Supporting Information

for
 Thiazol-4-one derivatives from the reaction of monosubstituted thioureas with maleimides: structures and factors determining the selectivity and tautomeric equilibrium in solution

Alena S. Pankova ${ }^{1 *}$, Pavel R. Golubev ${ }^{1}$, Alexander F. Khlebnikov ${ }^{1}$, Alexander Yu. Ivanov ${ }^{2}$, and Mikhail A. Kuznetsov ${ }^{1}$

Address: ${ }^{1}$ Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504 Russia and ${ }^{2}$ Centre for Magnetic Resonance, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504 Russia

Email: Alena S. Pankova* - a.pankova@ spbu.ru
*Corresponding author

Experimental procedures, characterization data and copies of the ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ and 2D NMR spectra;

X-ray analysis data for thiazolidine 3b

General information S2
Experimental procedures and characterization data S2
Copies of NMR spectra S11
X-ray analysis for thiazolidine 3b S45
References S48

General information: NMR spectroscopic data were recorded with Bruker Avance 400 and 500 spectrometers (400.13 and 500.03 MHz for ${ }^{1} \mathrm{H}, 100.61$ and 125.76 MHz for ${ }^{13} \mathrm{C}$, respectively) in DMSO- d_{6}. Spectra were referenced to the solvent residual proton ($\delta_{\mathrm{H}}=$ 2.50 ppm) and solvent carbon signals ($\delta_{\mathrm{C}}=39.52 \mathrm{ppm}$). DEPT spectra were used for carbon atom signal assignment. The signals of the aryl ring of the parent thiourea are referred to as "A" and the ones of the aryl ring of the parent maleimide as "B". The diastereotopic protons of the CH_{2} group of thiazolidinones are referred to as H^{a} and H^{b}. Melting points were determined with a Stuart SMP30 instrument. Mass spectra were recorded with a Bruker Maxis HRMS-ESI-qTOF spectrometer (electrospray ionization, ESI, mode). Single crystal X-ray data were obtained using an Agilent Technologies SuperNova Atlas diffractometer. For TLC analysis Alugram SIL G/UV 254 (Macherey-Nagel) plates were used.

