Supporting Information File 1

for

Useful Access to Enantiomerically Pure Protected Inositols from Carbohydrates: the Aldohexos-5-uloses Route

Felicia D'Andrea, ${ }^{1}$ Giorgio Catelani, ${ }^{1}$ Lorenzo Guazzelli, ${ }^{\text {, }, 1 ~ V e n e r a n d o ~ P i s t a r a ̀ ~}{ }^{2}$

${ }^{1}$ Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
${ }^{2}$ Università di Catania, Dipartimento di Scienze del Farmaco, Viale A. Doria 6, 95125 Catania, Italy
*Corresponding author
Email: Iorenzo.guazzelli@unipi.it;

Experimental procedures, characterization data of new compounds and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $6,11-12,14-16,16 a, 18-$ 19 and 21-22.

Contents

General Methods S2
Experimental procedures and physico-chemical characterization S2-S13
References S13
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of 6 S14
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 1}$ S15
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of 12 S16
${ }^{1} \mathrm{H}$ - and APT-NMR spectra of 14 S17
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of 15 S18
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of 16 S19
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 6 a}$ S20
${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-N M R$ and DEPT-135 spectra of 18 S21-S22
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of 19 S22-S23
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{2 1}$ S23-S24
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 2}$ S24-S25

General Methods

Melting points were determined with a Kofler hot-stage apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at $20 \pm 2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were recorded in appropriate solvents with a Bruker AC 200 instrument and a Bruker Avance II operating at 200 MHz and 250.13 MHz respectively and with a Varian VnmrJ instrument operating at $500 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded with the spectrometers operating at 50 or 62.9 or 125 MHz . The assignments were made, when possible, with the aid of DEPT, HETCOR, COSY experiments. The first order proton chemical shifts δ are referenced to either residual $\mathrm{CD}_{3} \mathrm{CN}(\delta \mathrm{H} 1.94, \delta \mathrm{C} 1.28)$ or residual $\mathrm{CD}_{3} \mathrm{OD}(\delta \mathrm{H} 3.31, \delta \subset 49.0)$ and J-values are given in Hz . All reactions were followed by TLC on Kieselgel $60 \mathrm{~F}_{254}$ with detection by UV light and/or with ethanolic 10\% phosphomolybdic or sulfuric acid, and heating. Kieselgel 60 (E. Merck, 70-230 and 230-400 mesh, respectively) was used for column and flash chromatography. Solvents were dried by distillation according to standard procedures, and storage over $4 \AA ̊$ molecular sieves activated for at least 24 h at $200^{\circ} \mathrm{C}$. All reagents were purchased from Aldrich Chemical Co. and were used without further purification. MgSO_{4} was used as the drying agent for solutions. Compounds 2,6-di-O-benzyl-L-ribo-aldohexose-5-ulose (2) [1], 2,4-di-O-benzyl-2L-(2,3,5,6/4)-pentahydroxy-cyclohexanone (5) [2], 2,6-di-O-benzyl-D-xylo-aldohexose-5-ulose (9) [3], 2,3,6-tri-O-benzyl-D-xylo-aldohexose-5-ulose (10) [1], were prepared according to the reported procedures.

Experimental procedures and physico-chemical characterization

General Procedure for aldol condensation of 2, 9 and 10.

To a solution of the appropriate 1,5-dicarbonyl-hexose (1.0 mmol) in either dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(34 \mathrm{~mL}\right.$, for $\mathbf{2}$ and 9) or a $1: 1$ mixture of dry toluene $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL}$, for $\mathbf{1 0})$, under Argon atmosphere, a 5% DBU solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.72 \mathrm{~mL})$ was added and the mixture was stirred either at room temperature (for 9 and $\mathbf{1 0}$) or $0^{\circ} \mathrm{C}$ (for 2) until the starting material was disappeared (1-6 h, TLC). A 0.5% AcOH solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) was added and after 10 min the mixture was concentrated under diminished pressure and repeatedly co-evaporated with toluene ($4 \times 30 \mathrm{~mL}$). Purification of crude product by flash chromatography on silica gel afforded pure inososes 6, 11 and 12.

2,4-di-O-benzyl-2L-(2,3,4,5/0)-pentahydroxycyclohexanone (6).

