Supporting Information

for

Thiazol-4-one derivatives from the reaction of monosubstituted thioureas with maleimides: structures and factors determining the

selectivity and tautomeric equilibrium in solution

Alena S. Pankova¹*, Pavel R. Golubev¹, Alexander F. Khlebnikov¹, Alexander Yu. Ivanov², and Mikhail A. Kuznetsov¹

Address: ¹Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504 Russia and ²Centre for Magnetic Resonance, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504 Russia

Email: Alena S. Pankova* - a.pankova@spbu.ru

*Corresponding author

Experimental procedures, characterization data and copies of the ¹H, ¹³C and 2D NMR spectra; X-ray analysis data for thiazolidine **3b**

General information	S2
Experimental procedures and characterization data	S2
Copies of NMR spectra	.S11
X-ray analysis for thiazolidine 3b	. S45
References	. S48

General information: NMR spectroscopic data were recorded with Bruker Avance 400 and 500 spectrometers (400.13 and 500.03 MHz for ¹H, 100.61 and 125.76 MHz for ¹³C, respectively) in DMSO-*d*₆. Spectra were referenced to the solvent residual proton ($\delta_{\rm H}$ = 2.50 ppm) and solvent carbon signals ($\delta_{\rm C}$ = 39.52 ppm). DEPT spectra were used for carbon atom signal assignment. The signals of the aryl ring of the parent thiourea are referred to as "A" and the ones of the aryl ring of the parent maleimide as "B". The diastereotopic protons of the CH₂ group of thiazolidinones are referred to as H^a and H^b. Melting points were determined with a Stuart SMP30 instrument. Mass spectra were recorded with a Bruker Maxis HRMS-ESI-qTOF spectrometer (electrospray ionization, ESI, mode). Single crystal X-ray data were obtained using an Agilent Technologies SuperNova Atlas diffractometer. For TLC analysis Alugram SIL G/UV₂₅₄ (Macherey-Nagel) plates were used.

Compound 3a

The stirred mixture of *N*-phenylthiourea (**1a**, 152 mg, 1 mmol) and *N*-phenylmaleimide (**2a**, 173 mg, 1 mmol) in EtOH (5 mL) was refluxed for 3 h. Then it was poured into water (40 mL), the formed precipitate was collected by filtration, washed with water and recrystallized from EtOH/water 1:1. Colorless crystals, yield 250 mg (77%); mp 216–217 °C (dec.) (lit. mp 216.5-217.5 °C (dec.) [1]). According to its NMR spectra, amide **3a** exists as a tautomeric mixture of 2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)-*N*-phenylacetamide (**3a**-I) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-phenylacetamide (**3a**-A) in a 1:1 ratio. 2D NOESY, ¹³C-¹H HSQC and HMBC, ¹⁵N-¹H HSQC and HMBC spectra were used for signals assignment.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.78-2.92 (m, 2 H, H^a); 3.22-3.33 (m, 2 H, H^b); 4.49-4.51 (m, 2 H, 2 SCH); 6.99-7.04 (m, 4 H, H^{Ar}); 7.14-7.16 (m, 2 H, H^{Ar}); 7.29-7.39 (m, 8 H, H^{Ar}); 7.52-7.58 (m, 4 H, H^{Ar}); 7.70-7.72 (m, 2 H, H^{Ar}); 10.11 (s, 1 H, Ph^BN<u>H</u>); 10.14 (s, 1 H, Ph^BN<u>H</u>); 11.16 (br s, 1 H, NH); 11.74 (br s, 1 H, NH) ppm.

¹H NMR (500 MHz, acetone-*d*₆/DMSO-*d*₆ 3:1, 0 °C): δ = 2.84 (dd, *J* = 16.7, 11.4 Hz, 1 H, H^a of **A**); 2.94 (dd, *J* = 16.7, 10.7 Hz, 1 H, H^a of **I**); 3.35 (dd, *J* = 16.7, 3.3 Hz, 1 H, H^b of **I**); 3.44 (dd, *J* = 16.7, 3.3 Hz, 1 H, H^b of **A**); 4.50 (dd, *J* = 10.7, 3.3 Hz, 1 H, SCH of **I**); 4.51 (dd, *J* = 11.4, 3.3 Hz, 1 H, SCH of **A**); 7.01-7.06 (m, 4 H, H^{oA} of **I**, 2 H^{pB}); 7.11-7.17 (m, 2 H, 2 H^{pA}); 7.26-7.32 (m, 4 H, 2 H^{mB}); 7.34-7.37 (m, 2 H, H^{mA} of **I**); 7.37-7.40 (m, 2 H, H^{mA} of **A**); 7.61 (d, *J* = 8.2 Hz, 2 H, H^{oB}); 7.66 (d, *J* = 8.2 Hz, 2 H, H^{oB}); 7.81 (d, *J* = 8.1 Hz, 2 H, H^{oA} of **A**);

10.19 (s, 1 H, Ph^BNH); 10.23 (s, 1 H, Ph^BNH); 11.23 (s, 1 H, Ph^AN<u>H</u> of **A**); 11.83 (s, 1 H, NH of **I**) ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 39.0$ (CH₂); 39.6 (CH₂); 46.0 (SCH of **I**); 50.0 (SCH of **A**); 119.1 (C^{oB}); 120.4 (C^{oA} of **A**), 121.6 (C^{oA} of **I**); 123.4 (C^{pB}); 124.6 (C^{pA}); 124.7 (C^{pA}); 128.7 (C^{mB}); 129.0 (C^{mA}), 129.2 (C^{mA}); 138.7 (Cⁱ); 138.8 (Cⁱ); 146.3 (br s, C=N of **I**); 160.7 (br s, C=N of **A**); 168.0 (Ph^BNHC=O of **I**); 168.5 (Ph^BNHC=O of **A**); 177.9 (C=O of **I**); 189.5 (C=O of **A**) ppm.

HRMS (ESI), m/z: calcd for C₁₇H₁₅N₃O₂S [M+H]⁺ 326.0958, found 326.0962.

Compound 3b

The stirred mixture of *N*-phenylthiourea (**1a**, 152 mg, 1 mmol) and *N*-ethylmaleimide (**2b**, 125 mg, 1 mmol) in EtOH (5 mL) was refluxed for 3 h. Then it was poured into water (40 mL), the formed precipitate was collected by filtration, washed with water and recrystallized from EtOH/iPrOH/dioxane 1:1:0.3. Colorless crystals, yield 195 mg (70%), mp 224-226 °C (dec.) (lit. mp 237 °C (dec.) [1]). When this reaction was performed at room temperature (stirring for 4 d [1]) product **3b** was obtained in 67% yield. According to the ¹H NMR spectrum, amide **3b** exists as tautomeric mixture of *N*-ethyl-2-(4-oxo-2-phenylimino-1,3-thiazolidine-5-yl)acetamide (**3b-I**) and 2-(2-anilino-4,5-dihydro-4-oxo-1,3-thiazol-5-yl)-*N*-ethylacetamide (**3b-A**) in a 1:1 ratio. 2D NOESY and ¹⁵N-¹H HMBC spectra were used for signals assignment.

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.96$ -1.03 (m, 6 H, 2 CH₃); 2.46-2.60 (m, 2 H, 2 H^a); 2.93-3.10 (m, 6 H, 2 NCH₂, 2 H^b); 4.36-4.38 (m, 2 H, 2 SCH); 6.97-6.99 (m, 2 H, H^o of **I**); 7.14-7.16 (m, 2 H, 2 H^p); 7.34-7.40 (m, 4 H, H^m); 7.69-7.71 (m, 2 H, H^o of **A**); 8.01-8.04 (m, 2 H, 2 EtN<u>H</u>); 11.11 (br s, 1 H, PhN<u>H</u> of **A**); 11.69 (br s, 1 H, NH of **I**) ppm.

¹H NMR (500 MHz, CDCl₃/DMSO- d_6 2.5:1, 0 °C): $\delta = 0.97$ (t, J = 7.3 Hz, 3 H, CH₃); 1.01 (t, J = 7.3 Hz, 3 H, CH₃); 2.45 (dd, J = 16.7, 12.0 Hz, 2 H, 2 H^a); 3.01-3.13 (m, 6 H, 2 NCH₂, 2 H^b); 4.21-4.27 (m, 2 H, 2 SCH); 6.93 (d, J = 7.6 Hz, 2 H, H^o of **I**); 7.02-7.05 (m, 2 H, 2 H^p); 7.21-7.25 (m, 4 H, H^m); 7.65 (d, J = 7.9 Hz, 2 H, H^o of **A**); 7.89 (br s, 1 H, EtN<u>H</u>); 7.92 (br s, 1 H, EtN<u>H</u>); 11.00 (s, 1 H, PhN<u>H</u> of **A**); 11.68 (s, 1 H, NH of **I**) ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 14.6$ (CH₃); 33.5 (NCH₂); 38.0 (CH₂); 38.6 (CH₂); 46.3 (SCH); 50.4 (SCH); 120.4 (C^o); 121.5 (C^o); 124.6 (C^p); 124.7 (C^p); 129.0 (C^m); 129.2 (C^m); 138.7 (br s, Cⁱ); 146.4 (br s, C=N); 168.5 (EtNHC=O); 169.1 (EtNHC=O); 178.0 (C=O); 189.5 (C=O) ppm.

HRMS (ESI), *m/z*: calcd for C₁₃H₁₅N₃O₂S [M+H]⁺ 278.0958, found 278.0961.

Compound 3c

The stirred mixture of *N*-phenylthiourea (**1a**, 152 mg, 1 mmol) and *N*-(4ethoxyphenyl)maleimide (**2c**, 217 mg, 1 mmol) in EtOH (5 mL) was refluxed for 3 h. Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from EtOH/water 1:1. Colorless crystals, yield 244 mg (66%), mp 224-225 °C (dec.). According to the ¹H NMR spectrum, amide **3c** exists as tautomeric mixture of *N*-(4-ethoxyphenyl)-2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)acetamide (**3c-I**) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-(4-ethoxyphenyl)acetamide (**3c-A**) in a 1:1 ratio.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.29$ (br s, 6 H, 2 CH₃); 2.74-2.88 (m, 2 H, 2 H^a); 3.18-3.32 (m, 2 H, 2 H^b); 3.96 (br s, 4 H, 2 CH₂); 4.47-4.50 (m, 2 H, 2 SCH); 6.85 (br s, 4 H, H^{mB}); 7.00 (br s, 2 H, H^{oA} of **I**); 7.14-7.16 (m, 2 H, H^{pA}); 7.35-7.47 (m, 8 H, H^{Ar}); 7.70-7.72 (m, 2 H, H^{oA} of **A**); 9.97 (s, 1 H, Ar^BN<u>H</u>); 10.00 (s, 1 H, Ar^BN<u>H</u>); 11.17 (br s, 1 H, NH); 11.74 (br s, 1 H, NH) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 14.7$ (CH₃); 38.8 (br s, CH₂); 39.4 (br s, CH₂); 46.1 (br s, SCH); 50.1 (br s, SCH); 63.1 (OCH₂); 114.4 (C^{*m*B}); 120.4 (br s, C^{*o*A}); 120.6 (C^{*o*B}); 121.6 (br s, C^{*o*A}); 124.7 (br s, C^{*p*A}); 129.0 (br s, C^{*m*A}); 129.2 (br s, C^{*m*A}); 131.8 (br s, C^{*i*B}); 131.9 (br s, C^{*i*B}); 138.7 (br s, C^{*i*A}); 154.5 (C^{*p*B}); 167.4 (br s, Ar^BNHC=O); 167.9 (br s, Ar^BNHC=O); 177.9 (br s, C=O); 189.5 (br s, C=O) ppm. Other carbon signals cannot be clearly detected. HRMS (ESI), *m*/*z*: calcd for C₁₉H₁₉N₃O₃S [M+H]⁺ 370.1220, found 370.1213.

Compound 3d

The stirred mixture of *N*-phenylthiourea (**1a**, 152 mg, 1 mmol) and *N*-(4-nitrophenyl)maleimide (**2d**, 218 mg, 1 mmol) in EtOH (5 mL) was refluxed for 3 h. Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from EtOH/water 1:1. Colorless crystals, yield 331 mg (89%), mp 226-228 °C (dec.). According to ¹H NMR spectrum, amide **3d** exists as tautomeric mixture of *N*-(4-nitrophenyl)-2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)acetamide (**3d-I**) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-(4-nitrophenyl)acetamide (**3d-A**) in a 1:1 ratio. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.90-3.03 (m, 2 H, 2 H^a); 3.29-3.41 (m, 2 H, 2 H^b); 4.52-4.54 (m, 2 H, 2 SCH); 7.00 (d, *J* = 6.9 Hz, 2 H, H^{oA} of **I**); 7.14-7.18 (m, 2 H, H^{pA}); 7.33-7.41 (m, 4 H, H^{mA}); 7.71 (d, *J* = 7.4 Hz, 2 H, H^{oA} of **A**); 7.76-7.83 (m, 4 H, H^{oB}); 8.19-8.23 (m, 4

H, 4 H^{*m*B}); 10.74 (s, 1 H, Ar^BN<u>H</u>); 10.77 (s, 1 H, Ar^BN<u>H</u>); 11.18 (br s, 1 H, NH); 11.78 (br s, 1 H, NH) ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 39.1$ (br s, CH₂); 45.7 (br s, SCH); 49.6 (br s, SCH); 118.8 (C^{oB}); 120.4 (br s, C^{oA}); 121.6 (br s, C^{oA}); 124.7 (br s, C^{pA}); 125.0 (C^{mB}); 129.0 (br s, C^{mA}); 129.2 (br s, C^{mA}); 138.7 (br s, C^{iA}); 142.3 (C^{pB}); 144.8 (br s, C^{iB}); 144.9 (br s, C^{iB}); 169.2 (br s, Ar^BNHC=O); 169.7 (br s, Ar^BNHC=O); 177.7 (br s, C=O); 189.3 (br s, C=O) ppm. Other carbon signals cannot be clearly detected.

HRMS (ESI), m/z: calcd for C₁₇H₁₄N₄O₄S [M+Na]⁺ 393.0628, found 393.0617.

