Supporting Information

for

Solvent-free synthesis of novel *para*-menthane-3,8-diol ester derivatives from citronellal using a polymer-supported scandium triflate catalyst

Lubabalo Mafu, Ben Zeelie and Paul Watts^{*}

Address: Nelson Mandela Metropolitan University, University Way, Port Elizabeth, 6031, South Africa

Email: Paul Watts - Paul.Watts@nmmu.ac.za

*Corresponding author

1. STARTING MATERIAL AND OIL COMPONENTS	S3
1.1. CITRONELLAL	S3
FTIR- spectrum	S3
GC–MS spectrum	S3
¹ H NMR spectrum	S4
¹³ C NMR spectrum	S5
1.2. Isopulegol	S6
FTIR spectrum	S6
GC-MS spectrum	S6
¹ H NMR spectrum	S7
¹³ C NMR spectrum	S8
1.3. PARA-MENTHANE-3,8-DIOL	S9
FTIR spectrum	S9
GC–MS spectrum	S9
¹ H NMR spectrum	S10
¹³ C NMR spectrum	S11
2. PARA-MENTHANE-3,8-DIESTER DERIVATIVES	S12
2.1. Mono-acetate	S12
FTIR spectrum	S12
GC–MS spectrum	S12
¹ H NMR spectrum	S13
¹³ C NMR spectrum	S14
2.2. DI-ACETATE	S15
FTIR spectrum	S15
GC–MS spectrum	S15
¹ H NMR spectrum	S16

¹³ C NMR spectrum	S17
2.3. MONO-PROPIONATE	S18
FTIR spectrum	S18
GC–MS spectrum	S18
¹ H NMR spectrum	S19
¹³ C NMR spectrum	S20
2.4. DI-PROPIONATE	S21
FTIR spectrum	S21
GC-MS spectrum	S21
¹ H NMR spectrum	S22
¹³ C NMR spectrum	S23
2.5. MONO-PENTANOATE	S24
FTIR spectrum	S24
GC-MS spectrum	S24
¹ H NMR spectrum	S25
¹³ C NMR spectrum	S26
2.6. DI-PENTANOATE	S27
FTIR spectrum	S27
GC-MS spectrum	S27
¹ H NMR spectrum	S28
¹³ C NMR spectrum	S29
2.7. Mono-hexanoate	S30
FTIR spectrum	S30
GC-MS spectrum	S30
¹ H NMR spectrum	S31
¹³ C NMR spectrum	S32
DI-HEXANOATE	S33
FTIR spectrum	S33
GC-MS spectrum	S33
¹ H NMR spectrum	S34
¹³ C NMR spectrum	S35

1. Starting material and oil components

1.1. Citronellal

GC-MS spectrum

¹H NMR spectrum

¹³C NMR spectrum

1.2. Isopulegol

GC-MS spectrum

¹H NMR spectrum

¹³C NMR spectrum

1.3. para-menthane-3,8-diol

GC-MS spectrum

¹H NMR spectrum

¹³C NMR spectrum

Appendix B:

2. para-Menthane-3,8-diester derivatives

2.1. Mono-acetate

¹H NMR spectrum

¹³C NMR spectrum

¹H NMR spectrum

¹³C NMR spectrum

2.3. Mono-propionate

¹H NMR spectrum

¹³C NMR spectrum

2.4. Di-propionate

GC-MS spectrum

¹H NMR spectrum

2.5. Mono-pentanoate

FTIR spectrum

¹H NMR spectrum

¹³C NMR spectrum

GC-MS spectrum

2.7. Mono-hexanoate

Abundance

GC–MS spectrum

¹H NMR spectrum

¹³C NMR spectrum

Di-hexanoate

¹H NMR spectrum

¹³C NMR spectrum