, 3H), 6.28 (s, 1H), 5.61-5.46 (m, 1H), 4.92-4.79 (m, 2H), 4.67 (s, 1H), 3.06-2.94 (m, 1H), 2.91-2.79 (m, 1H), 2.03-1.81 (m, 2H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 147.9, 143.2, 142.3, 141.9, 135.0, 132.7, 126.9, 125.6, 124.9, 119.5, 117.2, 110.6, 64.8, 51.2, 51.1, 31.3, 29.6; HR-FAB MS [M+H]⁺ calcd for C₂₀H₂₆N₃O₄ 372.1923; found 372.1911.

Synthesis of 2-(but-3-en-1-yl(2-nitrophenyl)amino)-*N*-cyclohexyl-2-(furan-3-yl)acetamide (3d).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 3-furaldehyde (43.3 μ L, 0.5 mmol, 1 equiv), 3-butenylamine (45.8 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (15% ethyl acetate in hexanes) to afford *N*-arylamide **3d** (103.3 mg, 52%). R_f = 0.51 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 1H), 7.47 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.36 (s, 1H), 7.33 (s, 1H), 7.28-7.19 (m, 3H), 6.33 (s, 1H), 5.62-5.51 (m, 1H), 4.95-4.84 (m, 3H), 3.74-3.67 (m, 1H), 3.08-3.01 (m, 1H), 2.94-2.87 (m, 1H), 2.05-1.91 (m, 2H), 1.86 (d, *J* = 12.0 Hz, 1H), 1.75-1.54 (m, 5H), 1.38-1.12 (m, 3H), 1.09-1.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 147.7, 143.1, 142.2, 141.8, 134.7, 132.7, 126.6, 125.4, 124.8, 119.5, 117.1, 110.3, 63.9, 51.1, 48.0, 32.8, 32.5, 31.0, 25.4, 24.7, 24.6; HR-FAB MS [M+Na]⁺ calcd for C₂₂H₂₇N₃NaO₄ 420.1899; found 420.1918.

Synthesis of *N-(tert-*butyl)-2-(furan-3-yl)-2-((2-nitrophenyl)-(prop-2-yn-1-yl)amino) acetamide (3e).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.7 mg, 0.5 mmol, 1 equiv), in methanol (0.50 mL) was added 3-furaldehyde (43.2 μ L, 0.5 mmol, 1 equiv), propargylamine (32.0 μ L, 0.5 mmol, 1 equiv), and *tert*-butyl isocyanide (114 μ L, 1.0 mmol, 2 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (20% ethyl acetate in hexanes) to afford *N*-arylamide **3e** (40.7 mg, 23%). R_f = 0.70 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.7 Hz, 1H), 7.58 (s, 1H), 7.54-7.49 (m, 2H), 7.37 (s, 1H), 7.34-7.28 (m, 1H), 6.89 (s, 1H), 6.41 (s, 1H), 4.95 (s, 1H), 3.61 (dd, *J* = 17.9, 2.2 Hz, 1H), 3.53 (dd, *J* = 17.8, 2.0 Hz, 1H), 2.27 (s, 1H), 1.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 147.7, 143.9, 142.6, 141.1, 132.7, 126.7, 126.4, 124.3, 120.6, 109.2, 76.8, 75.2, 62.4, 51.2, 43.6, 28.4; DIMS [M+H]⁺ calcd for C₁₉H₂₂N₃O₄ 356.1610; found 356.1601.

Synthesis of *N*-cyclohexyl-2-(furan-3-yl)-2-((2-nitrophenyl)(prop-2-yn-1-yl)amino) acetamide (3f).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.6 mg, 0.5 mmol, 1 equiv), in methanol (0.50 mL) was added 3-furaldehyde (43.3 μ L, 0.5 mmol, 1 equiv), propargylamine (32.1 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62.2 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (20% ethyl acetate in hexanes) to afford *N*-arylamide **3f** (92.2 mg, 48%). R_f = 0.47 (50:50 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.59 (s, 1H), 7.51-7.50 (m, 2H), 7.36 (s, 1H), 7.33-7.30 (m, 1H), 7.02 (d, *J* = 8.3 Hz, 1H), 6.40 (s, 1H), 5.07 (s, 1H), 3.70-3.54 (m, 3H), 2.27 (s, 1H), 1.78-1.64 (m, 3H), 1.56-1.47 (m, 2H), 1.30-1.04 (m, 4H), 0.79-0.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 147.7, 143.8, 142.6, 140.9, 132.7, 126.4(2C), 124.2, 120.5, 109.1, 76.7, 75.2, 61.4, 47.9, 43.6, 32.7, 32.4, 25.4, 24.8, 24.7; HR-FAB MS [M+H]⁺ calcd for C₂₁H₂₄N₃O₄ 382.1767; found 382.1768.