Compound 3e

The stirred mixture of *N*-phenylthiourea (**1a**, 152 mg, 1 mmol) and *N*-cyclohexylmaleimide (**2e**, 179 mg, 1 mmol) in EtOH (5 mL) was refluxed for 6 h, then stirred at rt for 24 h. Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from EtOH/water 1:1. Colorless crystals, yield 186 mg (56%), mp 237-239 °C (dec.). According to ¹H NMR spectrum, amide **3e** exists as tautomeric mixture of *N*-cyclohexyl-2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)acetamide (**3e-I**) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-cyclohexylacetamide (**3e-A**) in a 1:1 ratio.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.11-1.23$ (m, 10 H, c-Hex); 1.52-1.70 (m, 10 H, c-Hex); 2.45-2.60 (m, 2 H, 2 H^a); 2.92-3.05 (m, 2 H, 2 H^b); 3.49 (br s, 2 H, 2 NCH); 4.35-4.38 (m, 2 H, 2 SCH); 6.97-6.99 (m, 2 H, H^o of I); 7.14 (br s, 2 H, H^p); 7.36 (br s, 4 H, H^m); 7.69 (br s, 2 H, H^o of A); 7.88-7.93 (m, 2 H, 2 c-HexNH); 11.14 (br s, 1 H, NH); 11.64 (br s, 1 H, NH) ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 24.4$ (c-Hex-C^{3,5}); 25.2 (c-Hex-C⁴); 32.3 (c-Hex-C^{2,6}); 38.0 (br s, CH₂); 38.7 (br s, CH₂); 46.3 (br s, SCH); 47.7 (NCH); 50.5 (br s, SCH); 120.4 (C^o); 121.5 (C^o); 124.6 (br s, C^p); 129.0 (C^m); 129.2 (C^m); 138.7 (br s, Cⁱ); 167.8 (br s, c-HexNHC=O); 168.3 (br s, c-HexNHC=O); 178.0 (br s, C=O); 189.6 (br s, C=O) ppm. HRMS (ESI), *m/z*: calcd for C₁₇H₂₁N₃O₂S [M+H]⁺ 332.1427, found 332.1429.

Compound 3f

The stirred mixture of *N*-(4-methoxyphenyl)thiourea (**1b**, 182 mg, 1 mmol) and *N*-phenylmaleimide (**2a**, 260 mg, 1.5 mmol) in EtOH (5 mL) was refluxed for 7 h, then stirred at rt for 24 h. Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from iPrOH. Colorless crystals, yield 230 mg

(65%), mp 208-209 °C (dec.). According to ¹H NMR spectrum, amide **3f** exists as tautomeric mixture of 2-(2-(4-methoxyphenyl)imino-4-oxo-1,3-thiazolidin-5-yl)-*N*-phenylacetamide (**3f-I**) and 2-(2-(4-methoxyphenyl)amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-phenylacetamide (**3f-A**) in a 1:1 ratio.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.75-2.87 (m, 2 H, H^a); 3.21-3.33 (m, 2 H, H^b); 3.74 (s, 3 H, OCH₃); 3.75 (s, 3 H, OCH₃); 4.44-4.48 (m, 2 H, 2 SCH); 6.92-7.07 (m, 8 H, H^{Ar}); 7.26-7.32 (m, 4 H, 2 H^{mB}); 7.53 (d, *J* = 7.9 Hz, 2 H, H^{oB}); 7.57 (d, *J* = 7.9 Hz, 2 H, H^{oB}); 7.61 (d, *J* = 9.0 Hz, 2 H, H^{oA} of **A**); 10.10 (s, 1 H, Ph^BN<u>H</u>); 10.14 (s, 1 H, Ph^BN<u>H</u>); 11.04 (br s, 1 H, NH); 11.58 (br s, 1 H, NH) ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 39.2$ (CH₂); 39.7 (CH₂); 50.1 (SCH); 55.2 (CH₃); 55.3 (CH₃); 114.1 (C^{mA}); 114.5 (C^{mA}); 119.07 (C^{oB}); 119.10 (C^{oB}); 122.0 (C^{oA}); 123.4 (C^{pB}); 123.6 (br s, C^{oA}); 128.7 (C^{mB}); 131.9 (C^{iA}); 138.7 (C^{iB}); 138.8 (C^{iB}); 156.3 (C^{pA}); 156.8 (C^{pA}); 168.1 (Ph^BNHC=O); 168.6 (Ph^BNHC=O); 177.1 (C=O); 189.2 (C=O) ppm. Other carbon signals cannot be clearly detected.

HRMS (ESI), *m/z*: calcd for C₁₈H₁₇N₃O₃S [M+H]⁺ 356.1063, found 356.1077.

Compound 3g

The stirred mixture of *N*-(4-nitrophenyl)thiourea (**1c**, 197 mg, 1 mmol) and *N*-phenylmaleimide (**2a**, 260 mg, 1.5 mmol) in EtOH (6 mL) was refluxed for 8 h, then stirred at rt for 48 h. Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from iPrOH. Pale yellow crystals, yield 270 mg (73%), mp 220-222 °C (dec.). According to ¹H NMR spectrum, amide **3g** exists as tautomeric mixture of 2-(2-(4-nitrophenyl)imino-4-oxo-1,3-thiazolidin-5-yl)-*N*-phenylacetamide (**3g-I**) and 2-(2-(4-nitrophenyl)amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-phenylacetamide (**3g-A**) in a ~1.8:1 ratio at 23 °C.

¹H NMR (400 MHz, DMSO- d_6 , 23 °C): δ = 2.967 (br s, 1 H, H^a); 3.26-3.33 (m, 1 H, H^b); 4.58-4.60 (m, 1 H, SCH); 7.02-7.06 (m, 1 H, H^{pB}); 7.16 (br s, 1.28 H, H^{oA} of **I**); 7.27-7.31 (m, 2 H, H^{mB}); 7.53-7.55 (m, 2 H, H^{oB}); 7.98 (br s, 0.72 H, H^{oA} of **A**); 8.24 (br s, 2 H, H^{mA}); 10.15 (s, 1 H, Ph^BN<u>H</u>); 11.70 (br s, 0.36 H, NH of **A**); 12.02 (br s, 0.64 H, NH of **I**) ppm.

¹H NMR (500 MHz, acetone- d_6 /DMSO- d_6 3:1, -20 °C): δ = 2.91 (dd, J = 16.5, 11.7 Hz, 0.39 H, H^a of **A**); 3.04 (dd, J = 16.9, 10.6 Hz, 0.61 H, H^a of **I**); 3.38-3.47 (m, 1 H, H^b); 4.53-4.56 (m, 0.39 H, SCH of **A**); 4.59 (dd, J = 10.6, 2.9 Hz, 0.61 H, SCH of **I**); 7.01-7.05 (m, 1 H, H^{pB}); 7.19 (d, J = 8.6 Hz, 1.22 H, H^{oA} of **I**); 7.25-7.31 (m, 2 H, H^{mB}); 7.60 (d, J = 7.9 Hz, 1.22 H, H^{oA} of **I**); 7.66 (d, J = 7.8 Hz, 0.78 H, H^{oB} of **A**); 8.09 (d, J = 8.8 Hz, 0.78 H, H^{oA} of **A**);

8.25 (d, J = 8.6 Hz, 1.22 H, H^{mA} of **I**); 8.32 (d, J = 8.8 Hz, 0.78 H, H^{mA} of **A**); 10.27 (s, 0.61 H, Ph^BN<u>H</u> of **I**); 10.30 (s, 0.39 H, Ph^BN<u>H</u> of **A**); 11.81 (br s, 0.39 H, NH of **A**); 12.17 (br s, 0.61 H, NH of **I**) ppm.

¹H NMR (400 MHz, DMSO-*d*₆, 120 °C): δ = 2.91 (dd, *J* = 16.4, 9.7 Hz, 1 H, H^a); 3.29 (dd, *J* = 16.4, 3.9 Hz, 1 H, H^b); 4.58 (dd, *J* = 9.7, 3.9 Hz, 1 H, SCH); 7.06 (t, *J* = 7.4 Hz, 1 H, H^{pB}); 7.27-7.31 (m, 2 H, H^{mB}); 7.44 (br s, 2 H, H^{oA}); 7.52-7.54 (m, 2 H, H^{oB}); 8.20 (d, *J* = 9.0 Hz, 2 H, H^{mA}); 9.74 (s, 1 H, Ph^BN<u>H</u>); 11.50 (br s, 1 H, NH) ppm.

¹³C NMR (100 MHz, DMSO- d_6 , 23 °C): $\delta = 45.5$ (br s, SCH); 119.1 (C^{oB}); 122.1 (br s, C^{oA}); 123.4 (C^{pB}); 125.2 (C^{mA}); 128.8 (C^{mB}); 138.7 (C^{iB}); 143.5 (br s, C); 167.9 (br s, Ph^BNHC=O) ppm. Other carbon signals cannot be clearly detected.

HRMS (ESI), *m/z*: calcd for C₁₇H₁₄N₄O₄S [M+Na]⁺ 393.0628, found 393.0627.

Compound 3h

The stirred mixture of *N*-cyclohexylthiourea (**1d**, 158 mg, 1 mmol) and *N*-phenylmaleimide (**2a**, 173 mg, 1 mmol) in EtOH (5 mL) was refluxed for 4 h. Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from EtOH/water 1:1. Colorless crystals, yield 264 mg (80%), mp 209-210 °C. When this reaction was performed at rt (stirring for 48 h) amide **3h** was obtained in 91% yield (pure enough without recrystallization). According to ¹H NMR spectrum, amide **3h** exists as tautomeric mixture of 2-(2-cyclohexylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-phenylacetamide (**3h-A**) and 2-(2-cyclohexylimino-4-oxo-1,3-thiazolidin-5-yl)-*N*-phenylacetamide (**3h-I**) in a ~4:1 ratio.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.12$ -1.33 (m, 5 H, c-Hex); 1.55-1.58 (m, 1 H, c-Hex); 1.69-1.71 (m, 2 H, c-Hex); 1.86-1.88 (m, 2 H, c-Hex); 2.67 (dd, J = 16.4, 11.3 Hz, 1 H, H^a); 3.23 (br s, 0.2 H, NCH of **I**); 3.25 (dd, J = 16.4, 3.4 Hz, 1 H, H^b); 3.79 (br s, 0.8 H, NCH of **A**); 4.36 (dd, J = 11.3, 3.4 Hz, 1 H, SCH); 7.04 (t, J = 7.4 Hz, 1 H, H^p); 7.28-7.32 (m, 2 H, H^m); 7.55 (d, J = 7.8 Hz, 2 H, H^o); 9.14 (d, J = 7.3 Hz, 0.8 H, c-HexN<u>H</u> of **A**); 9.68 (br s, 0.2 H, NH of **I**); 10.09 (s, 0.8 H, PhN<u>H</u> of **A**); 10.12 (s, 0.2 H, PhN<u>H</u> of **I**) ppm.

¹³C NMR of **3h-A** (100 MHz, DMSO- d_6): $\delta = 24.3$ (c-Hex-C^{3,5}); 24.9 (c-Hex-C⁴); 31.9 (c-Hex-C^{2,6}); 40.1 (CH₂); 50.6 (SCH); 53.7 (NCH); 119.1 (C^o); 123.3 (C^p); 128.7 (C^m); 138.9 (Cⁱ); 168.7 (PhNHC=O); 178.4 (C=N); 188.3 (C=O) ppm.

HRMS (ESI), m/z: calcd for C₁₇H₂₁N₃O₂S [M+H]⁺ 332.1427, found 332.1429.

Compound 3i

The stirred mixture of *N*-cyclohexylthiourea (**1d**, 158 mg, 1 mmol) and *N*-ethylmaleimide (**2b**, 125 mg, 1 mmol) in EtOH (5 mL) was refluxed for 4 h. Then it was poured into water (40 mL), the resulting solution was saturated with NaCl and extracted with EtOAc ($3 \times 10 \text{ mL}$). The organic phase was dried over Na₂SO₄, solvents were evaporated under reduced pressure until 5 mL remained. Upon cooling to ~0 °C the formed precipitate was collected by filtration, washed with cold EtOAc (~3 mL) and dried. Colorless crystals, yield 210 mg (74%), mp 161-163 °C. According to ¹H NMR spectrum, amide **3i** exists as tautomeric mixture of 2-(2-cyclohexylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-ethylacetamide (**3i-A**) and 2-(2-cyclohexylimino-4-oxo-1,3-thiazolidin-5-yl)-*N*-ethylacetamide (**3i-A**)

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.00$ (t, J = 7.2 Hz, CH₃ of **A**) and 1.01 (t, J = 7.2 Hz, CH₃ of **I**), 3 H in sum; 1.09-1.18 (m, 1 H, c-Hex); 1.21-1.32 (m, 4 H, c-Hex); 1.55-1.58 (m, 1 H, c-Hex); 1.68-1.71 (m, 2 H, c-Hex); 1.84-1.86 (m, 2 H, c-Hex); 2.36 (dd, J = 15.9, 11.6 Hz, 1 H, H^a); 2.96 (dd, J = 15.9, 3.4 Hz, 1 H, H^b); 3.03-3.10 (m, 2 H, NCH₂); 3.18 (br s, 0.2 H, NCH of **I**); 3.76 (br s, 0.8 H, NCH of **A**); 4.23 (dd, J = 11.6, 3.4 Hz, 1 H, SCH); 7.99-8.02 (m, 1 H, EtNH); 9.12 (d, J = 7.0 Hz, 0.8 H, NH of **A**); 9.63 (br s, 0.2 H, NH of **I**) ppm.

¹³C NMR of **3i-A** (100 MHz, DMSO- d_6): $\delta = 14.6$ (CH₃); 24.3 (c-Hex-C^{3,5}); 24.9 (c-Hex-C⁴); 31.9 (c-Hex-C^{2,6}); 33.5 (NCH₂); 39.1 (CH₂); 50.9 (SCH); 53.7 (NCH); 169.2 (EtNHC=O); 178.4 (C=N); 188.4 (C=O) ppm.

HRMS (ESI), m/z: calcd for C₁₃H₂₁N₃O₂S [M+H]⁺ 284.1427, found 284.1433.

