Supporting Information

for

Regiocontroled Pd-catalysed C5-arylation of 3-substituted thiophene derivatives using a bromo-substituent as blocking group

Mariem Brahim ${ }^{1,2}$, Hamed Ben Ammar ${ }^{* 2}$, Jean-François Soule ${ }^{* 1}$ and Henri Doucet ${ }^{* 1}$
Address: ${ }^{1}$ Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes "Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France. Tel.: 00-33-2-23-23-63-84 and ${ }^{2}$ Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène, (UR 11ES56) Université de Monastir, Faculté des Sciences de Monastir, avenue de l'environnement, Monastir 5000, Tunisie.
Email: Jean-François Soulé - jean-francois.soule@univ-rennes1.fr; Henri Doucet - henri.doucet@univ-rennes1.fr *Corresponding author

Procedures, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of all compounds

All reactions were run under argon in Schlenk tubes using vacuum lines. DMA analytical grade was not distilled before use. KOAc (99%) and $\operatorname{Pd}(\mathrm{OAc})_{2}(98 \%)$ were used. Commercial thiophene derivatives, aryl bromides and heteroarenes were used without purification. The reactions were followed by GC and NMR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded with a Bruker 400 MHz spectrometer in CDCl_{3} solutions. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left(7.25\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.0 for ${ }^{13} \mathrm{C}$ NMR). Flash chromatography was performed on silica gel (230-400 mesh).

General procedure for the synthesis of 1-18

In a similar manner as described in [1], as a typical experiment, the 2-bromothiophene derivative (2 mmol), aryl bromide derivative (1 mmol), $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in DMA (5 mL$)$ under an argon atmosphere. The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 h . After evaporation of the solvent, the product was purified by silica gel column chromatography.

2-Bromo-5-(4-nitrophenyl)thiophene (1) [2]

From 2-bromothiophene ($0.326 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1}$ was obtained in 55% $(0.156 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 130-132^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=4.0$ Hz, 1H).

[^0]
4-(5-Bromothiophen-2-yl)benzonitrile (2) [3]

From 2-bromothiophene ($0.326 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) product 2 was obtained in 38% $(0.100 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 102-104^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6$, 138.0, 133.1, 131.6, 126.0, 125.6, 118.9, 114.4, 111.3.

4-(5-Bromothiophen-2-yl)benzaldehyde (3) [4]

From 2-bromothiophene ($0.326 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) product 3 was obtained in 47% $(0.125 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 122-124^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6, 144.4, 139.4, 135.6, 131.6, 130.8, 126.0, 125.5, 114.2.

2-Bromo-5-(4-nitro-3-(trifluoromethyl)phenyl)thiophene (4)

From 2-bromothiophene ($0.326 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromo-1-nitro-2-(trifluoromethyl)benzene ($0.270 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{4}$ was obtained in $56 \%(0.197 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 94-96^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6,141.6,138.5,132.0,129.1,126.8,126.7,125.9(\mathrm{q}, J=34.0 \mathrm{~Hz}), 124.6(\mathrm{q}, J=5.5 \mathrm{~Hz})$, 122.0 ($\mathrm{q}, ~ J=273.8 \mathrm{~Hz}$), 115.9.
$\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{BrF}_{3} \mathrm{NO}_{2} \mathrm{~S}$ (352.13): Calcd C 37.52, H 1.43; Found C 37.34, H 1.37 .

2-Bromo-3-methyl-5-(4-nitrophenyl)thiophene (5)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) product 5 was obtained in $64 \%(0.191 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 102-104^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,140.3,139.6,138.9,127.3,125.3,124.3,111.9,15.2$.
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S}$ (298.15): Calcd C 44.31, H 2.70; Found C 44.50, H 2.99.

4-(5-Bromo-4-methylthiophen-2-yl)benzonitrile (6) [5]

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{6}$ was obtained in $60 \%(0.167 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 82-84^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2,139.1,138.1,133.0,127.2,125.7,118.9,111.7,111.0,15.6$.