Aldol condensation of $\mathbf{2}(116 \mathrm{mg}, 0.32 \mathrm{mmol})$ was performed in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ in accordance with the general procedure and the reaction was stopped after 1.5 h . Purification of the crude product by flash chromatography on silica gel (3:7 hexaneEtOAc) gave pure 6 ($44 \mathrm{mg}, 38 \%$) as a clear syrup: $R_{f} 0.22$ (2:8 hexane-EtOAc); $[\alpha]_{D^{23}}-18.8$ (c 0.96, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250.13 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}\right)$) : 7.34-7.20 (m, 10H, $\operatorname{Ar}-H$), 4.77, 4.63 (AB system, $2 \mathrm{H}, \mathrm{JA}, \mathrm{B}=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.68, 4.47 (AB system, 2H, $\mathrm{JA}_{\mathrm{A}, \mathrm{B}}=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.55 (dt, $1 \mathrm{H}, J_{3,4}=J_{3,5}=2.6 \mathrm{~Hz}, J_{2,3}=3.4 \mathrm{~Hz}, \mathrm{H}-3$), 4.41 (dt, $\left.1 \mathrm{H}, \mathrm{J}_{4,5}=\mathrm{J}_{3,5}=2.6 \mathrm{~Hz}, J_{5,6}=3.7 \mathrm{~Hz}, \mathrm{H}-5\right), 4.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,6}=1.4 \mathrm{~Hz}, \mathrm{H}-6\right), 4.21$ (dd, 1H, H-2), 3.87 (t, 1H, H-4); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CD ${ }_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$) $\delta: 207.5$ (C-1), 139.0, 138.8 (Ar-C), 129.4-128.8 (Ar-CH), 81.6 (C-2), 76.7 (C-5), 75.5 (C-3), 75.4 (C6), $73.8(\mathrm{C}-4), 72.5,71.3\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 67.03 ; \mathrm{H}, 6.19$. Found: C, 66.98; H, 6.20.

2,4-di-O-benzyl-2D-(2,3,4,6/5)-pentahydroxycyclohexanone (11).

Aldol condensation of $9(99.3 \mathrm{mg}, 0.28 \mathrm{mmol})$ was performed in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.5 \mathrm{~mL})$ in accordance with the general procedure and the reaction was stopped after 1 h .

Purification of the crude product by flash chromatography on silica gel (95:5 CHCl_{3} $\mathrm{MeOH})$ gave pure $11\left(29.4 \mathrm{mg}, 30 \%\right.$ yield) as a syrup: $R_{f} 0.18$ (2:8 hexane-EtOAc); $[\alpha] D^{23}+12.2\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (250.13 MHz, D2O) $\delta: 7.34-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-$ H), 4.65-4.55 (m, 4H, $2 \times \mathrm{CH}_{2} \mathrm{Ph}$), 4.23 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=2.4 \mathrm{~Hz}, J_{3,4}=2.2 \mathrm{~Hz}, \mathrm{H}-3$), 4.15 (bd, 1H, H-2), 4.02 (d, 1H, J5,6=9.4 Hz, H-6), 3.72 (dd, $1 \mathrm{H}, \mathrm{J}_{4,5=9.7 \mathrm{~Hz}, \mathrm{H}-5), 3.59 ~}^{\text {(}}$ (dd, 1H, H-4); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta: 206.1$ (C-1), 138.3, 137.8 ($\mathrm{Ar}-\mathrm{C}$), 129.5129.1 ($\mathrm{Ar}-\mathrm{CH}$), 80.7 (C-2), 78.7 (C-4), 77.0 (C-6), 74.9 (C-5) 72.8, 72.3 (2 x CH2Ph), 69.4 (C-3). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 67.03; H, 6.19. Found: C, 66.95; H, 6.21.

2,4,5-tri-O-benzyl-2D-(2,3,4,6/5)-pentahydroxycyclohexanone (12).

Aldol condensation of $\mathbf{1 0}(127.6 \mathrm{mg}, 0.28 \mathrm{mmol})$ was performed in a dry $1: 1$ mixture of toluene $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ in accordance with the general procedure and the reaction was stopped after 3 h. Purification of the crude product by flash chromatography on silica gel ($9: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}$) gave pure $12\left(38.3 \mathrm{mg}, 30 \%\right.$ yield) as a syrup: $R_{f} 0.42$ (1:1 toluene $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha] \mathrm{D}^{23}+14.8$ (c 1.11, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (250.13 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta$: 7.44-7.22 (m, 15H, Ar-H), 4.83, 4.79 (AB system, $\left.2 \mathrm{H}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.76$, 4.66 (AB system, 2H, $\mathrm{JA}_{\mathrm{A}, \mathrm{B}}=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.73, 4.51 (AB system, $2 \mathrm{H}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=11.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.45 (dd, $1 \mathrm{H}, J_{3,4}=2.3 \mathrm{~Hz}, \mathrm{~J}_{2,3}=2.7 \mathrm{~Hz}, \mathrm{H}-3$), 4.28 (dd, $1 \mathrm{H}, \mathrm{J}_{2,6}=1.5 \mathrm{~Hz}$, $\mathrm{H}-2), 4.18$ (dd, 1H, J5,6=8.5 Hz, H-6), 3.83 (dd, 1H, J4,5=9.3 Hz, H-4), 3.74 (dd, 1H, $\mathrm{H}-5)$; ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta: 205.6$ (C-1), 140.2, 139.6, 139.2 (3 x Ar-C), 129.2-127.6 (Ar-CH), 84.6 (C-5), 81.7 (C-2), 79.9 (C-4), 77.9 (C-6) 75.6, 72.8, 72.6 $\left(3 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 70.5(\mathrm{C}-3)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6}: \mathrm{C}, 72.30 ; \mathrm{H}, 6.29$. Found: C , 72.28; H, 6.27.