Compound 3j

The stirred mixture of *N*-ethylthiourea (**1e**, 156 mg, 1.5 mmol) and *N*-phenylmaleimide (**2a**, 260 mg, 1.5 mmol) in EtOH (6 mL) was refluxed for 3.5 h. After cooling, the formed precipitate was collected by filtration and washed with cold EtOH (1–2 mL). Colorless crystals, yield 276 mg (66%), mp 223-224 °C (dec.). According to ¹H NMR spectrum, amide **3j** exists as tautomeric mixture of 2-(2-ethylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-*N*-phenylacetamide (**3j-A**) and 2-(2-ethylimino-4-oxo-1,3-thiazolidin-5-yl)-*N*-phenylacetamide (**3j-I**) in a ~4:1 ratio.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.13$ (t, J = 7.2 Hz, 2.4 H, CH₃ of **A**); 1.16 (t, J = 7.2 Hz, 0.6 H, CH₃ of **I**); 2.68 (dd, J = 16.4, 11.2 Hz, 1 H, H^a); 3.21-3.48 (m, 3 H, CH₂CH₃, H^b); 4.36 (dd, J = 11.2, 3.4 Hz, 0.2 H, SCH of **I**); 4.38 (dd, J = 11.2, 3.5 Hz, 0.8 H, SCH of **A**); 7.04 (t,

J = 7.4 Hz, 1 H, H^{*p*}); 7.28-7.32 (m, 2 H, H^{*m*}); 7.55 (d, J = 7.8 Hz, 2 H, H^{*o*}); 9.20 (t, J = 5.2 Hz, 0.8 H, EtN<u>H</u> of **A**); 9.62 (br s, 0.2 H, NH of **I**); 10.10 (s, 0.8 H, PhN<u>H</u> of **A**); 10.12 (s, 0.2 H, PhN<u>H</u> of **I**) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 14.1 (CH₃ of **A**); 14.3 (CH₃ of **I**); 39.2 (CH₂ of **I**); 39.3 (CH₂ of **A**); 39.8 (CH₂ of **I**); 40.1 (CH₂ of **A**); 50.6 (SCH of **I**); 50.8 (SCH of **A**); 119.1 (C^{*o*}); 123.3 (C^{*p*}); 128.7 (C^{*m*}); 138.8 (C^{*i*}); 168.7 (PhNHC=O); 179.2 (C=N); 188.2 (C=O) ppm. HRMS (ESI), *m*/*z*: calcd for C₁₃H₁₅N₃O₂S [M+Na]⁺ 300.0777, found 300.0791.

Compound 3k

The stirred mixture of *N*-methylthiourea (1f, 135 mg, 1.5 mmol) and *N*-phenylmaleimide (2a, 260 mg, 1.5 mmol) in EtOH (6 mL) was refluxed for 4 h. Then it was poured into water (40 mL), the resulting solution was saturated with NaCl and extracted with EtOAc (3 \times 10 mL). The organic phase was dried over Na₂SO₄, the solvents were evaporated under reduced pressure until 5 mL remained. Upon cooling to 0 °C, a precipitate began to form, which was isolated by slow addition of hexane (1-2 mL) and filtration. Pale yellow crystals, vield 198 mg (50%), mp 197-198 °C. According to ¹H NMR spectrum, amide **3k** exists as tautomeric mixture of 2-(2-methylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-Nphenylacetamide (3k-A)and 2-(2-methylimino-4-oxo-1,3-thiazolidin-5-yl)-Nphenylacetamide (3k-I) in a ~4:1 ratio.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.68$ (dd, J = 16.4, 11.2 Hz, 1 H, H^a); 2.88 (s, 0.6 H, Me of **I**); 2.95 (d, J = 4.4 Hz, 2.4 H, Me of **A**); 3.26 (dd, J = 16.5, 3.5 Hz, 0.8 H, H^b of **A**); 3.28 (dd, J = 16.6, 3.6 Hz, 0.2 H, H^b of **I**); 4.36 (dd, J = 11.2, 3.6 Hz, 0.2 H, SCH of **I**); 4.39 (dd, J = 11.2, 3.5 Hz, 0.8 H, SCH of **A**); 7.04 (t, J = 7.4 Hz, 1 H, H^p); 7.28-7.32 (m, 2 H, H^m); 7.55 (d, J = 7.8 Hz, 2 H, H^o); 9.13 (q, J = 4.4 Hz, 0.8 H, MeN<u>H</u> of **A**); 9.49 (br s, 0.2 H, NH of **I**); 10.11 (s, 0.8 H, PhN<u>H</u> of **A**); 10.13 (s, 0.2 H, PhN<u>H</u> of **I**) ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 30.3$ (CH₃ of **I**); 30.9 (CH₃ of **A**); 40.1 (CH₂ of **A**); 51.0 (SCH of **I**); 51.1 (SCH of **A**); 119.1 (C^o); 123.3 (C^p); 128.8 (C^m); 138.9 (Cⁱ); 168.7 (PhNHC=O); 180.1 (C=N); 188.2 (C=O) ppm.

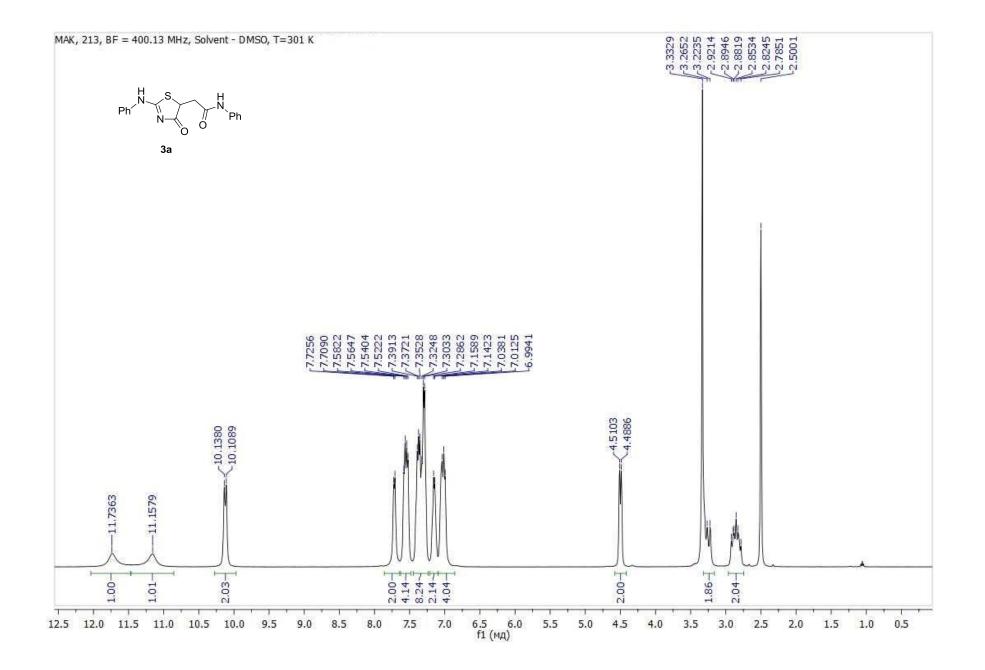
HRMS (ESI), m/z: calcd for C₁₂H₁₃N₃O₂S [M+H]⁺ 264.0801, found 264.0811.

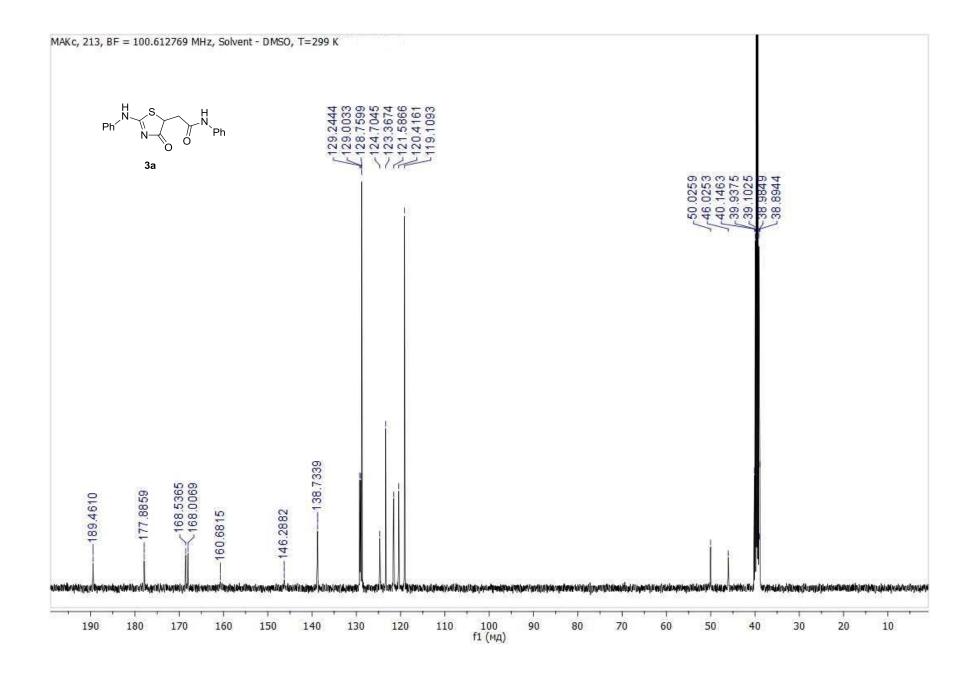
2-(3-Ethyl-2-imino-4-oxo-1,3-thiazolidin-5-yl)-*N*-**phenylacetamide (4j).** The mixture of *N*-ethylthiourea (**1e**, 156 mg, 1.5 mmol) and *N*-phenylmaleimide (**2a**, 260 mg, 1.5 mmol) in EtOH (6 mL) was stirred at rt overnight. The precipitate was filtered and washed with cold

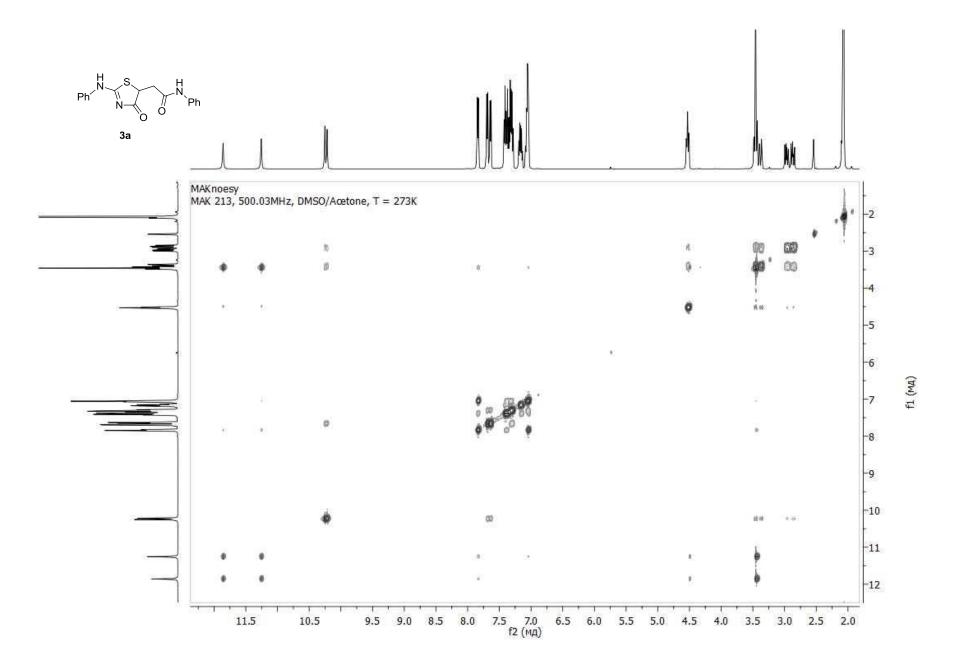
EtOH (1–2 mL). Yield 284 mg (68%). According to ¹H NMR spectrum, a mixture of **4j** and amide **3j** (ratio **3j-A/3j-I** ~4:1) in the ratio 1:0.6 was obtained.

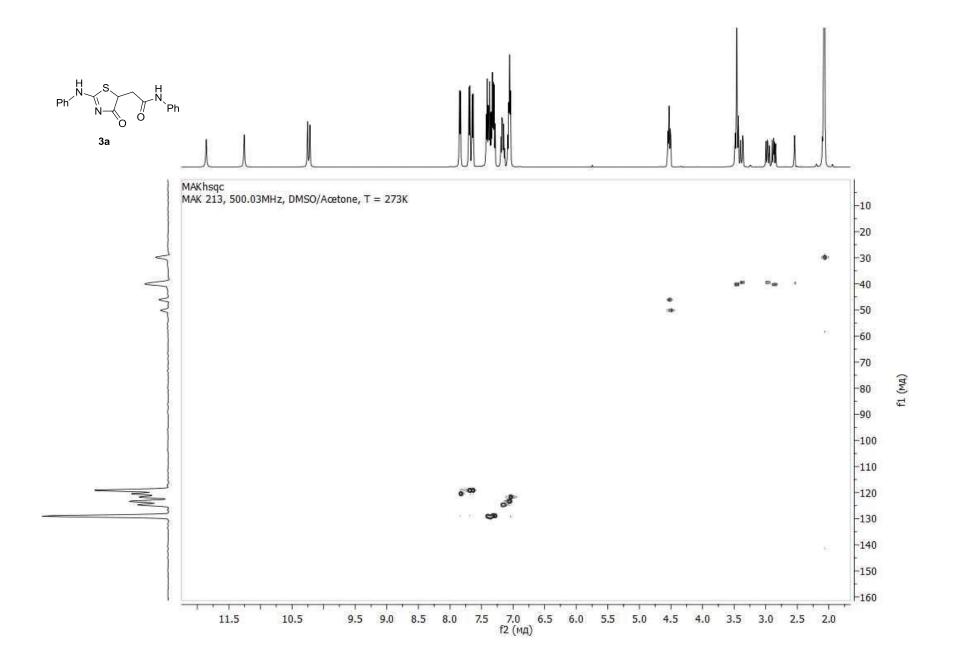
¹H NMR of **4j** (400 MHz, DMSO-*d*₆): $\delta = 1.09$ (t, J = 7.1 Hz, 3 H, CH₃); 2.89 (dd, J = 16.5, 9.5 Hz, 1 H, H^a); 3.22 (dd, J = 16.5, 3.7 Hz, 1 H, H^b); 3.58-3.70 (m, 2 H, CH₂CH₃); 4.52 (dd, J = 9.5, 3.7 Hz, 1 H, SCH); 7.04 (t, J = 7.4 Hz, 1 H, H^p); 7.28-7.32 (m, 2 H, H^m); 7.54 (d, J = 7.7 Hz, 2 H, H^o); 9.16 (s, 1 H, =NH); 10.10 (s, 1 H, PhN<u>H</u>) ppm.

