#### **Supporting Information**

#### for

# Tunable microwave-assisted method for the solvent-free and catalyst-free peracetylation of natural products

Manuela Oliverio<sup>\*1,2</sup>, Paola Costanzo<sup>1</sup>, Monica Nardi<sup>3</sup>, Carla Calandruccio<sup>1</sup>, Raffaele Salerno<sup>2</sup>, and Antonio Procopio<sup>1,2</sup>

Address: <sup>1</sup>Department of Health Science, University Magna Graecia of Catanzaro, Viale Europa,

Loc. Germaneto, 88100 Catanzaro, Italy, <sup>2</sup>InterRegional Center for Food Safety and Health,

University Magna Graecia of Catanzaro, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy and

<sup>3</sup>Department of Chemistry, Università della Calabria, Cubo 12C, 87036-Arcavacata di Rende (CS),

Italy

Email: Manuela Oliverio - m.oliverio@unicz.it.

\*Corresponding author

Scaled oleuropein peracetylation procedure, GC–MS, LC–HRMS, <sup>1</sup>H and <sup>13</sup>C NMR spectra of new compounds, as well as calculation for green chemistry metrics

|                                                   | Table of contents                 |            |
|---------------------------------------------------|-----------------------------------|------------|
| Experimen                                         | tal                               |            |
| Scale-up MW-assisted peracetylation of oleuropein |                                   |            |
| Scheme S1 – Table S1                              |                                   | <b>S</b> 3 |
| Characteriza                                      | Characterization of new compounds |            |
| Green chem                                        | Green chemistry metrics           |            |
| GC-EIMS                                           | spectra:                          |            |
| - Sam                                             | ple <b>3a</b>                     | S8         |
| - Sam                                             | ple 5a                            | <b>S9</b>  |
| - Sam                                             | ple 6a                            | S10        |
| - Sam                                             | ple <b>7a</b>                     | S11        |
| - Sam                                             | ple 8a                            | S12        |
| - Sam                                             | ple 9a                            | S13        |
| - Sam                                             | ple 10a                           | S14        |
| LC/HRMS                                           | spectra:                          |            |
| - Sam                                             | ple <b>12a</b>                    | S15        |
| - Sam                                             | ple <b>13a</b>                    | S17        |
| - Sam                                             | ple <b>16a</b>                    | S19        |
| - Sam                                             | ple 17a                           | S21        |
| <sup>1</sup> H NMR sp                             | ectra                             |            |
| - Sam                                             | ple <b>3a</b>                     | S23        |
| - Sam                                             | ple 5a                            | S24        |
| - Sam                                             | ple <b>6a</b>                     | S25        |
| - Sam                                             | ple 7a                            | S26        |
| - Sam                                             | ple 8a                            | S27        |
| - Sam                                             | ple <b>9a</b>                     | S28        |
| - Sam                                             | ple <b>10a</b>                    | S29        |
| - Sam                                             | ple <b>12a</b>                    | S30        |
| - Sam                                             | ple 13a                           | S31        |
| - Sam                                             | ple <b>16a</b>                    | S32        |
| - Sam                                             | ple 17a                           | S33        |
| <sup>13</sup> C NMR s                             | pectra                            |            |
| - Sam                                             | ple <b>3a</b>                     | S34        |
| - Sam                                             | ple 5a                            | S35        |
| - Sam                                             | ple <b>6a</b>                     | S36        |
| - Sam                                             | ple 7a                            | S37        |
| - Sam                                             | ple 8a                            | S38        |
| - Sam                                             | ple <b>9a</b>                     | S39        |
| - Sam                                             | ple <b>10a</b>                    | S40        |
| - Sam                                             | ple <b>12a</b>                    | S41        |
| - Sam                                             | ple <b>13a</b>                    | S42        |
| - Sam                                             | ple <b>16a</b>                    | S43        |
| - Sam                                             | ple <b>17a</b>                    | S44        |
| References                                        |                                   | S44        |

#### Experimental

#### Scale-up MW-assisted peracetylation of oleuropein

For scale up reaction 8 positions of the XF100 rotor were occupied with 100 mL PTFE-TFM vessel, loaded in a ceramic pressure jacket sealed with a dedicated PTFE-TFM cap with integrated relief valve and safety disk, fixed in a PEK seal holder.