2-O-allyl-4-O-naphthalenylmethyl-6-0-methyl-2L-(2,3,6/4,5)-pentahydroxycyclohexa-none (21).

Aldol condensation of $20(365 \mathrm{mg}, 0.98 \mathrm{mmol})$ was performed in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ with DBU (5% solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.38 \mathrm{~mL}$) in accordance with the general procedure. The reaction was stirred until the starting material was disappeared (2.5 h, TLC, 4:6 hexane-EtOAc). Purification of the crude product by flash chromatography on silica gel (4:6 hexane-EtOAc) gave pure inosose 21 (237 mg , 65% yield) as a white foam: $R_{f} 0.19$ (4:6 hexane-EtOAc); $[\alpha]^{23}+30.6$ (c 0.98 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 250.13 \mathrm{MHz}$,) $\delta: 7.90(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 5.98 (ddt, $1 \mathrm{H}, J_{\text {trans }}=17.1 \mathrm{~Hz}, J_{\text {cis }}=10.4 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, C H=$), 5.27 (dq, $1 \mathrm{H}, J_{\text {trans }}=17.3$ $\mathrm{Hz}, J=1.7 \mathrm{~Hz}, \mathrm{CH}_{2}=$), $5.13\left(\mathrm{dq}, 1 \mathrm{H}, J_{\text {cis }}=10.4 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}=\right.$), 4.99, 4.87 (AB system, 2H, JAB=12.0 Hz, CH2Nap), 4.36 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=3.3 \mathrm{~Hz}, J_{2,6}=1.5 \mathrm{~Hz}, \mathrm{H}-2$), 4.28 (bt, $1 \mathrm{H}, J_{3,4}=J_{3,0}=3.5 \mathrm{~Hz}, \mathrm{H}-3$), 4.18 (ddt, $1 \mathrm{H}, J=1.5 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=13.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), 4.03 (dd, 1H, J5,6=9.9 Hz, H-6), 3.96 (ddt, $1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, J=13.1$
 (d, 1H, OH-5), $3.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}-3), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 62.9 \mathrm{MHz}$) §: $204.6(\mathrm{C}-1), 137.2,134.2,133.9(3 \times \mathrm{Ar}-\mathrm{C}), 135.8(\mathrm{CH}=), 128.9-126.9(\mathrm{Ar}-\mathrm{CH})$, $117.2\left(\mathrm{CH}_{2}=\right), 86.2(\mathrm{C}-6), 81.9(\mathrm{C}-2), 79.5(\mathrm{C}-4), 74.6\left(\mathrm{CH}_{2} \mathrm{Nap}\right), 73.5(\mathrm{C}-5), 71.5$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 71.3(\mathrm{C}-3), 59.4\left(\mathrm{OCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 67.63 ; \mathrm{H}, 6.50$. Found: C, 67.67; H, 6.54.

1,3-di-O-Benzyl-1L-muco-inositol (14).

To a solution of $5(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL}), \mathrm{AcOH}(0.4 \mathrm{~mL})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(106 \mathrm{mg}, 0.5 \mathrm{mmol})$ were consecutively added. The mixture was stirred at room temperature until the starting material was disappeared ($50 \mathrm{~min}, \mathrm{TLC}$, 2:8 hexane-EtOAc). Excess of hydride was decomposed with a solution of aq NaHSO_{4} $(0.5 \mathrm{M})$ and the reaction mixture was repeatedly coevapored with toluene $(3 \times 20$ mL) under diminished pressure. The residue was partitioned between brine (20 mL)
and EtOAc (20 mL), the organic phase was separated and the aq layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic phases were collected, dried, filtered and concentrated under diminished pressure and afforded a residue ($93 \mathrm{mg}, 98 \%$ yield) constituted (NMR) exclusively by 14 as a clear syrup: $R_{f} 0.31$ (EtOAc); [$\left.\alpha\right]_{D^{23}}$ 32.2 (c 0.47, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$) $8: 7.43-7.29$ (m, 10H, Ar-H), 4.68, 4.62 (AB system, $2 \mathrm{H}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.61, 4.53 (AB system, 2 H , $J_{\mathrm{A}, \mathrm{B}}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.10 (bt, $1 \mathrm{H}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=3.5 \mathrm{~Hz}, \mathrm{H}-4$), 3.93 (bt, $1 \mathrm{H}, J_{3.4}=J_{2,3}=4.0$ $\mathrm{Hz}, \mathrm{H}-3), 3.88\left(\mathrm{t}, 1 \mathrm{H}, J_{1,6}=J_{5,6}=9.0 \mathrm{~Hz}, \mathrm{H}-6\right), 3.79\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1,2}=J_{2,3}=4.0 \mathrm{~Hz}, \mathrm{H}-2\right), 3.55$ (dd, 1H, H-5), 3.48 (dd, $1 \mathrm{H}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$) $\delta: 139.2$, 138.9 (2 x Ar-C), 128.8-128.4 (Ar-CH), 80.4 (C-1), 77.8 (C-2), 73.2 (C-5), 72.7, 72.3 (2 × $\mathrm{CH}_{2} \mathrm{Ph}$), 72.4 (C-3), 70.3 (C-6), 69.9 (C-4). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 66.65$; H , 6.71. Found: C, 66.73; H, 6.66.