Compound 3a

The stirred mixture of N-phenylthiourea ($\mathbf{1 a}, 152 \mathrm{mg}, 1 \mathrm{mmol}$) and N-phenylmaleimide ($\mathbf{2 a}$, $173 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 3 h . Then it was poured into water $(40 \mathrm{~mL})$, the formed precipitate was collected by filtration, washed with water and recrystallized from EtOH/water 1:1. Colorless crystals, yield 250 mg (77%); mp 216-217 ${ }^{\circ} \mathrm{C}$ (dec.) (lit. mp 216.5-217.5 ${ }^{\circ} \mathrm{C}$ (dec.) [1]). According to its NMR spectra, amide 3a exists as a tautomeric mixture of 2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)- N -phenylacetamide (3aI) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)- N-phenylacetamide (3a-A) in a 1:1 ratio. 2D NOESY, ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC and $\mathrm{HMBC},{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC and HMBC spectra were used for signals assignment.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=2.78-2.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.22-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 4.49-$ $4.51(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{SCH}) ; 6.99-7.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) ; 7.14-7.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) ; 7.29-7.39(\mathrm{~m}, 8 \mathrm{H}$, H^{Ar}); 7.52-7.58 (m, $\left.4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) ; 7.70-7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) ; 10.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{N} \underline{H}\right) ; 10.14(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{Ph}^{\mathrm{B}} \mathrm{NH}$); 11.16 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); 11.74 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- $d_{6} / \mathrm{DMSO}-d_{6} 3: 1,0^{\circ} \mathrm{C}$): $\delta=2.84\left(\mathrm{dd}, J=16.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$ of A); $2.94\left(\mathrm{dd}, J=16.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$ of $\left.\mathbf{I}\right) ; 3.35\left(\mathrm{dd}, J=16.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$ of $\left.\mathbf{I}\right) ; 3.44$ (dd, $J=16.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}$ of A); $4.50(\mathrm{dd}, J=10.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}$ of $\mathbf{I}) ; 4.51(\mathrm{dd}, J=$ $11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}$ of A); 7.01-7.06 (m, $4 \mathrm{H}, \mathrm{H}^{\mathrm{oA}}$ of $\mathbf{I}, 2 \mathrm{H}^{p \mathrm{~B}}$); 7.11-7.17 (m, $2 \mathrm{H}, 2 \mathrm{H}^{p \mathrm{~A}}$); 7.26-7.32 (m, $4 \mathrm{H}, 2 \mathrm{H}^{m \mathrm{~B}}$); 7.34-7.37 (m, $2 \mathrm{H}, \mathrm{H}^{m \mathrm{~A}}$ of $\left.\mathbf{I}\right)$; 7.37-7.40 (m, $2 \mathrm{H}, \mathrm{H}^{m \mathrm{~A}}$ of \mathbf{A}); 7.61 $\left(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}\right) ; 7.66\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}\right) ; 7.81\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{A}\right)$;
10.19 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NH}$); $10.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NH}\right) ; 11.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{A}} \mathrm{NH}\right.$ of $\left.\mathbf{A}\right) ; 11.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ of $\mathbf{I}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=39.0\left(\mathrm{CH}_{2}\right) ; 39.6\left(\mathrm{CH}_{2}\right) ; 46.0(\mathrm{SCH}$ of $\mathbf{I}) ; 50.0(\mathrm{SCH}$ of A); $119.1\left(\mathrm{C}^{o \mathrm{~B}}\right) ; 120.4\left(\mathrm{C}^{o \mathrm{~A}}\right.$ of A), $121.6\left(\mathrm{C}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{I}\right) ; 123.4\left(\mathrm{C}^{p \mathrm{~B}}\right) ; 124.6\left(\mathrm{C}^{p \mathrm{~A}}\right) ; 124.7\left(\mathrm{C}^{p \mathrm{~A}}\right)$; $128.7\left(\mathrm{C}^{m \mathrm{~B}}\right) ; 129.0\left(\mathrm{C}^{\mathrm{mA}}\right), 129.2\left(\mathrm{C}^{m \mathrm{~A}}\right) ; 138.7\left(\mathrm{C}^{i}\right) ; 138.8\left(\mathrm{C}^{i}\right) ; 146.3(\mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{N}$ of $\mathbf{I}) ; 160.7$ (br s, $\mathrm{C}=\mathrm{N}$ of \mathbf{A}); $168.0\left(\mathrm{Ph}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}\right.$ of $\left.\mathbf{I}\right) ; 168.5\left(\mathrm{Ph}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}\right.$ of $\left.\mathbf{A}\right) ; 177.9(\mathrm{C}=\mathrm{O}$ of $\mathbf{I}) ; 189.5$ ($\mathrm{C}=\mathrm{O}$ of $\mathbf{A) ~ p p m . ~}$
HRMS (ESI), m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$326.0958, found 326.0962.