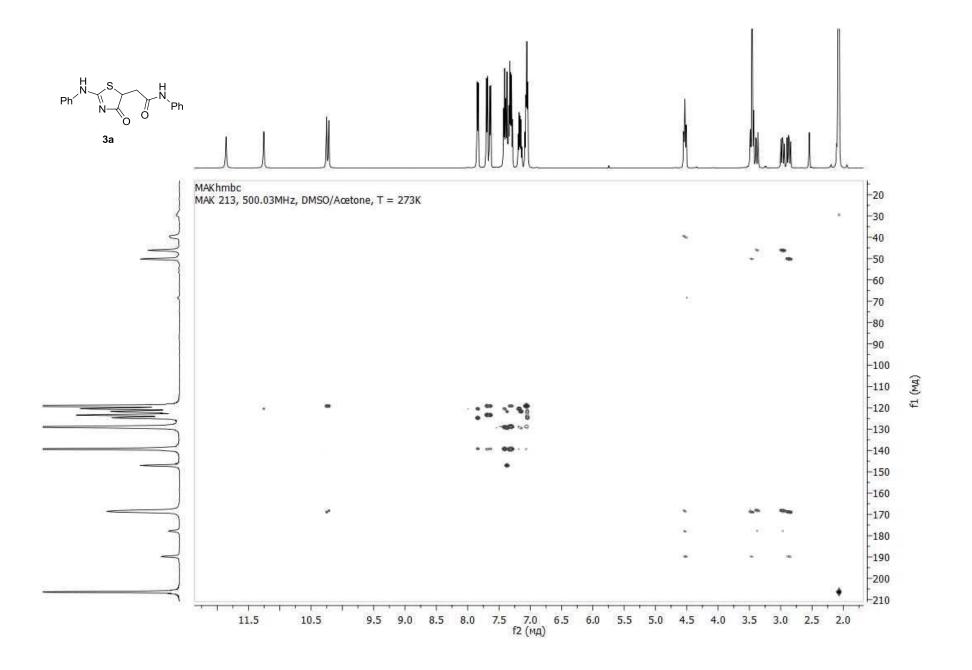
¹³C NMR of **4j** (100 MHz, DMSO- d_6): $\delta = 12.2$ (CH₃); 36.2 (NCH₂); 39.1 (CH₂); 44.2 (SCH); 119.1 (C^o); 123.4 (C^p); 128.7 (C^m); 138.7 (Cⁱ); 157.0 (C=NH); 167.8 (PhNHC=O); 173.5 (C=O) ppm.

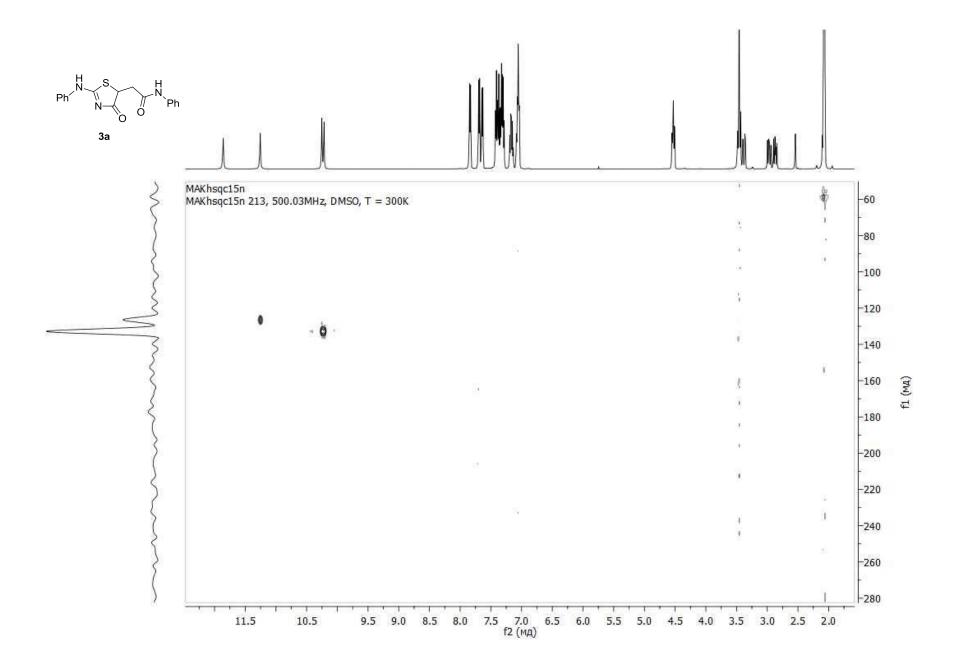

HRMS (ESI), *m/z*: calcd for C₁₃H₁₅N₃O₂S [M+Na]⁺ 300.0777, found 300.0772.

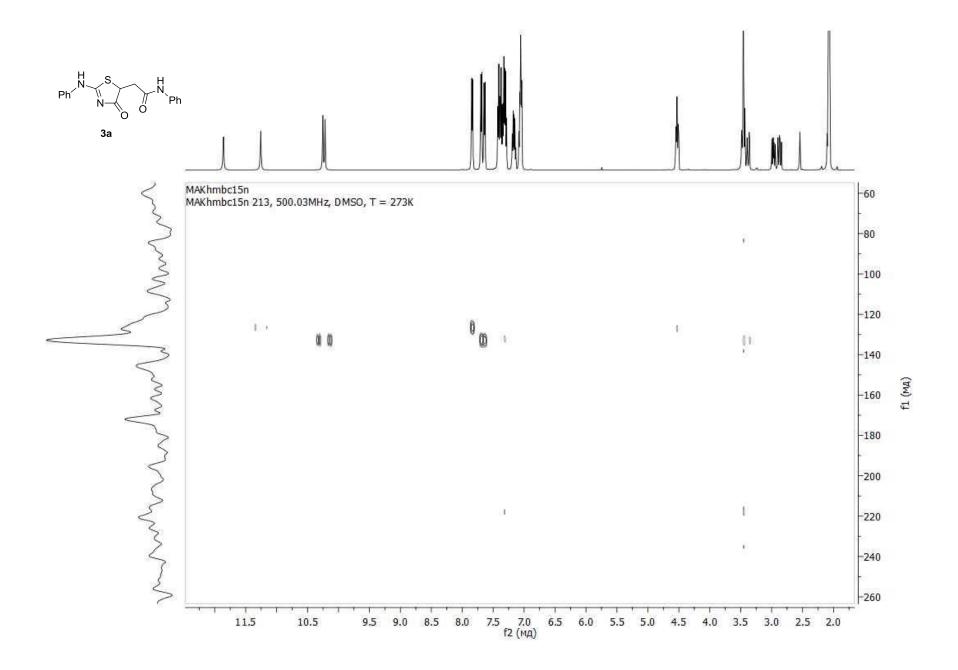

2-(2-Imino-3-methyl-4-oxo-1,3-thiazolidin-5-yl)-*N*-phenylacetamide (4k). The mixture of *N*-methylthiourea (1f, 135 mg, 1.5 mmol) and *N*-phenylmaleimide (2a, 260 mg, 1.5 mmol) in EtOH (7 mL) was stirred at rt overnight. The precipitate was filtered and washed with cold EtOH (1–2 mL). Colorless crystals, yield 260 mg (66%), mp 174-175 °C. ¹³C-¹H HMBC spectrum was used for signals assignment.

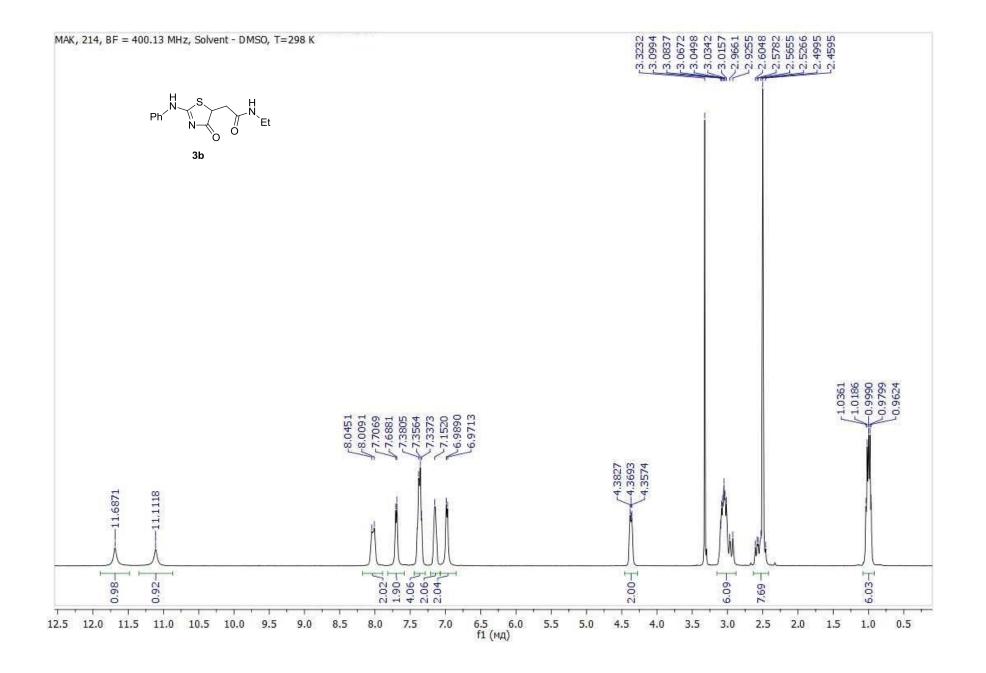

¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.90$ (dd, J = 16.5, 9.6 Hz, 1 H, H^a); 3.02 (s, 3 H, Me); 3.23 (dd, J = 16.5, 3.6 Hz, 1 H, H^b); 4.53 (dd, J = 9.6, 3.6 Hz, 1 H, SCH); 7.04 (t, J = 7.4 Hz, 1 H, H^p); 7.28-7.32 (m, 2 H, H^m); 7.54 (d, J = 7.7 Hz, 2 H, H^o); 9.16 (s, 1 H, =NH); 10.11 (s, 1 H, PhN<u>H</u>) ppm.

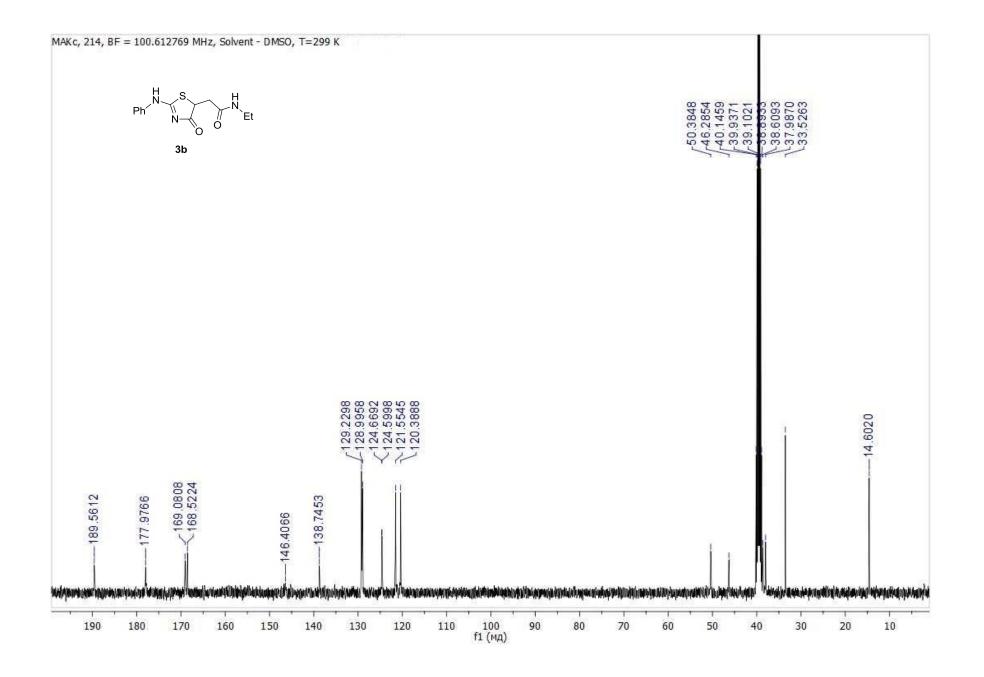

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 28.0$ (CH₃); 39.1 (CH₂); 44.4 (SCH); 119.1 (C^o); 123.4 (C^p); 128.7 (C^m); 138.7 (Cⁱ); 157.8 (C=NH); 167.8 (PhNHC=O); 173.8 (C=O) ppm.

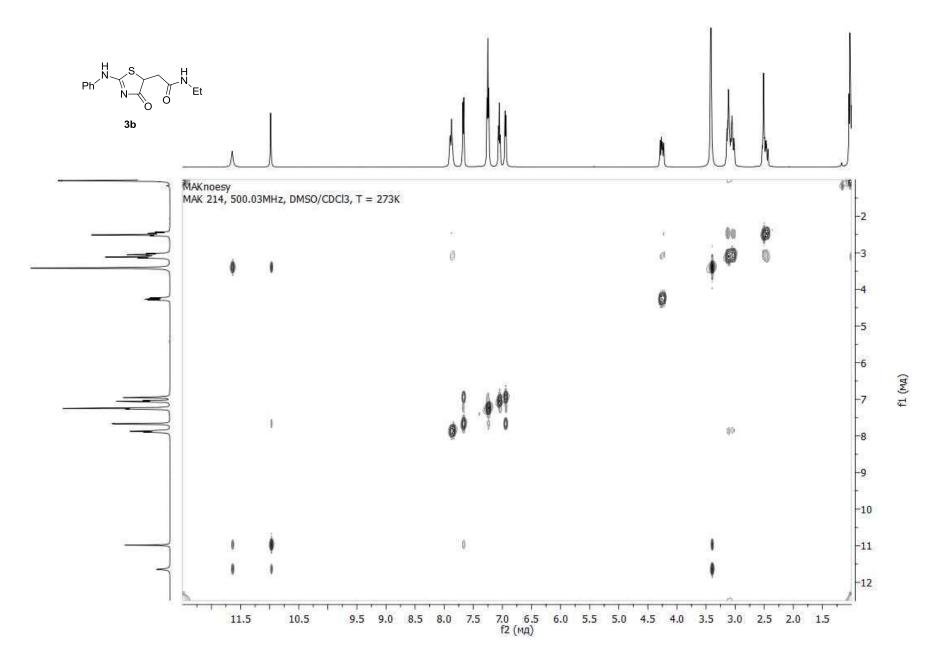

HRMS (ESI), *m/z*: calcd for C₁₂H₁₃N₃O₂S [M+Na]⁺ 286.0621, found 286.0633.