Muco-inositol (14a).

To a solution of 14 ($60 \mathrm{mg}, 0.167 \mathrm{mmol}$) in dry $\mathrm{MeOH}(5 \mathrm{~mL}), 10 \% \mathrm{Pd}$ on charcoal $(20 \mathrm{mg})$ was added and the mixture was stirred at room temperature under H_{2} (atmospheric pressure) until the starting compound was completely reacted (TLC, 12 h). The suspension was diluted with $\mathrm{MeOH}(15 \mathrm{~mL})$, filtered over a pad of Celite ${ }^{\circledR}$, washed with MeOH , and the combined organic phases were concentrated at diminished pressure. The solid residue ($28.8 \mathrm{mg}, 96 \%$ yield) was constituted (NMR) exclusively by 14a. Crystallization (EtOH) afforded 14a pure as a white solid: mp 287-295 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$; Lit [4] mp 285-300 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz, D $\left.{ }_{2} \mathrm{O}\right) ~ \delta: 3.84$ (bt, 2 H , spl. $\cong 6.0 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-6) ; 3.73(\mathrm{bd}, 4 \mathrm{H}, \mathrm{spl} \cong 5.9 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta: 72.8$ (C-1, C-2, C-4, C-5), 70.8 (C-3, C-6). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:
$\mathrm{C}, 40.00 ; \mathrm{H}, 6.71$. Found: $\mathrm{C}, 40.17 ; \mathrm{H}, 6.85 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in good agreement with those reported [5-6].

1,2,3,5-tetra-O-Acetyl-4,6-di-O-benzyl-cis-inositol (15).

A solution of $6(78 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was treated, at $0^{\circ} \mathrm{C}$, with NaBH_{4} (35.2 mg, 4 equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ until the starting material was disappeared (30 min, TLC, 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$). Amberlist 15 was added to neutralise; the mixture was filtered and the solvent was removed under diminished pressure. The crude residue was dissolved in a 1:2 mixture of Ac2O-pyridine (6 mL) and stirred at room temperature until the starting material was disappeared (48 h, TLC, 1:1 hexane-EtOAc). The reaction mixture was repeatedly coevapored with toluene $(3 \times 30 \mathrm{~mL})$ and the residue purified by flash chromatography on silica gel (1:1 hexane-EtOAc) affording pure $15(80.5 \mathrm{mg}, 70 \%$ yield calculated from 6) as a colourless syrup: $R_{f} 0.67$ (1:1 hexane-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 7.38$ 7.26 (m, 10H, Ar-H), 5.80 (m, 1H, H-5), 5.60 (m, 2H, H-1, H-3), 4.91 (m, 1H, H-2), $4.58\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.07-2.05\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3} \mathrm{CO}\right), 1.93$ (s, 3H, CH ${ }_{3} \mathrm{CO}$); ${ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) ~ \delta: 171.6(3 \times \mathrm{C}=\mathrm{O}), 170.5(\mathrm{C}=\mathrm{O}), 139.1$ $(2 \times \mathrm{Ar}-\mathrm{C}), 129.3-128.5(\mathrm{Ar}-\mathrm{CH}), 73.4(\mathrm{C}-4, \mathrm{C}-6), 71.6\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 68.2(\mathrm{C}-1, \mathrm{C}-2$, $\mathrm{C}-3), 67.9(\mathrm{C}-5), 21.2\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right), 21.1,20.7\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10}$: C, 63.63; H, 6.10. Found: C, 63.58; H, 6.07.

1,3-di-O-Benzyl-1L-epi-inositol (16).