Compound 3b

The stirred mixture of N-phenylthiourea ($\mathbf{1 a}, 152 \mathrm{mg}, 1 \mathrm{mmol}$) and N-ethylmaleimide ($\mathbf{2 b}$, $125 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 3 h . Then it was poured into water $(40 \mathrm{~mL})$, the formed precipitate was collected by filtration, washed with water and recrystallized from $\mathrm{EtOH} / \mathrm{iPrOH} /$ dioxane 1:1:0.3. Colorless crystals, yield 195 mg (70%) , mp $224-226{ }^{\circ} \mathrm{C}$ (dec.) (lit. $\mathrm{mp} 237{ }^{\circ} \mathrm{C}$ (dec.) [1]). When this reaction was performed at room temperature (stirring for 4 d [1]) product $\mathbf{3 b}$ was obtained in 67% yield. According to the ${ }^{1} \mathrm{H}$ NMR spectrum, amide $\mathbf{3 b}$ exists as tautomeric mixture of N-ethyl-2-(4-oxo-2-phenylimino-1,3-thiazolidine-5-yl)acetamide (3b-I) and 2-(2-anilino-4,5-dihydro-4-oxo-1,3-thiazol-5-yl)-N-ethylacetamide (3b-A) in a 1:1 ratio. 2D NOESY and ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HMBC spectra were used for signals assignment.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=0.96-1.03\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ; 2.46-2.60\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{a}}\right)$; 2.93-3.10 (m, $6 \mathrm{H}, 2 \mathrm{NCH}_{2}, 2 \mathrm{H}^{\mathrm{b}}$); 4.36-4.38 (m, $2 \mathrm{H}, 2 \mathrm{SCH}$); 6.97-6.99 (m, $2 \mathrm{H}, \mathrm{H}^{o}$ of I); 7.14-7.16 (m, $2 \mathrm{H}, 2 \mathrm{H}^{p}$); 7.34-7.40 (m, $4 \mathrm{H}, \mathrm{H}^{m}$); 7.69-7.71 (m, $2 \mathrm{H}, \mathrm{H}^{o}$ of A); 8.01-8.04 (m, $2 \mathrm{H}, 2 \mathrm{EtNH}$); 11.11 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{PhNH}$ of A); 11.69 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ of I) ppm.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6} 2.5: 1,0{ }^{\circ} \mathrm{C}$): $\delta=0.97\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); $1.01(\mathrm{t}$, $\left.J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.45\left(\mathrm{dd}, J=16.7,12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{a}}\right) ; 3.01-3.13\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{NCH}_{2}, 2\right.$ H^{b}); 4.21-4.27 (m, 2 H, 2 SCH); $6.93\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o}\right.$ of $\left.\mathbf{I}\right) ; 7.02-7.05\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{p}\right)$; 7.21-7.25 (m, $4 \mathrm{H}, \mathrm{H}^{m}$); $7.65\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o}\right.$ of \mathbf{A}); $7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{EtNH}) ; 7.92(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{EtNH}$); 11.00 (s, $1 \mathrm{H}, \mathrm{PhNH}$ of A); 11.68 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ of I) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d $\left.d_{6}\right): \delta=14.6\left(\mathrm{CH}_{3}\right) ; 33.5\left(\mathrm{NCH}_{2}\right) ; 38.0\left(\mathrm{CH}_{2}\right) ; 38.6\left(\mathrm{CH}_{2}\right) ; 46.3$ (SCH); $50.4(\mathrm{SCH}) ; 120.4\left(\mathrm{C}^{o}\right) ; 121.5\left(\mathrm{C}^{o}\right) ; 124.6\left(\mathrm{C}^{p}\right) ; 124.7\left(\mathrm{C}^{p}\right) ; 129.0\left(\mathrm{C}^{m}\right) ; 129.2\left(\mathrm{C}^{m}\right)$; 138.7 ($\mathrm{br} \mathrm{s}, \mathrm{C}^{\mathrm{i}}$); 146.4 (br s, C=N); 168.5 ($\mathrm{EtNHC=O}$); 169.1 ($\mathrm{EtNHC=O}$); 178.0 (C=O); 189.5 (C=O) ppm.

HRMS (ESI), m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$278.0958, found 278.0961.