Synthesis of 2-(allyl(2-nitrophenyl)amino)-N-cyclohexyl-2-(thiophen-2-yl)acetamide (4a).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.8 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-thiophenecarboxaldehyde (46.7 μ L, 0.5 mmol, 1 equiv), allylamine (38 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (62 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 30 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (10% ethyl acetate in hexanes) to afford *N*-aryl amide **4a** (49.3 mg, 25%). R_f = 0.13 (20:80 EtOAc:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 1H), 7.45 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.29-7.19 (m, 4H), 7.05 (d, *J* = 2.6 Hz, 1H), 6.91 (dd, *J* = 4.3, 4.3 Hz, 1H), 5.65-5.55 (m, 1H), 5.22 (s, 1H), 5.06 (d, *J* = 10.1 Hz, 1H), 4.91 (d, *J* = 17.1 Hz, 1H), 3.67-3.62 (m, 1H), 3.60-3.46 (m, 2H), 1.86-1.77 (m, 1H), 1.73-1.64 (m, 1H), 1.60-1.50 (m, 3H), 1.33-1.09 (m, 4H), 0.96-0.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 147.1, 141.8, 138.4, 132.7, 131.4, 128.4, 126.5, 126.4 (2C), 125.3, 124.7, 120.3, 66.8, 55.4, 48.0, 32.5, 32.4, 25.4, 24.7, 24.6; DIMS [M+H]⁺ calcd for C₂₁H₂₆N₃O₃S 400.1695; found 400.1690.

Synthesis of 2-(but-3-en-1-yl(2-nitrophenyl)amino)-*N*-cyclohexyl-2-(thiophen-2-yl) acetamide (4b).

In a similar manner as described in [1], to a solution of 2-nitrophenol (69.8 mg, 0.5 mmol, 1 equiv) in methanol (0.50 mL) was added 2-thiophenecarboxaldehyde (46.7 μ L, 0.5 mmol, 1 equiv), 3-butenylamine (45.8 μ L, 0.5 mmol, 1 equiv), and cyclohexyl isocyanide (61.3 μ L, 0.5 mmol, 1 equiv). The reaction mixture was warmed at 50 °C for 48 h. Removal of volatiles gave crude material, which was purified via flash column chromatography on silica gel (20% ethyl ether in hexanes) to afford *N*-aryl amide **4b** (47.5 mg, 23%). R_f = 0.10 (40:60 Et₂O:Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.46 (dd, *J* = 8.7, 7.0 Hz, 1H), 7.30-7.18 (m, 4H), 6.96 (d, *J* = 3.5 Hz, 1H), 6.91 (dd, *J* = 5.1, 3.5 Hz, 1H), 5.60-5.49 (m, 1H), 5.20 (s, 1H), 4.92 (dd, *J* = 10.2, 1.6 Hz, 1H), 4.86 (dd, *J* = 17.1, 1.6 Hz, 1H), 3.74-3.64 (m, 1H), 3.08-2.89 (m, 2H), 2.10-1.99 (m, 1H), 1.98-1.90 (m, 1H); 1¹³C NMR (100 MHz, CDCl₃) δ 168.5, 147.8, 141.8, 137.6, 134.9, 132.8, 128.7, 126.9, 126.6, 126.4, 125.6, 124.9, 117.2, 67.5, 51.3, 48.2, 32.8, 32.6, 31.0, 25.6, 24.8, 24.7; DIMS [M+H]⁺ calcd for C₂₂H₂₈N₃O₃S 414.1851; found 414.1845.

Stacked ¹H NMRs for reaction monitoring (related to Scheme 2)

All ¹H spectra were acquired in CDCl₃. Formation of linear Ugi-Smiles adduct **2i** was tracked by the appearance of the representative diagnostic allylic peak (marked **2i** above), as that peak did not overall with other starting material or US-IMDA product peaks. Formation of diastereomers **1b-D1** and **1b-D2** were tracked by the diagnostic dd between 2.5-3.2 ppm, as these did not overlap with starting material or linear **2i** product peaks. Conversion was estimated by integrations.