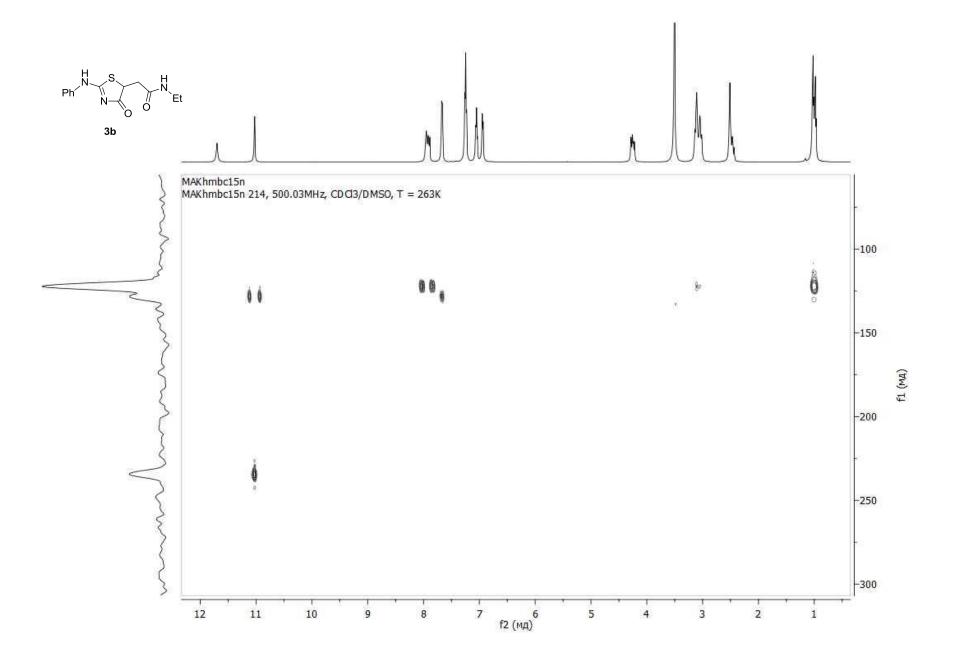


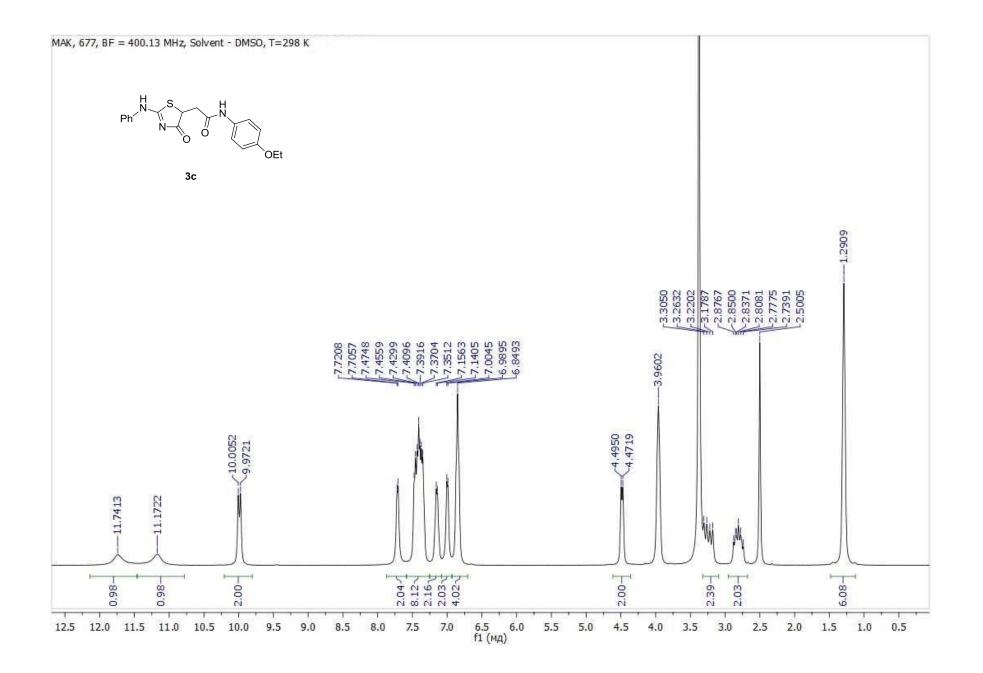


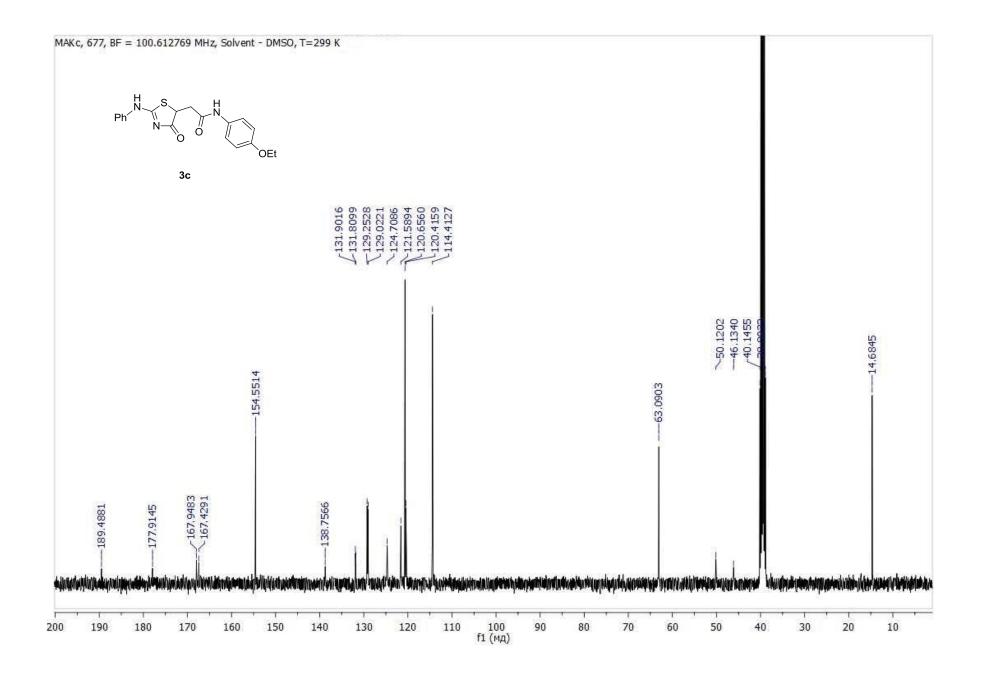


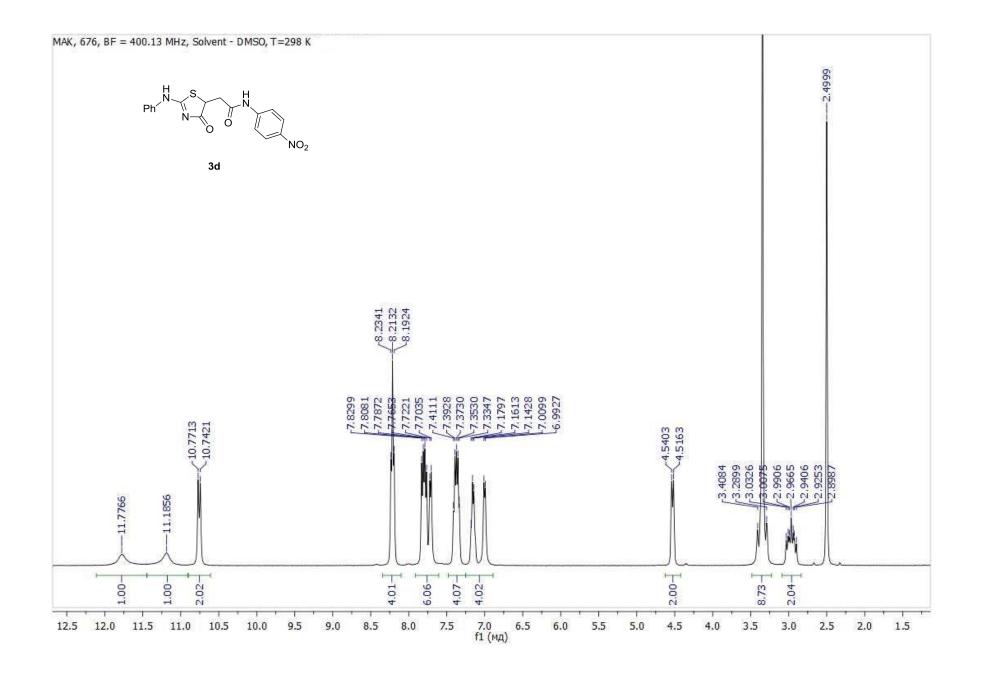


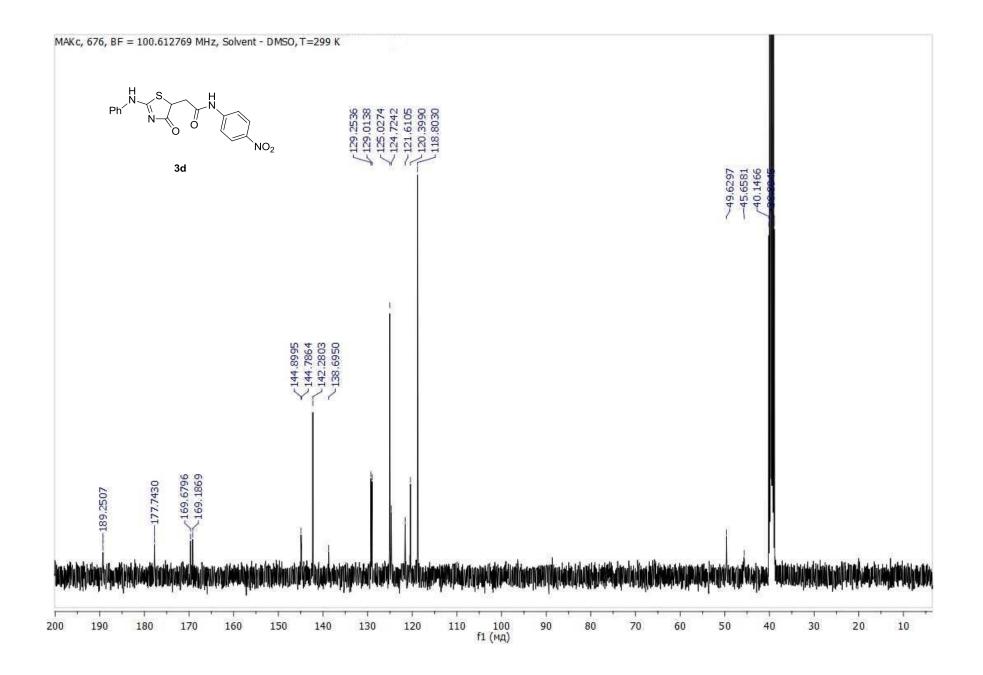


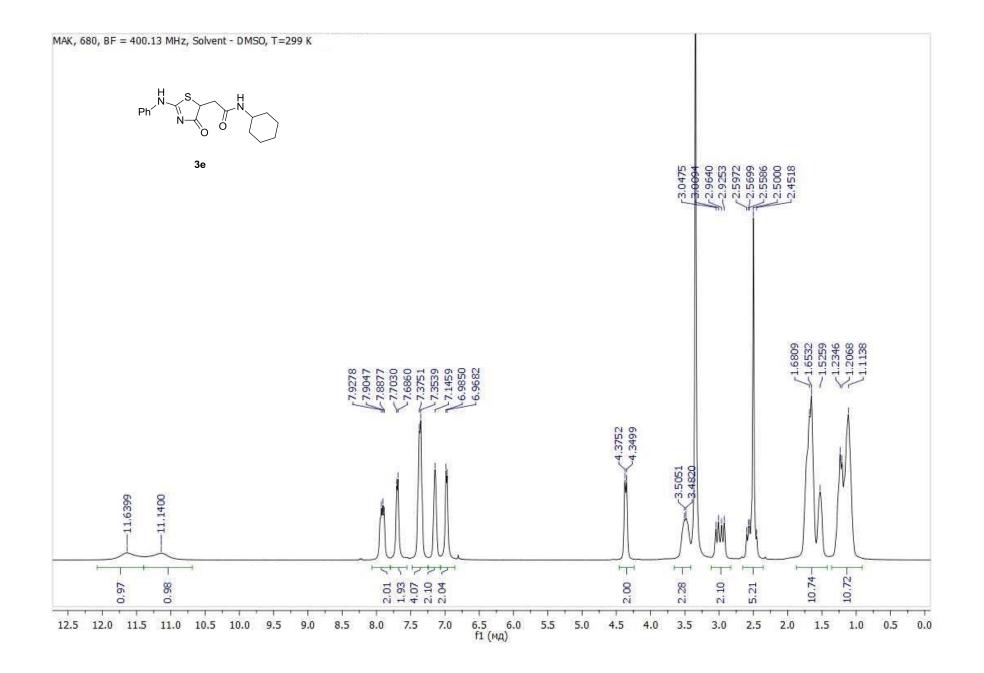


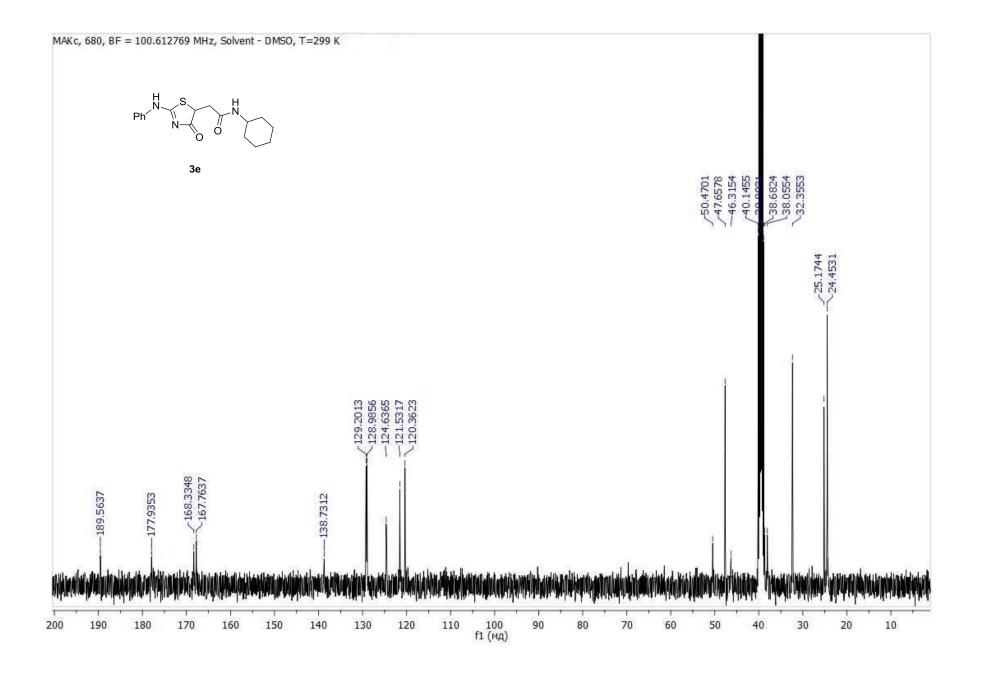


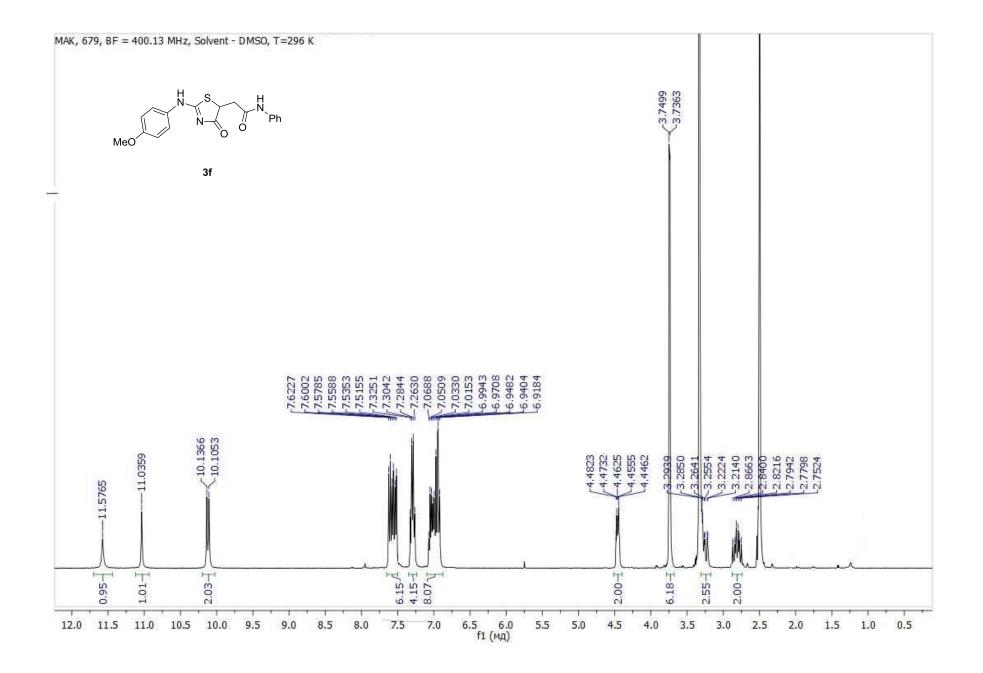


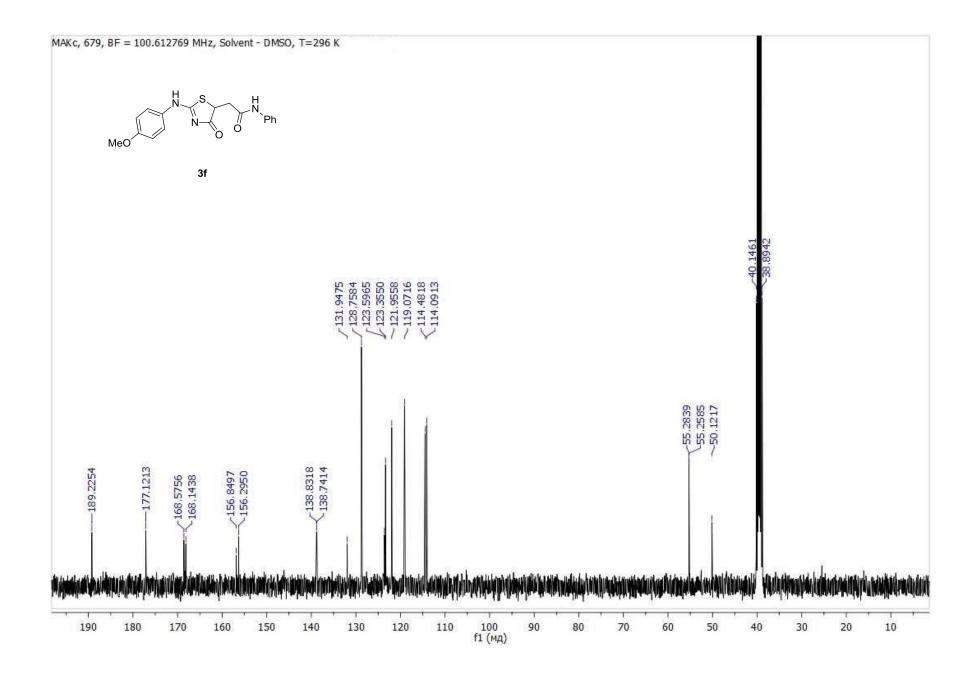


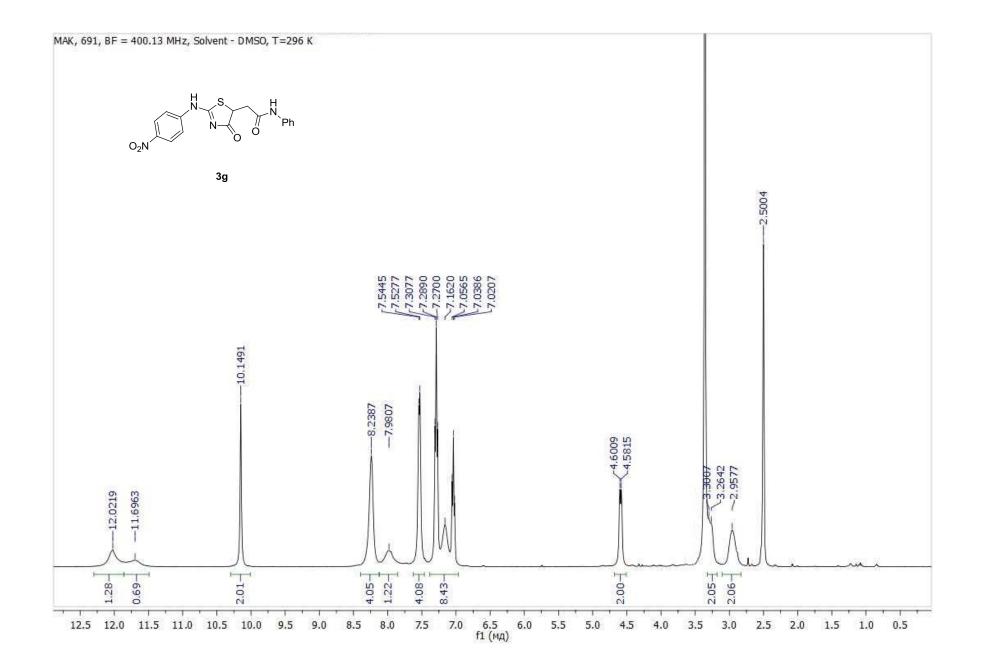


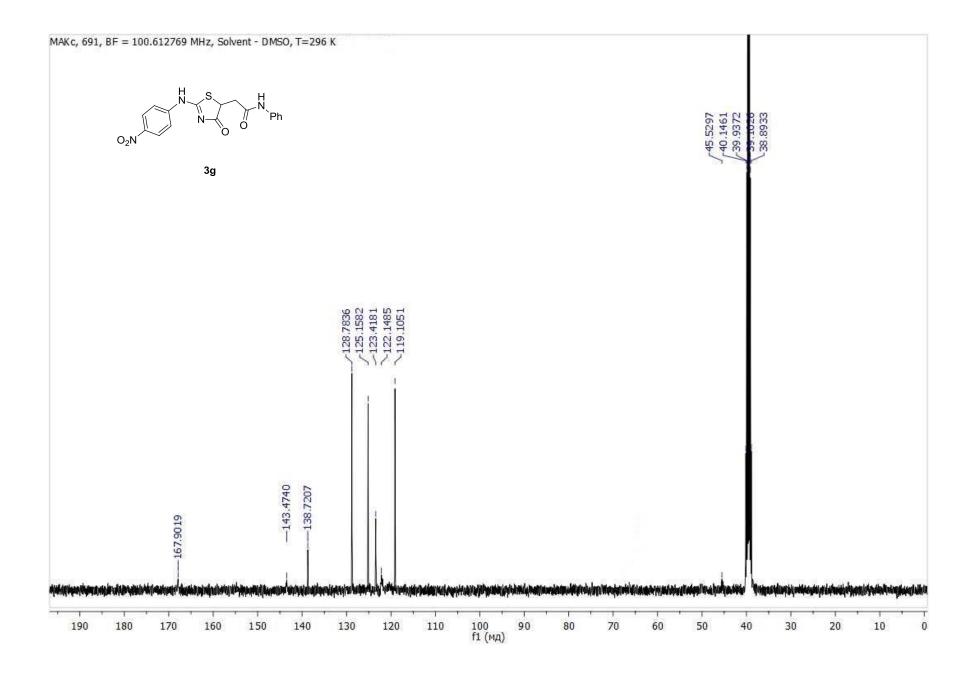


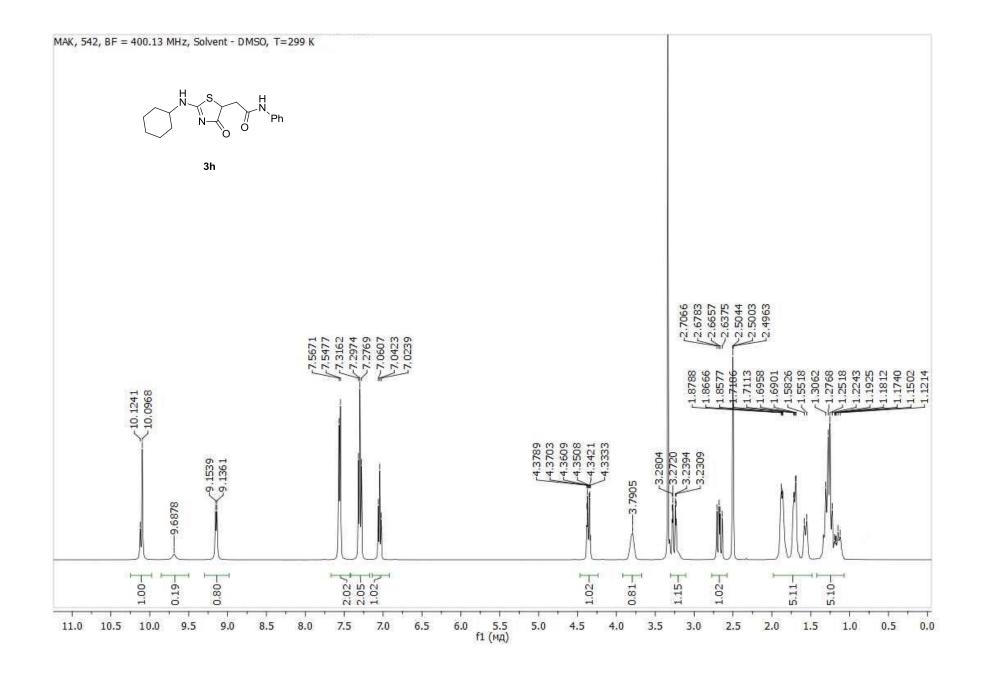


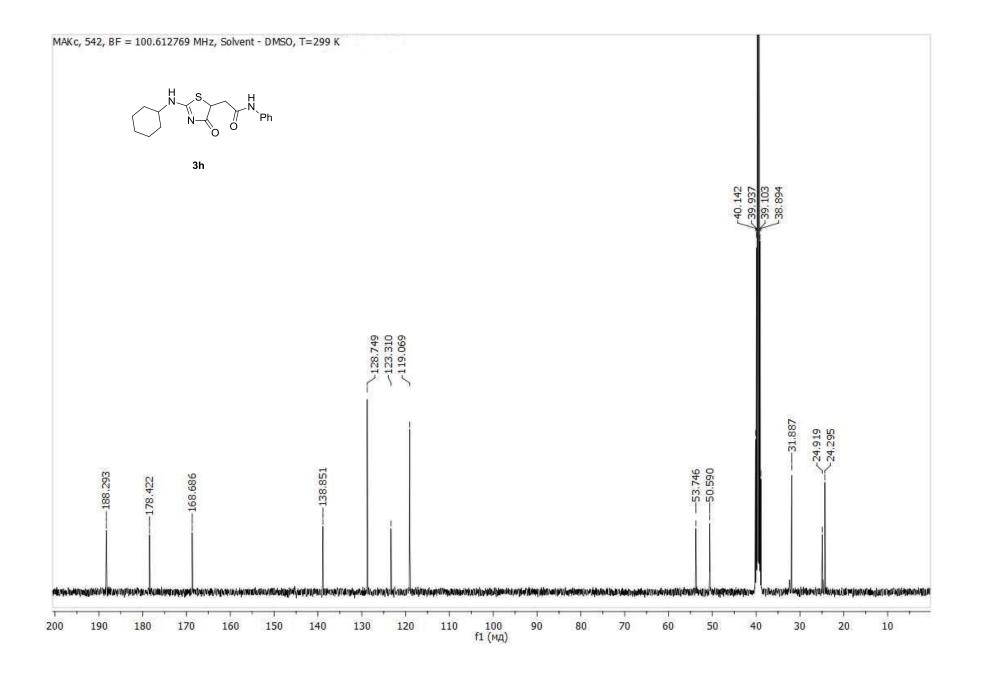


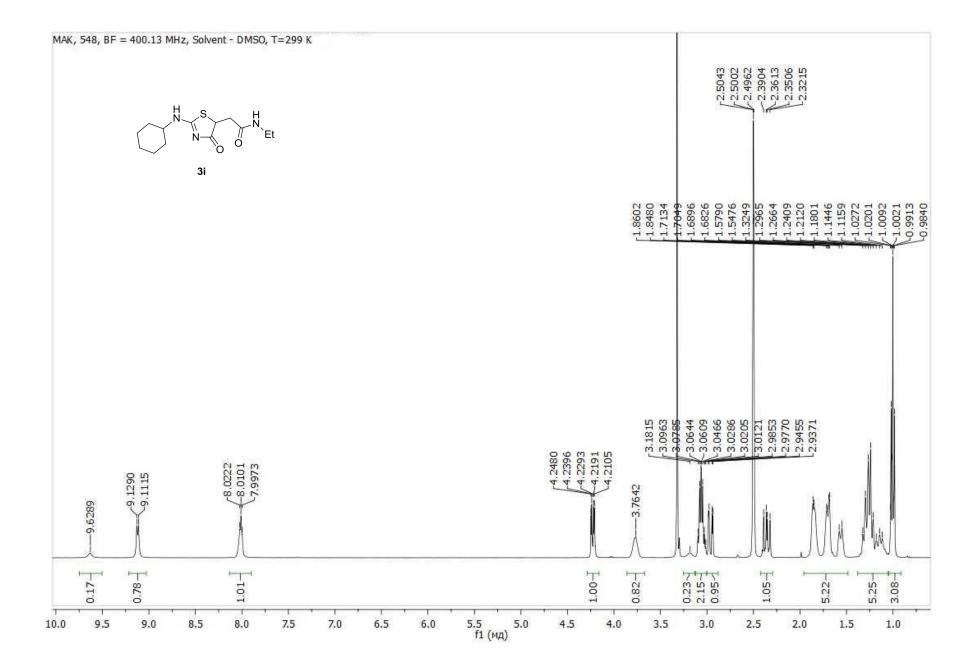


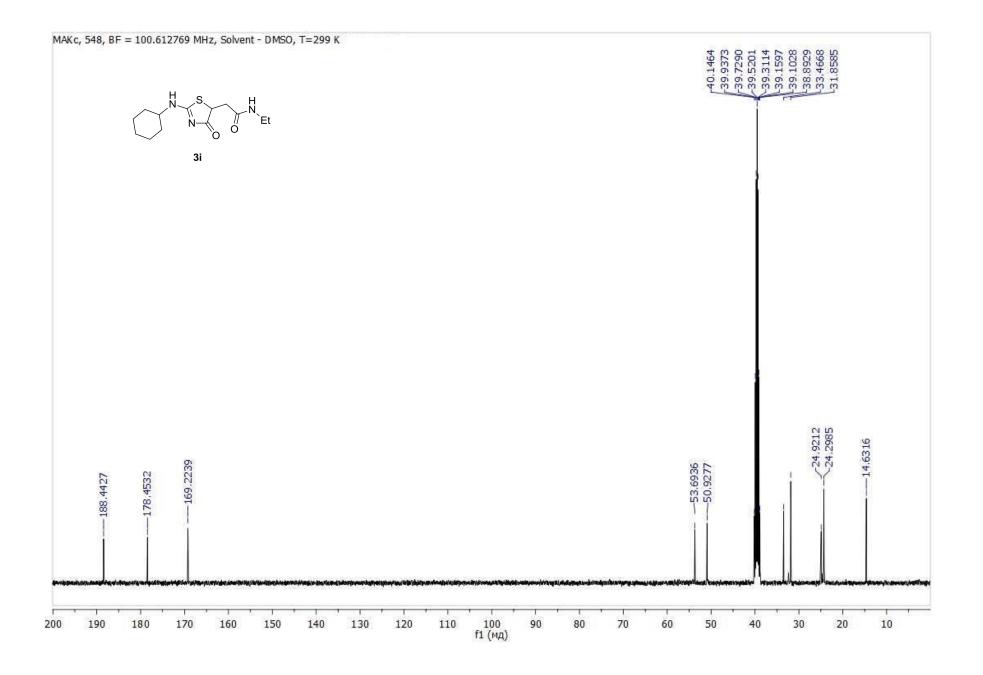


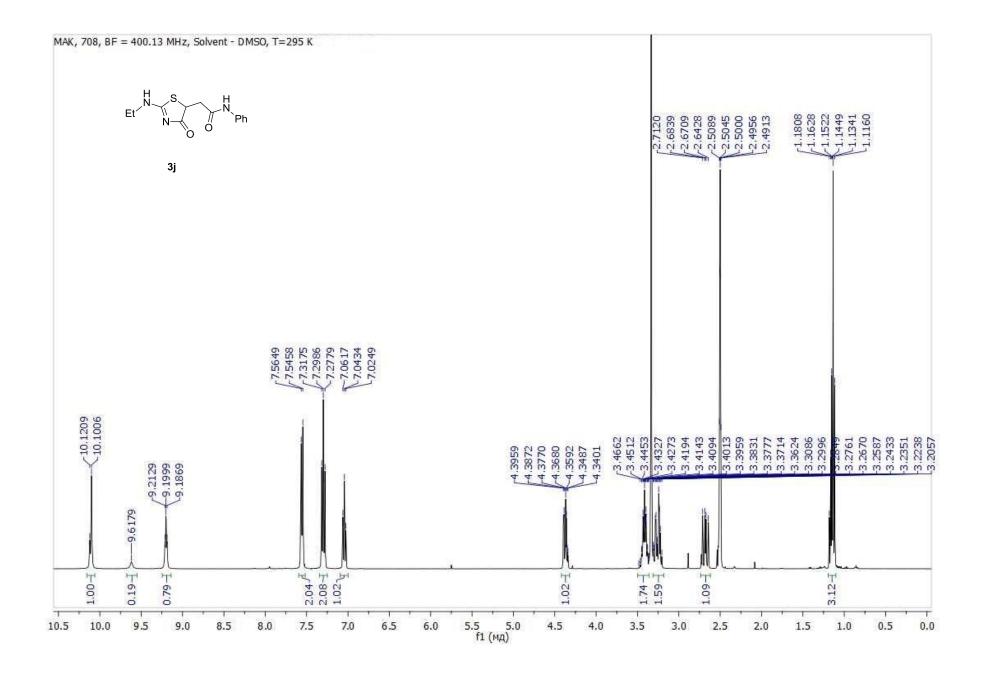


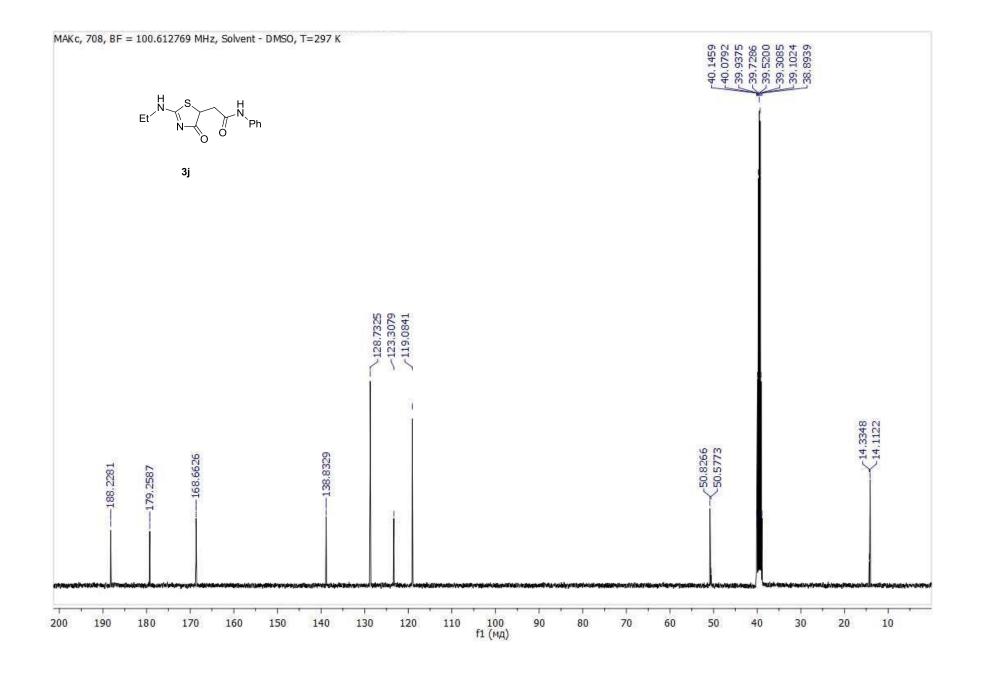


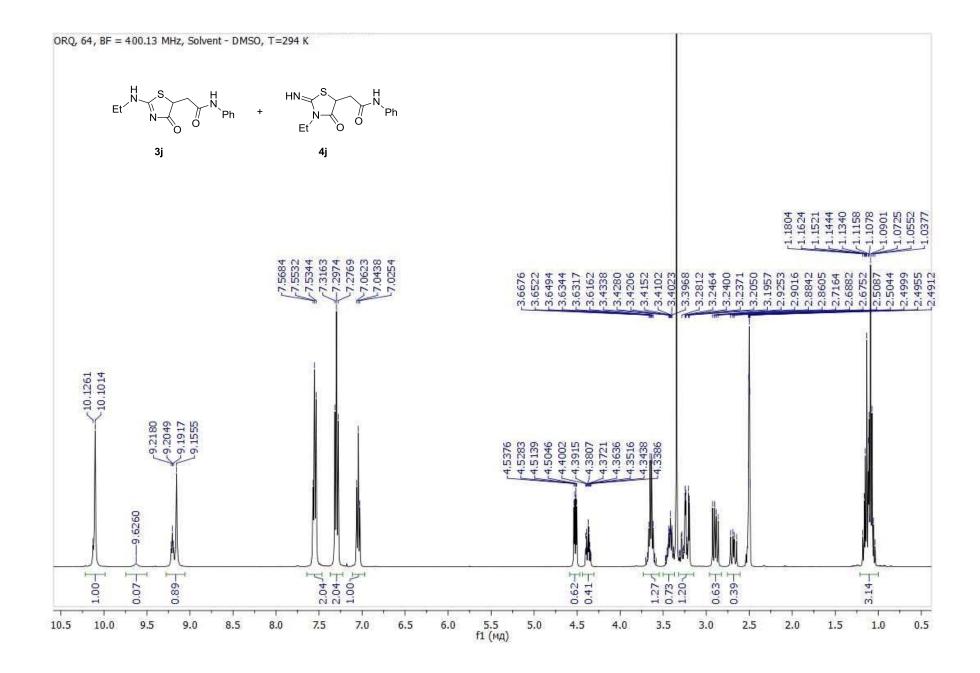


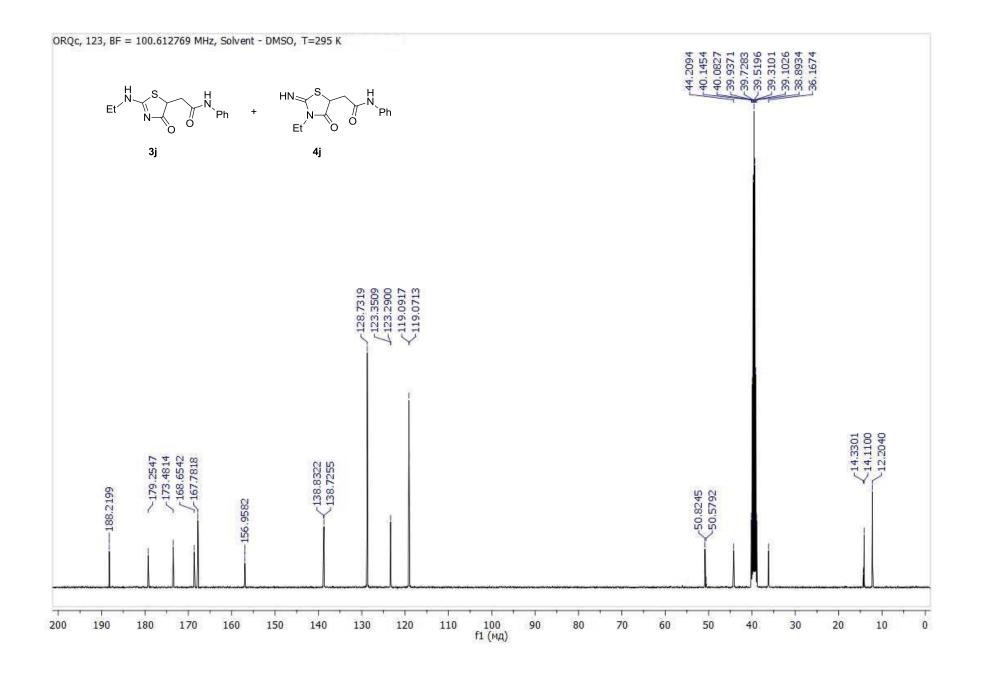


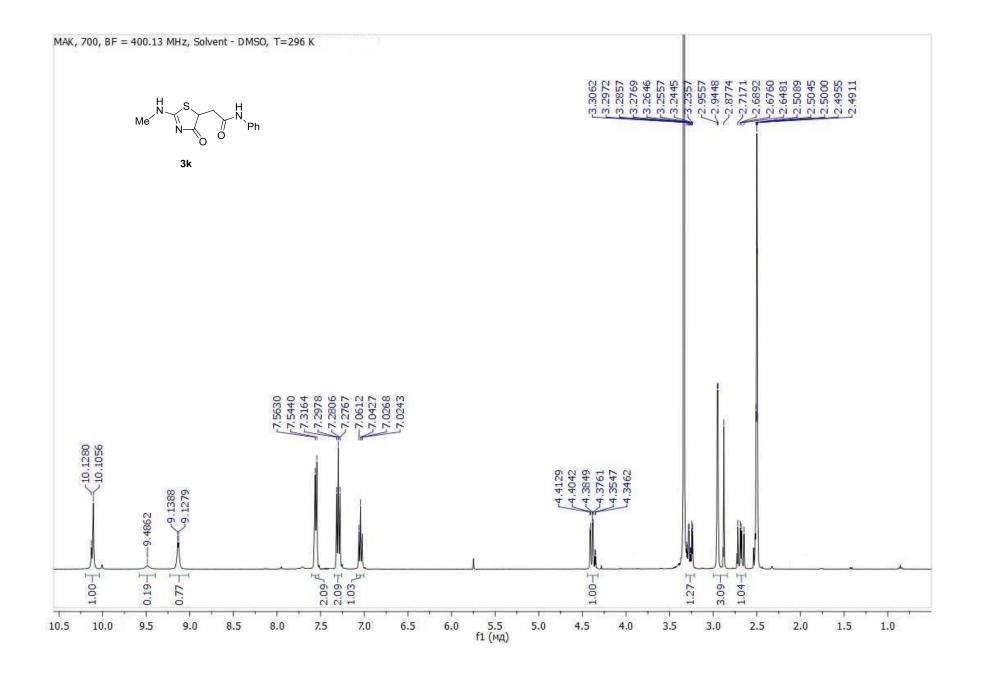


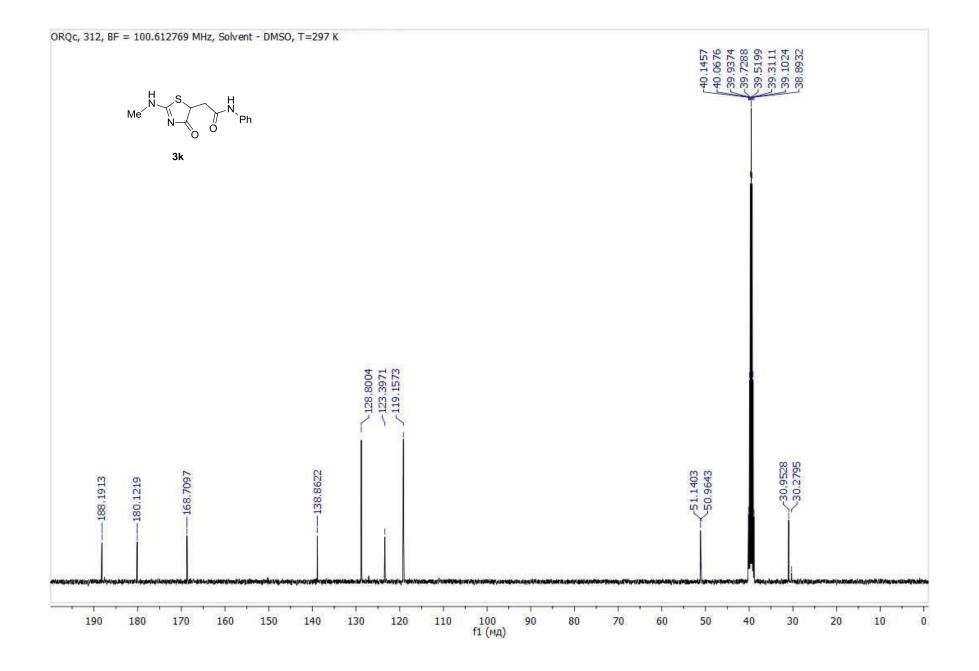


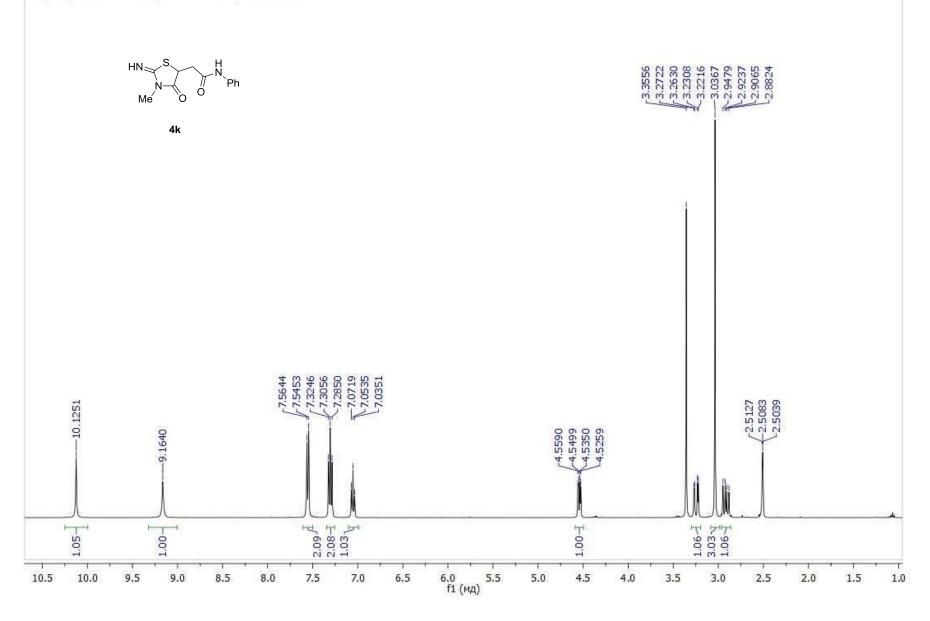




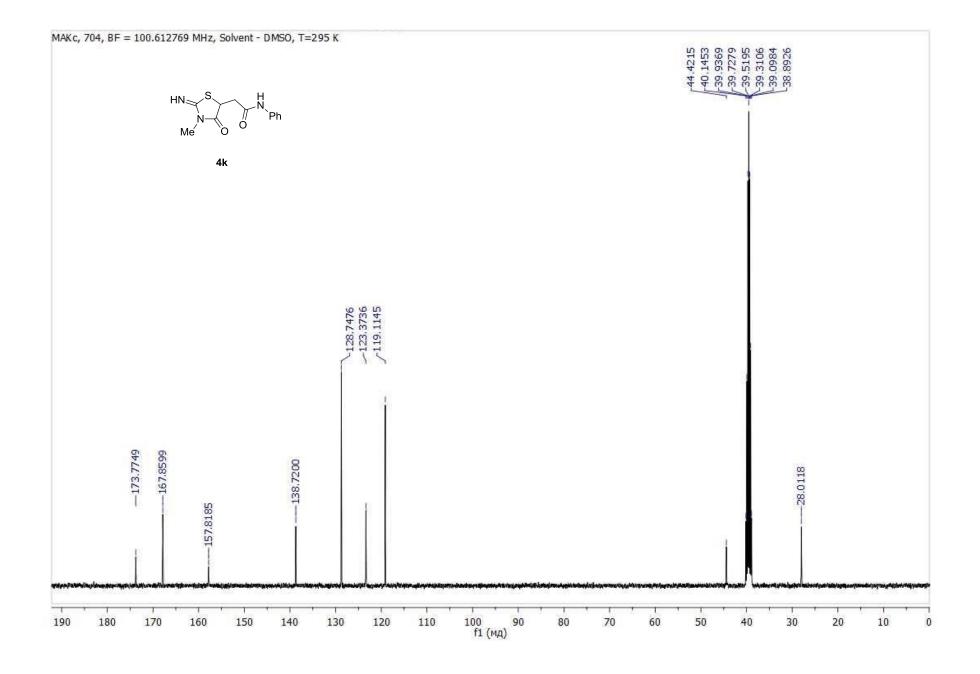


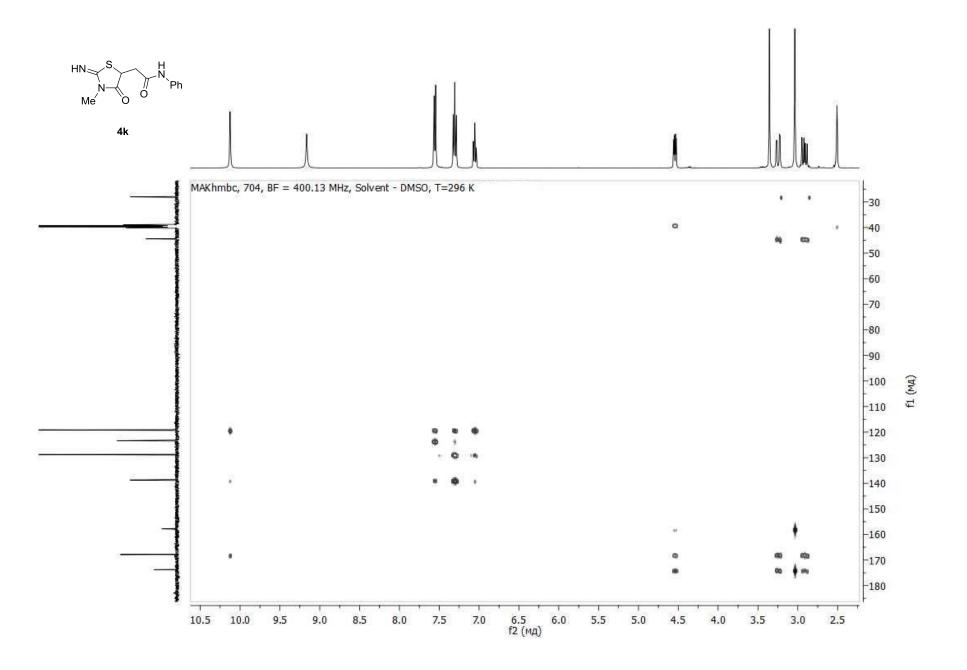


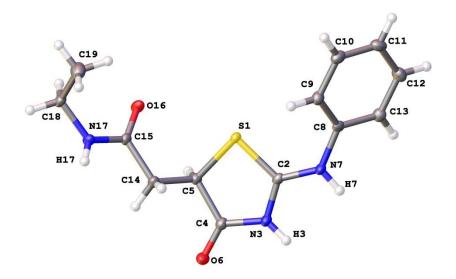




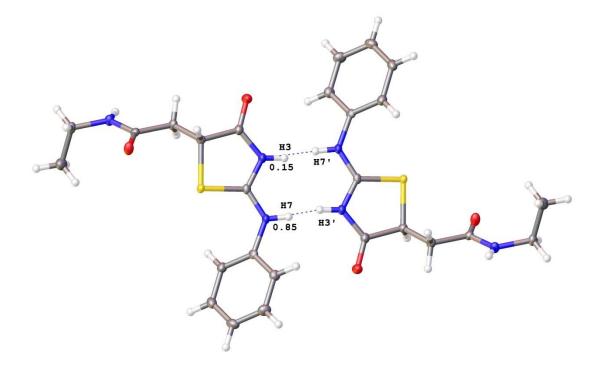