To a solution of 11 ($137 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{NaBH}_{4}$ ($59 \mathrm{mg}, 4$ equiv) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ until the starting material was disappeared (30 min , TLC, 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$). The solution was neutralized with Amberlist 15, the solids were filtered off and the solution was concentrated under
diminished pressure. Purification of crude residue by flash chromatography on silica gel (8:2 $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ afforded pure $16(119 \mathrm{mg}, 87 \%$ yield) as a colourless syrup: $R_{f} 0.70\left(8: 2 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]{ }^{23}+18.6$ (c 0.99, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (250.13 MHz , $\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$) $8:$: 7.41-7.24 (m, 10H, Ar-H), 4.65, 4.56 (AB system, 2H, JA,B=11.8 Hz, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.60, 4.55 (AB system, $2 \mathrm{H}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=2.8 \mathrm{~Hz}\right.$,
 $\left.J_{1,6}=J_{5,6}=9.7 \mathrm{~Hz}, \mathrm{H}-6\right), 3.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3), 3.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5), 3.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-1) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}\right) ~ \delta: 139.7,139.5(2 \times \mathrm{Ar}-\mathrm{C}), 129.3-128.4(\mathrm{Ar}-\mathrm{CH}), 80.8$ (C-1), 75.1 (C-3), 73.5 (C-4), 73.1 (C-5), 72.2, $70.8\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 71.1(\mathrm{C}-6), 70.4$ (C2). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 66.65; H, 6.71. Found: $\mathrm{C}, 66.68 ; \mathrm{H}, 6.69$.

The reduction of $6(111 \mathrm{mg}, 0.31 \mathrm{mmol})$ with $\mathrm{NaBH}(\mathrm{OAc})_{3}(106 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and in presence of $\mathrm{AcOH}(0.4 \mathrm{~mL})$ as reported from preparation of 14 gave, after chromatographic purification on silica gel (8:2 $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right), 16$ (72.6 $\mathrm{mg}, 65 \%$ yield) having NMR parameters identical to those of the sample prepared above.

1,2,3,5-tetra-O-Acetyl-4,6-di-O-benzyl-1L-epi-inositol (16a).

A solution of 16 ($52 \mathrm{mg}, 0.144 \mathrm{mmol}$) in a $1: 2$ mixture of $\mathrm{Ac}_{2} \mathrm{O}$-pyridine (4 mL) was stirred at room temperature until the starting material was disappeared (15 h , TLC, 1:1 hexane-EtOAc). The reaction mixture was repeatedly coevapored with toluene (3 $\times 30 \mathrm{~mL})$ and purification of residue by flash chromatography over silica gel (1:1 hexane-EtOAc) afforded pure 16 a ($73.3 \mathrm{mg}, 95 \%$ yield) as a colourless syrup: R_{f} 0.47 (1:1 hexane-EtOAc); $[\alpha] D^{23}+27.5$ (c 1.12, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (250.13 MHz ,
$\mathrm{CD}_{3} \mathrm{CN}$) $\delta: 7.43-7.24\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$), 5.91 (ddd, $1 \mathrm{H}, \mathrm{J}_{4,5}=3.3 \mathrm{~Hz}, J_{5,6}=3.3 \mathrm{~Hz}, J_{3,5}=1.0$
 $J_{1,6}=10.2 \mathrm{~Hz}, \mathrm{H}-1$), 4.93 (dd, 1H, H-2), 4.64, 4.42 (AB system, $2 \mathrm{H}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=11.7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.56 (s, 2H, CH2Ph), 3.80 (t, 1H, H-4), 3.65 (dd, 1H, H-6), 2.10, 2.09, 1.99, 1.94 (4s, each $3 \mathrm{H}, 4 \times \mathrm{CH}_{3} \mathrm{CO}$); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) δ : 171.3-171.2 ($4 \times$ $\mathrm{C}=\mathrm{O}$), 139.0, 138.9 (2 $\times \mathrm{Ar}-\mathrm{C}), 129.5-128.4$ ($\mathrm{Ar}-\mathrm{CH}$), 76.1 (C-6), 72.9 (C-4), 72.4, $71.8\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 70.2(\mathrm{C}-2), 69.7(\mathrm{C}-1), 69.4(\mathrm{C}-3), 68.3(\mathrm{C}-5), 21.1,21.0,20.8$, 20.4 ($4 \times \mathrm{CH}_{3} \mathrm{CO}$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10}$: C, 63.63; H, 6.10. Found: $\mathrm{C}, 63.58$; H , 6.07.

Hexa-O-acetyl-allo-inositolo (17a).