Oleuropein (1 g) was left to react under MW heating with dry acetic anhydride (10 mL) in a 100 mL vial (rotor XF-100), equipped with a magnetic stirrer in the presence of molecular sieves (10% w/w). The microwave oven, equipped with IR sensor for external temperature control has been set with the power program provided as described in Table S1.



Figure S1: Temperature profiles in Scale-up and lab scale reactions

**Table S1:** P-controlled MW program (Synthos 3000, equipped with XF-100 rotor) for the scaled peracetilation of oleuropein

| Time (min) | <i>P</i> (W) | $T(^{\circ}C)^{a}$ | IR limit (°C) | Yield (%) |
|------------|--------------|--------------------|---------------|-----------|
| 0→5        | 0→350        | 0→110              | 105           | 100       |
| 5→10       | 350          | 110                |               |           |
| 10→12      | 350→400      | 110→120            |               |           |
| 12→62      | 400          | 120                |               |           |
| 62→65      | 0            | 120→50             |               |           |

<sup>a</sup>Calculated as follows:  $T_{\text{internal}} = 1.214 \times T_{\text{IR}}$ 

*N*-acetyl anthranilic acid (**1a**) Yellow powder; Yield 100%; <sup>1</sup>H NMR and <sup>13</sup>C NMR data were compared with those reported in a spectra Database [1].

Acetyl Salicylic acid (**2a**) White powder; Yield 100%; <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data were compared with those reported in a spectra Database [1].

*O*-acetyl cholesterol (**3a**) White powder; Yield 62%; MS (70 eV, IE): m/z (%) = 368 [M<sup>+</sup>- CH<sub>3</sub>COO] (100), 353 [M<sup>+</sup>- CH<sub>3</sub>COOCH<sub>3</sub>] (30), 247 [M<sup>+</sup>- CH<sub>3</sub>COOCH<sub>3</sub>-C<sub>9</sub>H<sub>13</sub>] (30), 147 [C<sub>11</sub>H<sub>15</sub><sup>+</sup>] (100), 133 [C<sub>11</sub>H<sub>15</sub><sup>+</sup>-CH<sub>2</sub>] (45), 119 [C<sub>11</sub>H<sub>15</sub><sup>+</sup>-2xCH<sub>2</sub>] (50), 105 [C<sub>11</sub>H<sub>15</sub><sup>+</sup>-3xCH<sub>2</sub>] (70), 91 [C<sub>11</sub>H<sub>15</sub><sup>+</sup>-4xCH<sub>2</sub>] (60); <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 5.40-5.35 (br d, J=4,8 Hz, 1H, H<sub>A</sub>), 4.67-4.54 (m, 1H, H<sub>B</sub>), 2.36-2.28 (br d, J=7,7 Hz, 2H, H<sub>C</sub>), 2.04 (s, 3H, H<sub>D</sub>), 2.02-0.83 (m, 38H), 0.67 (s, 3H, H<sub>E</sub>); <sup>13</sup>C NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 170.2, 140.2, 122.7, 57.2, 56.8, 50.7, 42.8, 40.2, 39.8, 38.5, 37.4, 37.0, 36.6, 36.0, 32.4, 32.2, 28.3, 28.2, 28.1, 24.5, 24.2, 22.8, 22.6, 21.4, 21.2, 19.4, 19.0, 12.1, 10.3.

Peracetylated Hydroxytyrosol (**4a**) Yellow Oil; Yield 100%; <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data were compared with those reported in literature [2].