S38







S42



X-ray analysis data for thiazolidine 3b

Figure S1: View to the $C_{13}H_{15}N_3O_2S$ molecule in the structure of **3b**. Carbon, nitrogen, oxygen and sulfur atoms are grey, light-blue, red and yellow, respectively. Thermal ellipsoids are drawn at the 50% probability level.

Figure S2: $(C_{13}H_{15}N_3O_2S)_2$ dimers formation via "jumping" hydrogen atom bonding between equivalent N3 and N7 atoms in the structure of **3b**.

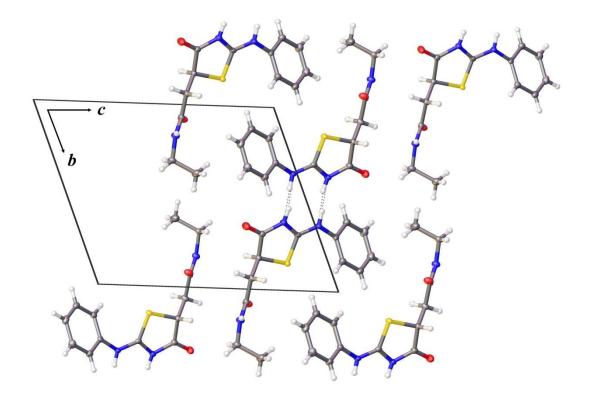


Figure S3: Crystal structure of 3b, projection onto the (100) plane.

For the single crystal X-ray diffraction experiment, a crystal of **3b** was fixed on a micro mount, placed on a Agilent Technologies Supernova diffractometer equipped with an Atlas CCD detector and measured at a temperature of 100 K using micro-focused monochromated CuK α radiation. The unit cell parameters (Table S1) were refined by least square techniques using 11203 reflections in the 2 θ range of 7.14–144.98°. The structure has been solved by the direct methods and refined $R_1 = 0.031$ ($wR_2 = 0.077$) for 2290 unique reflections