Supporting Information

for

Protonated paramagnetic redox forms of di-o-quinone bridged with *p*-phenylene-extended TTF: A EPR spectroscopy study

Nikolay O. Chalkov^{1,2}, Vladimir K. Cherkasov^{1,2}, Gleb A. Abakumov¹, Andrey G. Starikov³ and Viacheslav A. Kuropatov^{*1}

Address: ¹Laboratory of Organoelement Compounds, G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950, GSP-445, Tropinina str., 49, Nizhny Novgorod, Russia, ²N. I. Lobachevsky Nizhny Novgorod State University, Gagarina av., 23, Nizhny Novgorod, Russia and ³Southern Scientific Center of Russian Academy of Science, 344006, Chekhov str., 41, Rostov-on-Don, Russia

Email: Viacheslav A. Kuropatov - viach@iomc.ras.ru

*Corresponding author

Additional material

Figure S1: Spin-density distribution for the broken-symmetry state of $(1^{\circ})H$, calculated by UB3LYP/6-311++G(d,p) level of theory.

Figure S2: Spin-density distribution for the broken-symmetry state of $(1^{\circ})H_3$, calculated by UB3LYP/6-311++G(d,p) level of theory.

Figure S3: TD DFT B3LYP/6-311++G(d,p) calculated α -SOMO orbital of (1)H₂ for singlet biradical state.

Figure S4: TD DFT B3LYP/6-311++G(d,p) calculated β -SOMO orbital of (1)H₂ for singlet biradical state.

Figure S5: TD DFT B3LYP/6-311++G(d,p) calculated α -LUMO orbital of **(1)H**₂ for singlet biradical state.

Figure S6: TD DFT B3LYP/6-311++G(d,p) calculated β -LUMO orbital of **(1)H**₂ for singlet biradical state.