4-(5-Bromo-4-methylthiophen-2-yl)benzaldehyde (7)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) product 7 was obtained in $63 \%(0.177 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 124-126^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,142.2,139.9,139.4,135.8,131.1,127.4,126.0,111.8,15.9$.
$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrOS}$ (281.17): Calcd C 51.26, H 3.23; Found C 51.40, H 3.17.

3-(5-Bromo-4-methylthiophen-2-yl)benzonitrile (8) [5]

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 3-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{8}$ was obtained in $61 \%(0.169 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 128-130^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ ($\mathrm{s}, 1 \mathrm{H}$), 2.22 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.7,138.8,135.1,130.9,130.0,129.5,128.7,126.4,118.5,113.4,110.6,15.4$.

2-Bromo-3-methyl-5-(3-nitrophenyl)thiophene (9)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 3-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) product 9 was obtained in $72 \%(0.214 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 138-140^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{ddd}, J=8.1,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (ddd, $J=7.8,1.7,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9,140.6,138.9,135.5,131.1,130.1,126.8,122.2,120.0,110.8,15.5$.
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S}$ (298.15): Calcd C 44.31, H 2.70; Found C 44.40, H 2.58.

2-Bromo-3-methyl-5-(4-nitro-3-(trifluoromethyl)phenyl)thiophene (10)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromo-1-nitro-2-(trifluoromethyl)benzene ($0.270 \mathrm{~g}, 1 \mathrm{mmol}$) product 10 was obtained in $85 \%(0.311 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 138-140^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,140.0,139.5,139.1,129.1,128.7,127.0,125.5(\mathrm{q}, J=34.0 \mathrm{~Hz}), 124.7(\mathrm{q}, J=5.5 \mathrm{~Hz})$, $122.3(\mathrm{q}, J=273.8 \mathrm{~Hz}), 113.5,15.9$.
$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrF}_{3} \mathrm{NO}_{2} \mathrm{~S}$ (366.15): Calcd C 39.36, H 1.93; Found C 39.21, H 2.01 .

2-Bromo-3-methyl-5-(2-nitrophenyl)thiophene (11)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-bromonitrobenzene ($0.202 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 1}$ was obtained in $84 \%(0.250 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 66-68^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,138.6,137.0,132.6,132.5,129.7,129.5,128.3,124.6,111.7,15.8$.
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S}$ (298.15): Calcd C 44.31, H 2.70; Found C 44.21, H 2.94.

2-(5-Bromo-4-methylthiophen-2-yl)benzonitrile (12)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 2}$ was obtained in $77 \%(0.214 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 104-106^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9$, 138.8, 137.1, 134.7, 133.3, 129.7, 129.5, 128.1, 118.9, 111.9, 109.9, 15.7 .
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{BrNS}$ (278.17): Calcd C 51.81, H 2.90; Found C 51.78, H 2.78.

2-(5-Bromo-4-methylthiophen-2-yl)benzaldehyde (13)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 3}$ was obtained in $71 \%(0.199 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 98-100^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.5,138.0,137.9,137.1,133.9,133.5,131.3,130.8,128.3,127.8,111.0,15.1$.
$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrOS}$ (281.17): Calcd C 51.26, H 3.23; Found C 51.17, H 3.30.

3-(5-Bromo-4-methylthiophen-2-yl)quinoline (14)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 4}$ was obtained in $63 \%(0.191 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 114-116^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,147.9,140.4,139.3,131.5,130.1,129.9,128.4,127.9,127.5,126.8,110.7,15.9$
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNS}$ (304.20): Calcd C 55.28, H 3.31; Found C 55.07, H 3.17.

5-(5-Bromo-4-methylthiophen-2-yl)pyrimidine (15)

From 2-bromo-3-methylthiophene ($0.354 \mathrm{~g}, 2 \mathrm{mmol}$) and 5-bromopyrimidine ($0.159 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 5}$ was obtained in $66 \%(0.168 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 92-94^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5$, 153.1, 139.1, 135.5, 128.3, 127.3, 111.7, 15.4.
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{~S}$ (255.13): Calcd C 42.37, H 2.77; Found C 42.31, H2.67.