*O*-acetyl citronellol (**6a**) Yellow Oil; Yield 100%; MS (70 eV, IE): m/z (%) = 198 [M<sup>+</sup>] (1), 138 [M<sup>+</sup>-CH<sub>3</sub>CO<sub>2</sub>H] (40), 123 [C<sub>10</sub>H<sub>18</sub><sup>+</sup>-CH<sub>3</sub>] (60), 109 [C<sub>9</sub>H<sub>15</sub><sup>+</sup>-CH<sub>2</sub>] (30), 95 [C<sub>9</sub>H<sub>15</sub><sup>+</sup>-2xCH<sub>2</sub>] (98), 81 [C<sub>9</sub>H<sub>15</sub><sup>+</sup>-3xCH<sub>2</sub>] (100), 69 [C<sub>9</sub>H<sub>15</sub><sup>+</sup>-C<sub>5</sub>H<sub>9</sub>] (98);<sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 5.14-5.04 (br t, J<sub>CD</sub>=6 Hz, 1H, H<sub>C</sub>), 4.18-4.02 (m, 2H, H<sub>E</sub>), 2.04 (s, 3H, H<sub>L</sub>), 2.04-1.87 (m, 2H, H<sub>D</sub>), 1.68 (s, 3H, H<sub>B</sub>), 1.60 (s, 3H, H<sub>A</sub>), 1.60-1.10 (m, 5H, H<sub>F</sub>,H<sub>I</sub>), 0.88-0.9 (d, J<sub>GF</sub>=6 Hz 3H, H<sub>G</sub>); <sup>13</sup>C NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 171.7, 135.6, 129.9, 82.4, 64.9, 63.2, 39.9, 35.8, 35.6, 35.3, 35.2, 33.8, 30.2, 30.0, 29.8, 26.7, 26.6, 25.2, 24.6, 21.3, 19.8, 19.7, 19.0.

*O*-acetyl paracetamol (**7a**) White powder; Yield 93%; MS (70 eV, IE): m/z (%) = 193 [M<sup>+</sup>] (10), 151 [M<sup>+</sup>–CH<sub>2</sub>=C=O] (50), 109 [C<sub>8</sub>H<sub>9</sub>NO<sub>2</sub><sup>+</sup>–CH<sub>3</sub>CO] (100), 80 [C<sub>6</sub>H<sub>6</sub>NO<sup>+</sup>-CHO] (10); <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 7.62-7.52 (br s, 1H, NH), 7.51-7.43 (d, J<sub>ortho</sub>=8,8 Hz, 2H, H<sub>C</sub>), 6.96-7.06 (d, J<sub>ortho</sub>=8,8 Hz, 2H, H<sub>D</sub>), 2.29 (s, 3H, H<sub>B</sub>), 2.18 (s, 3H, H<sub>A</sub>); <sup>13</sup>C NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 170.0, 168.6, 147.2, 135.9, 122.3, 121.2, 24.8, 21.4.

*N*-Boc-*O*-acetyl tyrosine methyl ester (**8a**) White powder; Yield 95%; MS (70 eV, IE): m/z (%) = 337 [M<sup>+</sup>] (1), 264 [M<sup>+</sup>-Ot-But] (10), 219 [M<sup>+</sup>-2xCOOCH<sub>3</sub>] (15), 178 [M<sup>+</sup>-COCH<sub>3</sub>-NH<sub>2</sub>COOt-But] (100), 107 [CH<sub>3</sub>PhO<sup>+</sup>] (45); <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 7.13 (s, 2H, H<sub>G</sub>), 7.03 (s, 2H, H<sub>F</sub>), 5.1-4.8 (br s, 1H, NH), 4.7-4.3 (br s, 1H<sub>D</sub>), 3.71 (s, 3H, H<sub>A</sub>), 3.2-2.8 (br s, 2H, H<sub>E</sub>), 2.29 (s, 3H, H<sub>C</sub>), 1.42 (s, 9H, H<sub>B</sub>); <sup>13</sup>C NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 172.5, 169.7, 155.4, 150.0, 134.0, 130.6, 121.9, 80.3, 54.7, 52.6, 38.0, 28.6, 21.4.

*O*-acetyl myrtenol (**10a**) Yellow Oil; Yield 100%; MS (70 eV, IE): m/z (%) = 152 [M<sup>+</sup>-CH<sub>2</sub>COH] (1), 119 [M<sup>+</sup>-CH<sub>2</sub>COH-CH<sub>3</sub>] (40), 91 [119<sup>+</sup>-CH<sub>2</sub>=CH<sub>2</sub>] (100); <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 5.59 (m, 1H, H<sub>C</sub>), 4.51-4.36 (m, 2H, H<sub>B</sub>), 2.45-2.08 (m, 5H, H<sub>F,D,D',E,G</sub>), 2.05 (s, 3H, H<sub>A</sub>), 1.29 (s, 1H, H<sub>H</sub>), 1.21-1.16 (d, J<sub>E-F'</sub>=8.7 Hz, 1H, H<sub>F'</sub>), 0.84 (s, 3H, H<sub>H'</sub>); <sup>13</sup>C NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 171.4, 143.3, 121.8, 67.4, 43.9, 41.1, 38.4, 21.8, 31.6, 26.5, 21.3.