with $|F_0| \ge 4\sigma_F$ by means of the SHELXL–97 program [2] incorporated in the *OLEX2* program package [3]. The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the 'riding' model approximation, with U_{iso}(H) set to 1.5U_{eq}(C) and C–H 0.96 Å for CH₃ groups, with U_{iso}(H) set to 1.2U_{eq}(C) and C–H 0.97 Å for CH₂ groups, U_{iso}(H) set to 1.2U_{eq}(C) and C–H 0.93 Å for the CH groups. Nitrogen-bound hydrogen atoms were localized objectively with U_{iso}(H) set to 1.2U_{eq}(N). There are two partially occupied positions (0.15 and 0.85 a.p.f.u. for H3 and H7, respectively) of "jumping" hydrogen atom in the structure of **3b** with the total s.o.f. equal to 1.0. Empirical absorption correction was applied in CrysAlisPro [4] program complex using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Compound	3b
Formula	$C_{13}H_{15}N_3O_2S$
Crystal System	Triclinic
<i>a</i> (Å)	4.8155(2)
<i>b</i> (Å)	10.8952(6)
<i>c</i> (Å)	13.2827(6)
α (°)	68.803(5)
β (°)	89.576(4)
γ (°)	82.881(4)
$V(Å^3)$	644.20(6)
Molecular weight	277.34
Space group	<i>P</i> -1
μ (mm ⁻¹)	2.259
Temperature (K)	100(2)