Compound 3c

The stirred mixture of N-phenylthiourea ($\mathbf{1 a}, \quad 152 \mathrm{mg}, \quad 1 \mathrm{mmol})$ and N -(4ethoxyphenyl)maleimide ($\mathbf{2 c}, 217 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 3 h . Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from $\mathrm{EtOH} /$ water 1:1. Colorless crystals, yield 244 mg (66%) mp $224-225{ }^{\circ} \mathrm{C}$ (dec.). According to the ${ }^{1} \mathrm{H}$ NMR spectrum, amide $\mathbf{3 c}$ exists as tautomeric mixture of N -(4-ethoxyphenyl)-2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)acetamide (3c-I) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-N-(4-ethoxyphenyl)acetamide (3c-A) in a 1:1 ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.29$ (br s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$); 2.74-2.88 (m, $2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{a}}$); 3.18$3.32\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{b}}\right) ; 3.96\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) ; 4.47-4.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{SCH}) ; 6.85\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{H}^{m \mathrm{BB}}\right)$; $7.00\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{I}\right) ; 7.14-7.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{p \mathrm{~A}}\right) ; 7.35-7.47\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) ; 7.70-7.72(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{H}^{\mathrm{oA}}$ of A); $9.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}^{\mathrm{B}} \mathrm{NH}\right.$) ; $10.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}^{\mathrm{B}} \mathrm{NH}\right) ; 11.17$ (br s, $1 \mathrm{H}, \mathrm{NH}$); 11.74 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=14.7\left(\mathrm{CH}_{3}\right) ; 38.8\left(\mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right) ; 39.4\left(\mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right) ; 46.1$ (br s, SCH); $50.1(\mathrm{br} \mathrm{s}, \mathrm{SCH}) ; 63.1\left(\mathrm{OCH}_{2}\right) ; 114.4\left(\mathrm{C}^{m \mathrm{~B}}\right) ; 120.4\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{o \mathrm{~A}}\right) ; 120.6\left(\mathrm{C}^{\mathrm{oB}}\right) ; 121.6(\mathrm{br}$ $\mathrm{s}, \mathrm{C}^{o \mathrm{~A}}$); 124.7 (br s, $\mathrm{C}^{p \mathrm{~A}}$); $129.0\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{m \mathrm{~A}}\right.$); 129.2 (br s, $\mathrm{C}^{m \mathrm{~A}}$); 131.8 (br s, $\mathrm{C}^{i \mathrm{~B}}$); 131.9 (br s, $\mathrm{C}^{i \mathrm{~B}}$); 138.7 (br s, C^{iA}); $154.5\left(\mathrm{C}^{p \mathrm{~B}}\right) ; 167.4$ (br s, $\mathrm{Ar}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}$); 167.9 (br s, $\mathrm{Ar}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}$); 177.9 (br s, $\mathrm{C}=\mathrm{O}$); 189.5 ($\mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{O}$) ppm. Other carbon signals cannot be clearly detected.

HRMS (ESI), $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 370.1220$, found 370.1213

Compound 3d

The stirred mixture of N-phenylthiourea ($\mathbf{1 a}, \quad 152 \mathrm{mg}, \quad 1 \mathrm{mmol})$ and N -(4nitrophenyl)maleimide (2d, $218 \mathrm{mg}, 1 \mathrm{mmol}$) in EtOH (5 mL) was refluxed for 3 h . Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from $\mathrm{EtOH} /$ water 1:1. Colorless crystals, yield 331 mg (89%) , mp $226-228{ }^{\circ} \mathrm{C}$ (dec.). According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide 3d exists as tautomeric mixture of N-(4-nitrophenyl)-2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)acetamide (3d-I) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)- N -(4-nitrophenyl)acetamide (3d-A) in a 1:1 ratio. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=2.90-3.03\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{a}}\right) ; 3.29-3.41\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{b}}\right) ; 4.52-$ $4.54(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{SCH}) ; 7.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{I}\right) ; 7.14-7.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{p \mathrm{~A}}\right) ; 7.33-7.41$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{m \mathrm{~A}}\right) ; 7.71\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{A}\right) ; 7.76-7.83\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}\right) ; 8.19-8.23(\mathrm{~m}, 4$
$\mathrm{H}, 4 \mathrm{H}^{\mathrm{mB}}$) ; $10.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}^{\mathrm{B}} \mathrm{NH}\right.$) ; $10.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}^{\mathrm{B}} \mathrm{NH}\right.$) ; 11.18 (br s, $1 \mathrm{H}, \mathrm{NH}$); 11.78 (br s, $1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=39.1$ (br s, CH_{2}); 45.7 (br s, SCH); 49.6 (br s, SCH); $118.8\left(\mathrm{C}^{o \mathrm{~B}}\right) ; 120.4\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{o \mathrm{~A}}\right) ; 121.6\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{o \mathrm{~A}}\right) ; 124.7\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{p \mathrm{~A}}\right) ; 125.0\left(\mathrm{C}^{m \mathrm{~B}}\right) ; 129.0(\mathrm{br} \mathrm{s}$, $\mathrm{C}^{m \mathrm{~A}}$); $129.2\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{m \mathrm{~A}}\right) ; 138.7\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{i \mathrm{~A}}\right) ; 142.3\left(\mathrm{C}^{\mathrm{pB}}\right) ; 144.8\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{\mathrm{iB}}\right) ; 144.9\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{i \mathrm{~B}}\right)$; 169.2 (br s, $\mathrm{Ar}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}$); 169.7 ($\mathrm{br} \mathrm{s}, \mathrm{Ar}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}$); 177.7 (br s, C=O); 189.3 (br s, $\mathrm{C}=\mathrm{O}$) ppm. Other carbon signals cannot be clearly detected.
HRMS (ESI), m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$393.0628, found 393.0617.