Ethyl 2-(2-bromo-5-(4-nitro-3-(trifluoromethyl)phenyl)thiophen-3-yl)acetate (16)

From ethyl 2-(2-bromothiophen-3-yl)acetate ($0.498 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromo-1-nitro-2-(trifluoromethyl)benzene ($0.270 \mathrm{~g}, 1$ $\mathrm{mmol})$ product 16 was obtained in $70 \%(0.306 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,146.0,139.2,137.7,135.3,128.3,127.2,126.0,125.5(\mathrm{q}, J=34.0 \mathrm{~Hz}), 124.0(\mathrm{q}, J=$ $5.5 \mathrm{~Hz}), 121.3(\mathrm{q}, J=273.8 \mathrm{~Hz}), 114.4,60.9,34.6,13.7$.
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrF}_{3} \mathrm{NO}_{4} \mathrm{~S}$ (438.22): Calcd C 41.11, H 2.53; Found C 41.30, H 2.38.

Ethyl 2-(2-bromo-5-(2-cyanophenyl)thiophen-3-yl)acetate (17)

From ethyl 2-(2-bromothiophen-3-yl)acetate ($0.498 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 7}$ was obtained in $68 \%(0.238 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.39$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.2,139.7,137.0,135.4,134.9,133.5,129.8,129.4,128.5,118.9,114.2,110.4,61.8,35.7$, 14.7.
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNO}_{2} \mathrm{~S}$ (350.23): Calcd C 51.44, H 3.45; Found C 51.38, H 3.37.

4-(5-Bromo-4-chlorothiophen-2-yl)benzonitrile (18)

From 2-bromo-3-chlorothiophene ($0.394 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) product $\mathbf{1 8}$ was obtained in $34 \%(0.101 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 158-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,137.0,133.1,128.5,125.8,125.2,118.5,112.0,110.3$.
$\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{BrClNS}$ (298.59): Calcd C 44.25, H 1.69; Found C 44.36, H 1.78.

4-(5'-Methyl-2,2'-bithiophen-5-yl)benzonitrile (19)

In a similar manner as described in [1], 4-(5-bromothiophen-2-yl)benzonitrile ($2,0.264 \mathrm{~g}, 1 \mathrm{mmol}$), 2-methylthiophene $(0.049 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{KOAc}(0.098 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, were dissolved in DMA (3 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 2 h . After evaporation of the solvent, the product was purified by silica gel column chromatography affording 19 in $71 \%(0.100 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 178-180^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.8,140.3,140.2,139.0,134.9,133.3,126.7,126.4,126.3,124.8,124.7,119.4,110.8$, 16.0.
$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NS}_{2}$ (281.39): Calcd C 68.29, H 3.94; Found C 68.21, H 3.80.

4-Ethyl-2-methyl-5-(5-(4-nitrophenyl)thiophen-2-yl)thiazole (20)

In a similar manner as described in [1], 2-bromo-5-(4-nitrophenyl)thiophene (1, $0.284 \mathrm{~g}, 1 \mathrm{mmol}$), 2-ethyl-4-methylthiazole $(0.064 \mathrm{~g}, 0.5 \mathrm{mmol}), \operatorname{KOAc}(0.098 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, were dissolved in DMA (3 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 2 h . After evaporation of the solvent, the product was purified by silica gel column chromatography affording 20 in $91 \%(0.150 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 118-120^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,149.5,147.6,142.1,141.0,137.4,128.7,127.1,126.7,125.5,124.9,27.9,17.8,15.1$. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (330.42): Calcd C 58.16, H 4.27; Found C 58.24, H 4.19.

General procedure for the synthesis of 21-23

In a similar manner as described in [1], as a typical experiment, the 2-bromothiophene derivative (1 mmol), heteroarene derivative (2 mmol), $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, were dissolved in DMA (5 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 16 h . After evaporation of the solvent, the product was purified by silica gel column chromatography.