A solution of $7(204 \mathrm{mg}, 0.57 \mathrm{mmol})$ in $\mathrm{EtOH}(17 \mathrm{~mL})$ was treated, at $-78^{\circ} \mathrm{C}$, with NaBH_{4} ($155.6 \mathrm{mg}, 4.0 \mathrm{mmol}, 7$ equiv). The solution was allowed to reach $15{ }^{\circ} \mathrm{C}$. After 1.5 h (TLC, 1:3 hexane-EtOAc), the solution was cooled to $0^{\circ} \mathrm{C}$, water $(0.40$ mL) and a $5 \% \mathrm{HCl}$ solution were slowly added to neutralise and the solvent removed under diminished pressure. Crystallization of crude residue $\left(\mathrm{H}_{2} \mathrm{O}\right)$ afforded pure 2,6-di-O-benzyl-1d-allo-inositol (17) (188 mg, 91% yield) as a white solid: $R_{f} 0.22$ (1:3 hexane-EtOAc,); mp 120-124 ${ }^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$,) $\delta 139.7,139.1$ $(2 \times \mathrm{Ar}-\mathrm{C}), 129.5-128.8(\mathrm{Ar}-\mathrm{CH}), 74.5(2 \times \mathrm{CH}), 71.6(2 \times \mathrm{CH}), 69.6(2 \times \mathrm{CH})$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 66.65; H, 6.71. Found: C, 66.68; H, 6.70.

A solution of 17 (188 mg, 0.52 mmol) in dry $\mathrm{MeOH}(16 \mathrm{~mL})$ containing $10 \% \mathrm{Pd}$ on charcoal (562 mg) was stirred at room temperature under H_{2} (atmospheric pressure) until the starting compound was completely reacted (TLC, 7 h). The suspension was diluted with MeOH (16 mL), filtered over a short pad of Celite ${ }^{\circledR}$, washed with MeOH . The combined organic phases were concentrated at diminished
pressure. The crude residue (120 mg) was dissolved in a 1:2 $\mathrm{Ac}_{2} \mathrm{O}$-Pyridine mixture $(12 \mathrm{~mL})$ at room temperature until starting material was disappeared (24 h, TLC, 1:1 hexane-EtOAc). The reaction mixture was repeatedly coevapored with toluene ($3 \times$ 30 mL). The residue was purified by crystallization (EtOH), affording pure 17a (212 $\mathrm{mg}, 87 \%$ yield from 7) as a white solid: $R_{f} 0.37$ (1:1 hexane-EtOAc); mp $140-142{ }^{\circ} \mathrm{C}$ (EtOH); Lit [7] mp 137-139 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$; lit [8] mp 140-141 ${ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha] \mathrm{D}^{23} 0.0$ (c 1.1, CHCl_{3}); Lit [51] [α]D 0.0 (c 0.35, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl_{3}) $\delta: 5.48-5.37$ (m, 4H), 5.29-5.22 (m, 2H), 2.09-2.01 (m, 18H, $\left.6 \times \mathrm{CH}_{3} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 169.4-169.6(6 \times \mathrm{C}=\mathrm{O}), 67.1(3 \times \mathrm{CH}), 67.5(3 \times \mathrm{CH}), 20.6\left(6 \times \mathrm{CH}_{3} \mathrm{CO}\right)$. ${ }^{1} \mathrm{H}$ NMR data were in good agreement with those reported [7, 9].

1,5-di-O-Benzyl-1D-chiro-inositol (18).

To a solution of $7(215 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(17 \mathrm{~mL}), \mathrm{AcOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.22 \mathrm{~g}, 5.75 \mathrm{mmol})$ were consecutively added. The mixture was stirred at room temperature until the starting material was disappeared (1.15 h, TLC, 1:4 hexane-EtOAc). Excess of hydride was decomposed with a solution of aq NaHSO_{4} ($0.5 \mathrm{M}, 20 \mathrm{~mL}$). EtOAc (25 mL) was added, the organic phase was separated and the aq phase was further extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic phases were collected, dried, filtered and concentrated under diminished pressure. Purification of residue by flash chromatography on silica gel (EtOAc) afforded pure 18 (97 mg, 45\% yield) as a white solid: $R_{f} 0.16$ (9:1 $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$; mp $116-120^{\circ} \mathrm{C}$; $[\alpha] D^{23}+9.41\left(\mathrm{c} 1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3},\right) \delta: 7.35-7.18(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 4.67, 4.47 (AB system, $2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.64, 4.38 (AB system, 2H, $J_{\mathrm{AB}}=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.95-3.84 (m, 3H, H-1, H-4, H-6); 3.83 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=9.0 \mathrm{~Hz}$,

$3.38(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 138.5,137.9(2 \times \mathrm{Ar}-\mathrm{C}), 128.3-$ 127.5 ($\mathrm{Ar}-\mathrm{CH}$), 79.3, 79.1 (C-1, C-5), 72.9, $73.5\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.8,72.3,70.7,67.7$ (C-2, C-3, C-4, C-6). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 66.65; H, 6.71. Found: C, 66.71; H, 6.63.