Z	2
$D_{\rm calc}$ (g/cm ³)	1.430
Crystal size (mm ³)	0.26×0.17×0.11
Radiation	CuKα
Total reflections	11203
Unique reflections	2532
Angle range $2\theta(^{\circ})$	7.14–144.98
Reflections with $ F_0 \ge 4\sigma_F$	2290
$R_{\rm int}$	0.0414
R_{σ}	0.0294
$R_1 (F_o \ge 4\sigma_F)$	0.0310
$wR_2(F_o \ge 4\sigma_F)$	0.0770
R_1 (all data)	0.0357
wR_2 (all data)	0.0799
S	1.065
$\rho_{\rm min}, \rho_{\rm max}, e/{\rm \AA}^3$	-0.235, 0.352
$\frac{\rho_{\min}, \rho_{\max}, e/Å^3 -0.235, 0.352}{R_1 = \Sigma F_o - F_c /\Sigma F_o ; wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]\}^{1/2};}$	
$w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP], \text{ where } P = (F_o^2 + 2F_c^2)/3; s = 0$	
$\{\Sigma[w(F_0^2 - F_c^2)]/(n-p)\}^{1/2} \text{ where } n \text{ is the number of } $	
reflections and p is the number of refinement parameters.	

 Table S1: Crystallographic data for 3b.

References

- 1. Marrian, D. H. J. Chem. Soc. 1949, 1797–1799.
- 2. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Cryst.* **2009**, *42*, 339–341.

4. CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013).