Compound 3e

The stirred mixture of N-phenylthiourea ($\mathbf{1 a}, 152 \mathrm{mg}, 1 \mathrm{mmol}$) and N-cyclohexylmaleimide ($\mathbf{2 e}, 179 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 6 h , then stirred at rt for 24 h . Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from $\mathrm{EtOH} /$ water 1:1. Colorless crystals, yield 186 mg (56%) mp $237-239{ }^{\circ} \mathrm{C}$ (dec.). According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide 3 e exists as tautomeric mixture of N-cyclohexyl-2-(4-oxo-2-phenylimino-1,3-thiazolidin-5-yl)acetamide (3e-I) and 2-(2-anilino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-N-cyclohexylacetamide (3e-A) in a 1:1 ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.11-1.23$ (m, $10 \mathrm{H}, \mathrm{c}-\mathrm{Hex}$); 1.52-1.70 (m, $10 \mathrm{H}, \mathrm{c}-\mathrm{Hex}$); 2.45-2.60 (m, 2 H, $2 \mathrm{H}^{\mathrm{a}}$); 2.92-3.05 (m, $2 \mathrm{H}, 2 \mathrm{H}^{\mathrm{b}}$); 3.49 (br s, $2 \mathrm{H}, 2 \mathrm{NCH}$); 4.35-4.38 (m, 2 H, 2 SCH); 6.97-6.99 (m, $2 \mathrm{H}, \mathrm{H}^{o}$ of I); 7.14 (br s, $2 \mathrm{H}, \mathrm{H}^{p}$); 7.36 (br s, $4 \mathrm{H}, \mathrm{H}^{m}$); 7.69 (br s, 2 $\mathrm{H}, \mathrm{H}^{o}$ of A); 7.88-7.93 (m, $2 \mathrm{H}, 2 \mathrm{c}-\mathrm{HexNH}$); 11.14 (br s, $1 \mathrm{H}, \mathrm{NH}$); 11.64 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=24.4$ (c-Hex-C $\mathrm{C}^{3,5}$); 25.2 (c-Hex-C C^{4}); 32.3 (c-Hex-C $\mathrm{C}^{2,6}$); 38.0 (br s, CH_{2}); 38.7 (br s, CH_{2}); 46.3 (br s, SCH); 47.7 (NCH); 50.5 (br s, SCH); 120.4 (C^{o}); $121.5\left(\mathrm{C}^{o}\right) ; 124.6\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{p}\right) ; 129.0\left(\mathrm{C}^{m}\right) ; 129.2\left(\mathrm{C}^{m}\right) ; 138.7$ (br s, C^{i}); 167.8 (br s, cHexNHC=O); 168.3 (br s, c-HexNHC=O); 178.0 (br s, C=O); 189.6 (br s, C=O) ppm.
HRMS (ESI), m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 332.1427$, found 332.1429.