3-(3-Methylthiophen-2-yl)imidazo[1,2-a]pyridine (21)

From 2-bromo-3-methylthiophene ($0.177 \mathrm{~g}, 1 \mathrm{mmol}$) and imidazo[1,2-a]pyridine ($0.236 \mathrm{~g}, 2 \mathrm{mmol}$) product 21 was obtained in $70 \%(0.150 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.3,138.6,134.8,130.6,126.7,124.9,124.3,123.4,118.2,117.8,112.8,14.9$. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$ (214.29): Calcd C 67.26, H 4.70; Found C 67.04, H 4.61.

4-Ethyl-2-methyl-5-(3-methylthiophen-2-yl)thiazole (22)

From 2-bromo-3-methylthiophene ($0.177 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-ethyl-4-methylthiazole ($0.256 \mathrm{~g}, 2 \mathrm{mmol}$) product 22 was obtained in $88 \%(0.196 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.16$ (s, 3H), 1.39 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,150.4,137.4,130.3,127.1,125.7,122.6,27.3,16.1,14.9,14.4$. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NS}_{2}$ (223.36): Calcd C 59.15, H 5.87; Found C 59.07, H 5.88.

4-Isopropyl-2-methyl-5-(3-methylthiophen-2-yl)thiazole (23)

From 2-bromo-3-methylthiophene ($0.177 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-isopropyl-2-methylthiazole ($0.282 \mathrm{~g}, 2 \mathrm{mmol}$) product $\mathbf{2 1}$ was obtained in $83 \%(0.197 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (sept., $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,150.3$, 137.3, 130.3, 127.2, 125.7, 122.2, 33.7, 23.4, 16.2, 14.9.
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NS}_{2}$ (237.38): Calcd C 60.72, H 6.37; Found C 60.77, H 6.20.

General procedure for the synthesis of 24-26

In a similar manner as described in [1], as a typical experiment, the thiophene derivative (1 mmol), aryl bromide derivative $(1.5 \mathrm{mmol})$, $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, were dissolved in DMA $(5 \mathrm{~mL})$ under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 16 h . After evaporation of the solvent, the product was purified by silica gel column chromatography.

3-(3-Methyl-5-(4-nitrophenyl)thiophen-2-yl)imidazo[1,2-a]pyridine (24)

From 3-(3-methylthiophen-2-yl)imidazo[1,2-a]pyridine (21, $0.214 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-bromonitrobenzene ($0.303 \mathrm{~g}, 1.5 \mathrm{mmol}$) product 24 obtained in $87 \%(0.291 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 204-206^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 147.2,146.7,141.8,140.3,140.0,135.4,129.1,126.1,125.3,124.8,124.3,118.5,117.3$, 113.3, 15.3.
$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (335.38): Calcd C 64.46, H 3.91; Found C 64.37, H 3.81.

4-Ethyl-2-methyl-5-(3-methyl-5-(4-nitrophenyl)thiophen-2-yl)thiazole (25)

From 4-ethyl-2-methyl-5-(3-methylthiophen-2-yl)thiazole (22, $0.223 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-bromonitrobenzene ($0.303 \mathrm{~g}, 1.5$ mmol) product $\mathbf{2 5}$ was obtained in $91 \%(0.313 \mathrm{~g})$ yield as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38$ (s, 3H), $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.0,151.2,147.2,141.3,140.7,139.3,130.2,129.2,126.2,125.0,122.2,27.6,16.7,15.5$, 14.7.
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (344.45): Calcd C 59.28, H 4.68; Found C 59.20, H 4.40.

4-Isopropyl-2-methyl-5-(3-methyl-5-(4-nitrophenyl)thiophen-2-yl)thiazole (26)

From 4-isopropyl-2-methyl-5-(3-methylthiophen-2-yl)thiazole (23, $0.237 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-bromonitrobenzene ($0.303 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ product 26 was obtained in $88 \%(0.315 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 100-102^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 3.29$ (sept., $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,150.8,146.9,141.0,140.4,139.0,130.1,128.9,125.9,124.7,121.5,33.7,23.4,16.5$, 15.2.
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (358.48): Calcd C 60.31, H 5.06; Found C 60.24, H 5.02.