Peracetylated Methyl- $\alpha$ -D-glucopyranoside (**11a**) White powder; Yield 70%; <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data were compared with those reported in literature [3].

Triacetyl Uridine (**12a**) Yellow Oil; Yield 92%; HRMS:  $[M+Na^+]$  m/z 393.0902 (theoretical  $[M+Na^+]$  m/z 393.0904); <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 7.43-7.38 (d, J<sub>A-B</sub>=8.2 Hz, 1H, H<sub>A</sub>), 6.08-6.02 (d, J<sub>C-D</sub>=4.8 Hz, 1H, H<sub>C</sub>), 5.83-5.77 (d, J<sub>A-B</sub>=8.2 Hz, 1H, H<sub>B</sub>), 5.38-5.29 (m, 2H, H<sub>G</sub>), 4.36-4.30 (m, 3H, H<sub>D,E,F</sub>), 2.15 (s, 3H, H<sub>H</sub>), 2.14 (s, 3H, H<sub>I</sub>), 2.11 (s, 3H, H<sub>L</sub>); <sup>13</sup>C NMR (300MHz, CDCl<sub>3</sub>, 25°C, TMS)  $\delta$ : 170.1, 169.5, 162.4, 150.4, 139.5, 103.6, 88.3, 80.5, 73.1, 70.7, 63.3 20.7, 20.4 20.3.

Peracetylated Oleuropein (**14a**) Yellow powder; Yield 100%; MS, <sup>1</sup>H-NMR e <sup>13</sup>C-NMR data were compared with those reported in literature [2].

Peracetylated  $\beta$ -D-lactose (**15a**) White powder; Yield 50%; <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data were compared with those reported in literature [4].

#### **Green chemistry metrics**

Atom Economy (AE) and Reaction Mass Efficiency (RME) were used to evaluate the greenness of the procedure, calculated according to the report of Constable et al.[5]:

Atom economy (AE) =  $\frac{FW \ all \ reaction \ products}{FW \ all \ reaction \ reagents} \times 100$ 

Reaction Mass Efficiency (RME) =  $\frac{Mass \ of \ all \ reaction \ products}{Mass \ of \ all \ reaction \ reagents} x100$ 

The general reaction took into account was:

$$R-(OH)_n + n Ac_2O \longrightarrow R-(OAc)_n + n AcOH$$

Were n is the stoichiometric coefficient between reagents.

The calculations are reported in Table S2.

#### Table S2

| FW reag tot (FW AA X stoch) | FW perac phenol | AE | yield | RME   |
|-----------------------------|-----------------|----|-------|-------|
| 239                         | 179             | 75 | 1     | 75    |
| 240                         | 180             | 75 | 1     | 75    |
| 488                         | 428             | 88 | 0,62  | 54,56 |
| 460                         | 280             | 61 | 1     | 61    |
| 372                         | 252             | 68 | 1     | 68    |
| 258                         | 198             | 77 | 0,55  | 42,35 |
| 253                         | 193             | 76 | 0,93  | 70,68 |
| 397                         | 337             | 85 | 0,9   | 76,5  |
| 545                         | 365             | 67 | 0,3   | 20,1  |
| 254                         | 194             | 76 | 1     | 76    |
| 704                         | 362             | 51 | 0,7   | 35,7  |
| 550                         | 370             | 67 | 0,92  | 61,64 |
| 506                         | 386             | 76 | 0,6   | 45,6  |
| 1050                        | 792             | 75 | 1     | 75    |
| 1158                        | 678             | 58 | 0,5   | 29    |
| 1363                        | 961             | 70 | 0,85  | 59,5  |
| 1630                        | 1030            | 63 | 0,45  | 28,35 |