D-chiro-Inositol (18a).

A solution of 18 (131 mg, 0.36 mmol) in dry $\mathrm{MeOH}(11 \mathrm{~mL})$ containing $10 \% \mathrm{Pd}$ on charcoal (43 mg) was stirred at room temperature under H_{2} (atmospheric pressure) until the starting compound was completely reacted (TLC, 96 h). The suspension was diluted with $\mathrm{MeOH}(20 \mathrm{~mL})$, filtered over a short pad of Celite ${ }^{\circledR}$, washed with MeOH , and the combined organic phases were concentrated at diminished pressure. The crude residue was constituted (NMR) exclusively by 18 a ($50.6 \mathrm{mg}, 77 \%$ yield) as a white solid: $\mathrm{mp} 237-240{ }^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}^{23}+62.3$ (c $0.85, \mathrm{H}_{2} \mathrm{O}$); Lit. [10] mp $238-242{ }^{\circ} \mathrm{C}$ (EtOH); $[\alpha]_{\mathrm{D}}+63.2\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta: 3.76(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}$, 2H), 3.33 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (50 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta: 72.8$ (C-3, C-4), 71.7 (C-1, C-6), 70.5 (C-2, C-5). NMR data were in good agreement with those reported [6, 10].

1,3-di-O-Benzyl-myo-inositol (19).

To a solution of 11 (232 mg, 0.65 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(32 \mathrm{~mL}), \mathrm{AcOH}(2.5 \mathrm{~mL})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ ($255 \mathrm{mg}, 1.2 \mathrm{mmol}$) were consecutively added and the mixture was stirred at room temperature. After 1 h , further $\mathrm{NaBH}(\mathrm{OAc})_{3}(270 \mathrm{mg}, 1.27 \mathrm{mmol})$ was added and the solution stirred until the starting material was disappeared (TLC, 8:2 $\mathrm{CHCl}_{3}-\mathrm{MeOH}$). After 2 h and 20 min , the solvent was removed under diminished pressure and residue was purified by flash chromatography on silica gel $\left(9: 1 \mathrm{CHCl}_{3}-\right.$ MeOH) affording pure 19 ($163 \mathrm{mg}, 70 \%$ yield) as a syrup: $R_{f} 0.48$ (8:2 $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR (250.13 MHz, CD ${ }_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$) $\delta: 7.60-7.20$ (m, 10H, Ar-H), 4.63, 4.53
$\left(2 \times \mathrm{AB}\right.$ system, each $\left.2 \mathrm{H}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=11.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 4.19\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1,2=}=J_{2,3}=2.7 \mathrm{~Hz}, \mathrm{H}-\right.$ 2), 3.64 (bt, $2 \mathrm{H}, \mathrm{spl} \cong 9.4 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-6), 3.15(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 3.12(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{4,5}=J_{5,6}=9.5 \mathrm{~Hz}, \mathrm{H}-5\right) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, CD ${ }_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}$) $\delta: 139.1(2 \times \mathrm{Ar}-\mathrm{C})$, 129.3128.6 ($\mathrm{Ar}-\mathrm{CH}$), $79.8(\mathrm{C}-1, \mathrm{C}-3), 75.3(\mathrm{C}-5), 72.5(\mathrm{C}-4, \mathrm{C}-6), 72.3\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 68.6$ (C-2). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 66.65; H, 6.71. Found: C, 66.62; H, 6.75.

5-O-Allyl-3-O-methyl-1-O-naphthalenylmethyl-1D-chiro-inositol (22).