Compound 3f

The stirred mixture of N-(4-methoxyphenyl)thiourea ($\mathbf{1 b}, 182 \mathrm{mg}, 1 \mathrm{mmol}$) and N phenylmaleimide ($\mathbf{2 a}, 260 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 7 h , then stirred at rt for 24 h . Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from iPrOH. Colorless crystals, yield 230 mg
(65\%), mp 208-209 ${ }^{\circ} \mathrm{C}$ (dec.). According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide $3 f$ exists as tautomeric mixture of 2-(2-(4-methoxyphenyl)imino-4-oxo-1,3-thiazolidin-5-yl)-N-phenylacetamide (3fI) and 2-(2-(4-methoxyphenyl)amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)- N-phenylacetamide (3f-A) in a 1:1 ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=2.75-2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.21-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 3.74(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 4.44-4.48(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{SCH}) ; 6.92-7.07\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) ; 7.26-$ $7.32\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}^{m \mathrm{~B}}\right) ; 7.53\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}\right) ; 7.57\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}\right) ; 7.61(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{oA}}$ of \mathbf{A}); $10.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NH}\right.$); $10.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NH}\right.$); $11.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH); 11.58 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right): \delta=39.2\left(\mathrm{CH}_{2}\right) ; 39.7\left(\mathrm{CH}_{2}\right) ; 50.1(\mathrm{SCH}) ; 55.2\left(\mathrm{CH}_{3}\right) ; 55.3$ $\left(\mathrm{CH}_{3}\right) ; 114.1\left(\mathrm{C}^{m \mathrm{~A}}\right) ; 114.5\left(\mathrm{C}^{m \mathrm{~A}}\right) ; 119.07\left(\mathrm{C}^{o \mathrm{~B}}\right) ; 119.10\left(\mathrm{C}^{o \mathrm{~B}}\right) ; 122.0\left(\mathrm{C}^{o \mathrm{~A}}\right) ; 123.4\left(\mathrm{C}^{p \mathrm{~B}}\right) ; 123.6$ (br s, $\left.\mathrm{C}^{\text {oA }}\right) ; 128.7\left(\mathrm{C}^{m \mathrm{~B}}\right) ; 131.9\left(\mathrm{C}^{i \mathrm{~A}}\right) ; 138.7\left(\mathrm{C}^{\mathrm{iB}}\right) ; 138.8\left(\mathrm{C}^{\mathrm{iB}}\right) ; 156.3\left(\mathrm{C}^{p \mathrm{~A}}\right) ; 156.8\left(\mathrm{C}^{p \mathrm{~A}}\right) ; 168.1$ $\left(\mathrm{Ph}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}\right)$; $168.6\left(\mathrm{Ph}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}\right)$; $177.1(\mathrm{C}=\mathrm{O})$; $189.2(\mathrm{C}=\mathrm{O})$ ppm. Other carbon signals cannot be clearly detected.

HRMS (ESI), m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 356.1063$, found 356.1077.