For the calculation of mass intensity and mass productivity, the work-up used in the general reaction was considered as a part of the full process. In this case the general reaction equation is composed by the following three steps:

a 
$$R-(OH)_n + exc Ac_2O \longrightarrow R-(OAc)_n + (exc-n) Ac_2O$$
  
b  $(exc-n) Ac_2O + EtOH \longrightarrow (exc-n) AcOEt + (exc-n) AcOH$   
c  $(exc-n) AcOH + NaHCO_3 \longrightarrow (exc-n) NaOAc + H_2O + CO_2$ 

Peracetylated phenol, EtOAc and NaOAc were considered as useful products, while phenol, excess of acetic anhydride, EtOH and NaHCO<sub>3</sub> were included in the total mass calculation respectively as reagents, solvent and reaction auxiliaries, and used in the following equations:

Mass Intensity (MI) =  $\frac{Mass \ of \ all \ chemicals \ used}{Mass \ of \ all \ reaction \ products}$ 

Mass Productivity (MP)=  $\frac{1}{Mass Intensity} \times 100$ 

Table S3 summarizes the calculations of the previous parameters.

#### Table S3

| Phenol mass | ecc AA mass (reag + solv) | auxiliary mass | perac phenol mass | EtOAc mass | NaOAc mass | MI | MP |
|-------------|---------------------------|----------------|-------------------|------------|------------|----|----|
| 13,7        | 1080                      | 2440           | 17,9              | 871,2      | 811,8      | 2  | 50 |
| 13,8        | 1080                      | 2440           | 18                | 871,2      | 811,8      | 2  | 50 |
| 38,6        | 1080                      | 2440           | 26,536            | 540,144    | 503,316    | 3  | 33 |
| 15,4        | 1080                      | 2440           | 28                | 853,6      | 795,4      | 2  | 50 |
| 16,8        | 1080                      | 2440           | 25,2              | 862,4      | 803,6      | 2  | 50 |
| 15,6        | 1080                      | 2440           | 10,89             | 479,16     | 446,49     | 3  | 33 |
| 15,1        | 1080                      | 2440           | 17,949            | 810,216    | 754,974    | 2  | 50 |
| 29,5        | 1080                      | 2440           | 30,33             | 784,08     | 730,62     | 2  | 50 |
| 23,9        | 1080                      | 2440           | 10,95             | 256,08     | 238,62     | 7  | 14 |
| 15,2        | 1080                      | 2440           | 19,4              | 871,2      | 811,8      | 2  | 50 |
| 19,4        | 2160                      | 2440           | 25,34             | 585,2      | 545,3      | 3  | 33 |
| 24,4        | 2160                      | 2440           | 34,04             | 785,312    | 731,768    | 2  | 50 |
| 30,2        | 1080                      | 2440           | 23,16             | 517,44     | 482,16     | 3  | 33 |
| 54          | 1080                      | 2440           | 79,2              | 836        | 779        | 2  | 50 |
| 34,2        | 2160                      | 2440           | 33,9              | 404,8      | 377,2      | 5  | 20 |
| 75,1        | 2160                      | 2440           | 81,685            | 703,12     | 655,18     | 3  | 33 |
| 61          | 2160                      | 2440           | 46,35             | 356,4      | 332,1      | 6  | 16 |

## **GC-EIMS** spectra

## Sample **3a**











## Sample 6a



Sample 7a



#### Sample 8a



S12





Sample 10a





perac15#4344\_RT: 11.55\_AV: 1\_AV: 5\_SB: 12.4337-4342.4346-4351\_NL: 6.74E7 F: + c Full ms [50.00-400.00] 100-\_\_\_\_\_91.1



#### LC/HRMS spectra

#### Sample 12a



LCHRMS (m/z) spectrum of peracetylated uridine (isolated product) in total ion current (TIC, entry A) and extract ion current (XIC,B [M + H]<sup>+</sup>), C ([M + Na]<sup>+</sup>)).



HRMS  $(m/z, [M + Na]^+; [M + H]^+$  accuracy (ppm)) spectra of peracetylated uridine:

Peracetylated uridine: experimental value  $[M + Na]^+ m/z$  393.0902 (theoretical  $[M + Na]^+ m/z$  393.0904). and  $[M + H]^+ m/z$  371.1083 (theoretical  $[M + H]^+ m/z$  371.1085).