NH O					BRUKER
Ic-D2					Current Data Parameters NAME KM-35-D2 EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_ 20150427 Time 11.10 INSTRUM spect PROPHD 5 mm PAPEO PD (
¹ H NMR. CDCI₂					PULPROG ZG30 TD 65536
400 MHz					SOLVENT CDC13 NS 16 DS 2 SWH 8012.820 Hz FIDRES 0.122266 Hz AQ 4.0894465 sec RG 95.15 DW 62.400 usec DE 6.50 usec TE 292.4 K D1 1.0000000 sec TD0 1
					===== CHANNEL f1 ======= SF01 400.1524711 MHz NUC1 1H H P1 15.00 usec PLW1 9.80000019 W
	I				F2 - Processing parameters SI 65536 SF 400.1500076 MHz WDW EM SSB 0 LB 0.30 Hz GB 0
6 7 6 6 7 6 6 7 6 7 1003 7 7 1000 7 7 1000 7 7 1000 7 7 10000 7 7 1000 7 7 1000 7 7 1000 7 7 1000 7 7 1000 7 7 1000 7 7	1.03 1.03 1.03	4	3 2 3 2 1.01	9.43 3.24 3.24 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	ppm 1.00

		Current Data Parameters NAME KM-11-9-14R-F9-16-C EXPNO 10 PROCNO 1
¹³ C NMR, CDCI ₃ 100 MHz		F2 - Acquisition Parameters Date_ 20150106 Time 14.05 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 128 DS 4 SWH 24038.461 AQ 1.3631488 RG 210.96 DW 20.800 DE 10.00 DI 2.00000000 Sec 7
		TD0 1 CHANNEL f1 SF01 100.6278588 MHz NUC1 13C P1 10.00 usec PLW1 48.20000076 W CHANNEL f2 SF02 400.1516006 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW12 0.27221999 W PLW13 0.22050001 W
200 180 160 140 120 100 80	60 40 20 0 ppm	F2 - Processing parameters SI 32768 SF 100.6177971 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40

			BRUKER
3e			Current Data Parameters NAME KM-36R-F61-70-3 EXPNO 10 PROCNO 1
¹ H NMR, CDCl₃			F2 - Acquisition Parameters Date_ 20150513 Time 13.49 INSTRUM spect PROBED 5 mm PABBO BB/ PULPROG zg30
400 MHz			TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 8012.820 Hz FIDRES 0.122266 Hz AQ 4.0894465 sec RG 152.01
			DW 62.400 usec DE 6.50 usec TE 292.6 K D1 1.0000000 sec TD0 1
			===== CHANNEL f1 ====== SF01 400.1524711 MHz NUC1 1H P1 15.00 usec PLW1 9.80000019 W
		hul	F2 - Processing parameters SI 65536 SF 400.1500364 MHz WDW EM - SSB 0
·····			LB 0.30 Hz GB 0
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 001111010000000000000000000000000000	0 3.5 3.0 2.5 2.0	0 1.5 1.0 0.5 pp	m

S48

NO ₂			\langle									BR	Data Parameters
3e												NAME EXPNO PROCNO F2 - Acc Date_	KM-36R-F61-70-3 20 1 puisition Parameters 20150513
¹³ C NMR,	, CDCl ₃											Time INSTRUM PROBHD PULPROG	13.57 spect 5 mm PABBO BB/ zgpg30
100 M	1Hz											ID SOLVENT NS DS SWH	65536 CDC13 128 4 24038 461 Hz
												FIDRES AQ RG DW	0.366798 Hz 1.3631488 sec 210.96 20.800 usec
												DE TE D1 D11 TD0	10.00 usec 293.5 K 2.00000000 sec 0.03000000 sec 1
												====== SF01 NUC1 P1 PLW1	- CHANNEL f1 ======= 100.6278588 MHz 13C 10.00 usec 48.20000076 W
												SF02 NUC2 CPDPRG[2 PCPD2	CHANNEL f2 ======= 400.1516006 MHz 1H waltz16 90.00 usec
												PLW2 PLW12 PLW13	9.80000019 W 0.27221999 W 0.22050001 W
y falandi a falan da	president of the first of the f			Handan, Kapal, Al, Ale. Ali katang periodah	alan da kapadikana Upada kapadikana	tili od spotiski de li boso in V pri sa presente V spotope	urterine opidientalie urterine opidient	Handlalan (Alan ada). Yan bilan adalar	h Vian Maaraa Areena Araa Maraa Maaraa Areena Araa Maraa Maraa	hender og so hender og so	en openious en protecture	F2 - Pro SI SF WDW SSB	cessing parameters 32768 100.6177852 MHz EM 0
200	180	160	140	120	100	80	60	40	20	0	ppm	GB PC	0 1.40