To a solution of inosose 21 ($210 \mathrm{mg}, 0.56 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(23 \mathrm{~mL})$, $\mathrm{AcOH}(2.7 \mathrm{~mL})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.14 \mathrm{~g}, 5.36 \mathrm{mmol})$ were consecutively added and the mixture was stirred at room temperature until the starting material was disappeared ($2 \mathrm{~h}, \mathrm{TLC}$, EtOAc). Excess of hydride was decomposed with a solution of aq NaHSO_{4} (0.5 M) and the reaction mixture was repeatedly coevaporated with toluene $(3 \times 20 \mathrm{~mL})$. The residue was partitioned between brine (20 mL) and EtOAc (20 mL), the organic phase was separated and the aq layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were collected, dried, filtered and concentrated under diminished pressure. Purification of the residue by flash chromatography (EtOAc) afforded 22 ($151.6 \mathrm{mg}, 72 \%$ yield) as a white foam: $R_{f} 0.24$ (EtOAc); $[\alpha] \mathrm{D}^{23}+26.6$ (c 0.99, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 250.13 \mathrm{MHz}$, $\delta: 7.87$ (m, 4H, $\mathrm{Ar}-\mathrm{H}$), 7.52 (m, 3H, ArH), 5.92 (ddt, $1 \mathrm{H}, J_{\text {trans }}=17.3 \mathrm{~Hz}, J_{\text {cis }}=10.4 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, C H=$), 5.30 (dq, 1 H , $\left.J_{\text {trans }}=17.3 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 5.13\left(\mathrm{dq}, 1 \mathrm{H}, J_{\text {cis }}=10.4 \mathrm{~Hz}, \mathrm{~J}=1.3 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 4.86$, 4.75 (AB system, 2H, $J_{A B}=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Nap}$), 4.08 (ddd, $1 \mathrm{H}, J_{1,6}=3.8 \mathrm{~Hz}, J_{5,6=3.0} \mathrm{~Hz}$,
 $\left.1 \mathrm{H}, J_{2,3}=9.6 \mathrm{~Hz}, J_{2, \mathrm{OH}}=6.7 \mathrm{~Hz}, \mathrm{H}-2\right), 3.58\left(\mathrm{dt}, 1 \mathrm{H}, J_{3,4}=9.5 \mathrm{~Hz}, J_{4, \text { OH }}=3.0 \mathrm{~Hz}, \mathrm{H}-4\right)$, $3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.39(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5), 3.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3), 3.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}-4), 3.14$ (d, $1 \mathrm{H}, \mathrm{OH}-6$), 3.13 (d, $1 \mathrm{H}, \mathrm{OH}-2$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 62.9 \mathrm{MHz}$) $\delta: 137.5,134.2$,
$133.8(3 \times \mathrm{Ar}-\mathrm{C}), 136.6(\mathrm{CH}=), 128.9-126.9(\mathrm{Ar}-\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}=\right)$, $84.8(\mathrm{C}-3), 80.9$ (C-1), $80.2(\mathrm{C}-5), 74.2\left(\mathrm{CH}_{2} \mathrm{Nap}\right), 73.0(\mathrm{C}-4), 71.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 71.5(\mathrm{C}-2), 67.2(\mathrm{C}-6)$, $60.8\left(\mathrm{CH}_{3} \mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 67.36; H, 7.00. Found: C, 67.38; H, 6.98.

References

1. Catelani, G.; D'Andrea, F.; Guazzelli, L.; Pistarà V. Carbohydr. Res. 2009, 344, 717-724; doi:10.1016/j.carres.2009.01.014
2. Pistarà, V.; Barili, P. L.; Catelani, G.; Corsaro, A.; D'Andrea, F.; Fisichella, S. Tetrahedron Lett. 2000, 41, 3253-3256; doi:10.1016/S0040-4039(00)00360-9
3. Guazzelli, L.; Catelani, G.; D'Andrea, F. Carbohydr. Res. 2010, 345, 369-376; doi:10.1016/j.carres.2009.11.027
4. Hudlicky, T.; Mandel, M.; Rouden, J.; Lee, R. S.; Bachmann, B.; Dudding, T.; Yost, K.; Merola, J. S. J. Chem. Soc., Perkin Trans. 1 1994, 1553-1567; doi: 10.1039/P1994000155
5. Takahashi, H.; Kittaka, H.; Ikegami, S. J. Org. Chem. 2001, 66, 2705-2716; doi: 10.1021/jo001575h
6. Angyal, S. J.; Odier, L. Carbohydr. Res. 1982, 100, 43-54; doi:10.1016/S0008-6215(00)81024-1
7. Jagdhane, R. C.; Shashidhar, M. S. Eur. J. Org. Chem. 2010, 2945-2953; doi: 10.1002/ejoc. 201000009
8. Motherwell, W. B.; Williams, A. S. Angew. Chem., Int. Ed. 1995, 34, 20312033; doi: 10.1002/anie. 199520311
9. Yong, J. L.; Kyunghoon, L.; Sea, I. J., Heung, B. J.; Kwan, S. K. Tetrahedron 2005, 61, 1987-2001; doi:10.1016/j.tet.2005.01.003
10.Mandel, M.; Hudlicky, T. J. Org. Chem. 1993, 58, 2331-2333; doi: 10.1021/jo00060a061

${ }^{3} \mathrm{C}$ NMR of compound $6\left(62.9 \mathrm{MHI}, \mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}\right)$

[^0]
かo
ハゥバゥ

${ }^{1} \mathrm{H}$ NMR of compound 15 （ $250.13 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ）

[^0]: $\begin{array}{llllllllllllllllllllllllllllll}205 & 200 & 195 & 190 & 185 & 180 & 175 & 170 & 165 & 160 & 155 & 150 & 185 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & p p a\end{array}$