3-Methyl-5-(4-nitrophenyl)-2-phenylthiophene (27)

2-Bromo-3-methyl-5-(4-nitrophenyl)thiophene ($5,0.149 \mathrm{~g}, 0.5 \mathrm{mmol}$), phenylboronic acid ($0.092 \mathrm{~g}, 0.75 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.138 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, were dissolved in DMA (3 mL) under an argon atmosphere. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 15 h . After evaporation of the solvent, the product was purified by silica gel column chromatography affording 27 in $60 \%(0.088 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 100-102^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6,140.9,140.7,138.9,135.1,134.1,129.9,129.0,128.9,128.0,125.6,124.6,15.3$. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ (295.35): Calcd C 69.13, H 4.44; Found C 69.00, H 4.51.

Ethyl 2-(5-(4-nitro-3-(trifluoromethyl)phenyl)-2-phenylthiophen-3-yl)acetate (28)
Ethyl 2-(2-bromo-5-(4-nitro-3-(trifluoromethyl)phenyl)thiophen-3-yl)acetate ($\mathbf{1 6}, 0.219 \mathrm{~g}, 0.5 \mathrm{mmol}$), phenylboronic acid $(0.092 \mathrm{~g}, 0.75 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.138 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, were dissolved in DMA (3 mL) under an argon atmosphere. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 15 h . After evaporation of the solvent, the product was purified by silica gel column chromatography affording 28 in $80 \%(0.174 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 98-100^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 6 \mathrm{H}), 4.20$ (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,146.2,144.1,139.2,138.2,132.9,131.5,129.4,129.2,129.1,128.9,128.8,126.5$, $125.0(\mathrm{q}, J=34.0 \mathrm{~Hz}), 124.6(\mathrm{q}, J=5.5 \mathrm{~Hz}), 122.0(\mathrm{q}, J=273.6 \mathrm{~Hz}), 61.4,34.7,14.3$.
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$ (435.42): Calcd C 57.93, H 3.70; Found C 57.79, H 3.48.

3-(4-Methylthiophen-2-yl)quinoline (29)

3-(5-Bromo-4-methylthiophen-2-yl)quinoline ($14,0.152 \mathrm{~g}, 0.5 \mathrm{mmol}$), $\mathrm{NEt}_{3}(0.101 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%)(10.6 \mathrm{mg}$, 0.01 mmol), were dissolved in $\mathrm{EtOH}(3 \mathrm{~mL})$ under hydrogen atmosphere (2 bars). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 15 h . After evaporation of the solvent, the product was purified by silica gel column chromatography affording $\mathbf{2 9}$ in 93% $(0.105 \mathrm{~g})$ yield as a yellow solid $\mathrm{mp} 76-79^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.7$, 147.5, 140.6, 139.4, 131.3, 129.6, 129.5, 128.2, 128.1, 128.0, 127.5, 127.0, 121.7, 16.1.
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NS}$ (225.31): Calcd C 74.63, H 4.92; Found C 74.75, H 4.98.

References

[1] Belkessam, F.; Mohand, A.; Soulé, J.-F.; Elias, A.; Doucet, H. Beilstein J. Org. Chem. 2014, 10, 2912-2919.
[2] El Bakouri, O.; Fernandez, M.; Brun, S.; Pla-Quintana, A.; Roglans, A. Tetrahedron 2013, 69, 9761-9765.
[3] Chaires, J. B.; Ren, J.; Hamelberg, D.; Kumar, A.; Pandya, V.; Boykin, D. W.; Wilson, W. D. J. Med. Chem. 2004, 47, 5729-5742.
[4] Scrascia, A.; De Marco, L.; Laricchia, S.; Picca, R. A.; Carlucci, C.; Fabiano, E.; Capodilupo, A. L.; Della Sala, F.; Gigli, G.; Ciccarella, G. J. Mater. Chem. A 2013, l, 11909-11921.
[5] Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui, K.; Mori, A. Org. Lett. 2005, 7, 5083-5085.

[^0]: ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.1,143.2,139.8,131.8,126.1,126.0,124.8,115.1$.