LCHRMS  $(m/z, [M + Na]^+$  and  $[M - H]^-$  only for entry F) spectrum of *O*-acetylated quercetin (reaction mix) in total ion current (TIC, entry **A**) and extract ion CURRENT (XIC, entry **B**–**F**) relative to main acetylated forms: tetra-*O*-acetylated quercetin (8% of the mix, entry **B**), di-*O*-acetylated-quercetin (60% of the mix, entry **C**), tri-*O*-acetylated quercetin (7% of the mix, entry **D**), mono-*O*-acetylated quercetin (25% of the mix, entry **E**). The conversion was estimated around 96%, because of the presence of 6% of unreacted quercetin (entry **F**).



HRMS (m/z, [M+Na]<sup>+</sup>; accuracy (ppm)) spectra of *O*-acetylated Quercetin:

(1) Tetra-*O*-acetylated quercetin: experimental value  $[M + Na]^+ m/z$  493.0742 (theoretical  $[M + Na]^+ m/z$  493.0741) (2) Di-*O*-acetylated-quercetin: experimental value  $[M + Na]^+ m/z$  451.0635 (theoretical  $[M + Na]^+ m/z$  451.0636) (3) Tri-*O*-acetylated quercetin: experimental value  $[M + Na]^+ m/z$  451.0635 (theoretical  $[M + Na]^+ m/z$  451.0636) (4) Mono-*O*-acetylated quercetin: experimental value  $[M + Na]^+ m/z$  367.0423 (theoretical  $[M + Na]^+ m/z$  367.0424) (5) Quercetin: experimental value  $[M - H]^- m/z$  301.



LCHRMS (m/z,  $[M + Na]^+$ ) spectrum of *O*-acetylated  $\alpha$ -ederin (reaction mix) in total ion current (TIC, entry **A**) and extract ion current (XIC, entry **B**,**C**) relative to main acetylated-forms: Esa-*O*-acetylated  $\alpha$ -ederin (85% of the mix, entry **B**), penta-*O*-acetylated  $\alpha$ -ederin (15% of the mix, entry **C**).

HRMS (m/z,  $[M + Na]^+$ ; R = operative resolution; accuracy (ppm)) spectra of *O*-acetylated  $\alpha$ -ederin:



(1) Esa-*O*-acetylated  $\alpha$ -hederin: experimental value  $[M + Na]^+ m/z$  1025.5045 (theoretical  $[M + Na]^+ m/z$  1025.5080). Presence of ammonium adduct at m/z 1020.5495 (2). Penta-*O*-acetylated  $\alpha$ -hederin: experimental value  $[M + Na]^+ m/z$  983.4951 (theoretical  $[M + Na]^+ m/z$  983.4974). Presence of ammonium adduct at m/z 978.5393.



LCHRMS  $(m/z, [M + Na]^+)$  of spectrum of *O*-acetylated rutin (isolated product) in extract ion (XIC) of Peracetylated-rutin.

HRMS  $(m/z, [M + Na]^+; R =$  operative resolution; accuracy (ppm)) spectra of peracetylated rutin:



Peracetylated-rutin: experimental value  $[M + Na]^+ m/z$  1053.2470 (theoretical  $[M + Na]^+ m/z$  1053.2482). Presence of ammonium adduct at m/z 1048.2914.

# <sup>1</sup>H NMR spectra

# Sample **3a**











Sample 6a





S26





Sample 9a



S28

Sample 10a





## Sample 13a

(mix, characterization of the major product)



Sample 16a



Sample 17a



# <sup>13</sup>C NMR spectra

# Sample **3a**



## Sample 5a



# Sample 6a











# Sample 10a





#### Sample 13a



(mix, characterization of the major product)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 (ppm)



#### Sample 17a



#### References

- 1. SDBS Web:http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, 02/03/2015)
- Procopio, A.; Alcaro, S.; Nardi, M.; Oliverio, M.; Ortuso, F.; Sacchetta, P.; Pieragostino, D.; Sindona, G. J. Agric. Food Chem. 2009, 57, 11161–11167
- 3. Horton, D.; Lauterback, J. H. J. Org. Chem. 1969, 34, 86-92.
- 4. Shull, B. K.; Wu, Z.; Koreeda, M. J. Carbohydr. Chem. 1996, 15, 955–964.
- 5. Constable, D. J. C.; Curzonsb, A. D.; Cunningham, V. L. Green Chem. 2002, 4, 521–527.