Compound 3g

The stirred mixture of N-(4-nitrophenyl)thiourea ($\mathbf{1 c}, 197 \mathrm{mg}, 1 \mathrm{mmol}$) and N phenylmaleimide ($\mathbf{2 a}, 260 \mathrm{mg}, 1.5 \mathrm{mmol}$) in EtOH (6 mL) was refluxed for 8 h , then stirred at rt for 48 h . Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from iPrOH . Pale yellow crystals, yield 270 mg (73%), mp 220-222 ${ }^{\circ} \mathrm{C}$ (dec.). According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide $\mathbf{3 g}$ exists as tautomeric mixture of 2-(2-(4-nitrophenyl)imino-4-oxo-1,3-thiazolidin-5-yl)- N phenylacetamide (3g-I) and 2-(2-(4-nitrophenyl)amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-N-phenylacetamide ($\mathbf{3 g}-\mathbf{A}$) in a $\sim 1.8: 1$ ratio at $23{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.967\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.26-3.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right)$; 4.58-4.60 (m, $1 \mathrm{H}, \mathrm{SCH}$); 7.02-7.06 (m, $1 \mathrm{H}, \mathrm{H}^{p \mathrm{~B}}$); 7.16 (br s, $1.28 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}$ of I); 7.27-7.31 (m, $2 \mathrm{H}, \mathrm{H}^{m \mathrm{~B}}$); 7.53-7.55 (m, $2 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}$); 7.98 (br s, $0.72 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}$ of A); 8.24 (br s, $2 \mathrm{H}, \mathrm{H}^{m \mathrm{~A}}$); 10.15 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NH}$); $11.70(\mathrm{br} \mathrm{s}, 0.36 \mathrm{H}, \mathrm{NH}$ of A); $12.02(\mathrm{br} \mathrm{s}, 0.64 \mathrm{H}, \mathrm{NH}$ of I) ppm.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- $d_{6} / \mathrm{DMSO}-d_{6} 3: 1,-20^{\circ} \mathrm{C}$): $\delta=2.91$ (dd, $J=16.5,11.7 \mathrm{~Hz}, 0.39$ $\mathrm{H}, \mathrm{H}^{\mathrm{a}}$ of A); $3.04\left(\mathrm{dd}, J=16.9,10.6 \mathrm{~Hz}, 0.61 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$ of $\left.\mathbf{I}\right) ; 3.38-3.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 4.53-4.56$ $(\mathrm{m}, 0.39 \mathrm{H}, \mathrm{SCH}$ of $\mathbf{A}) ; 4.59(\mathrm{dd}, J=10.6,2.9 \mathrm{~Hz}, 0.61 \mathrm{H}, \mathrm{SCH}$ of $\mathbf{I}) ; 7.01-7.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}^{p \mathrm{~B}}\right) ; 7.19\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1.22 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{I}\right) ; 7.25-7.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{m \mathrm{~B}}\right) ; 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1.22$ $\mathrm{H}, \mathrm{H}^{o \mathrm{~B}}$ of I); $7.66\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.78 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}\right.$ of A); $8.09\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.78 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$ of $\left.\mathbf{A}\right)$;
$8.25\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1.22 \mathrm{H}, \mathrm{H}^{m \mathrm{~A}}\right.$ of $\left.\mathbf{I}\right) ; 8.32\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.78 \mathrm{H}, \mathrm{H}^{m \mathrm{~A}}\right.$ of A); $10.27(\mathrm{~s}, 0.61$ $\mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{N} \underline{\mathrm{H}}$ of $\left.\mathbf{I}\right) ; 10.30\left(\mathrm{~s}, 0.39 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{N} \underline{H}\right.$ of $\left.\mathbf{A}\right) ; 11.81(\mathrm{br} \mathrm{s}, 0.39 \mathrm{H}, \mathrm{NH}$ of $\mathbf{A}) ; 12.17$ (br s, $0.61 \mathrm{H}, \mathrm{NH}$ of $\mathbf{I}) \mathrm{ppm}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 120^{\circ} \mathrm{C}$): $\delta=2.91\left(\mathrm{dd}, J=16.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.29(\mathrm{dd}, J$ $\left.=16.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 4.58(\mathrm{dd}, J=9.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}) ; 7.06\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{p \mathrm{~B}}\right)$; 7.27-7.31 (m, $2 \mathrm{H}, \mathrm{H}^{m \mathrm{~B}}$); $7.44\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{o \mathrm{~A}}\right.$); 7.52-7.54 (m, $2 \mathrm{H}, \mathrm{H}^{o \mathrm{~B}}$); $8.20(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, \mathrm{H}^{m \mathrm{~A}}\right) ; 9.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NH}\right) ; 11.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=45.5(\mathrm{br} \mathrm{s}, \mathrm{SCH}) ; 119.1\left(\mathrm{C}^{o \mathrm{~B}}\right) ; 122.1\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{\mathrm{oA}}\right)$; $123.4\left(\mathrm{C}^{p \mathrm{~B}}\right) ; 125.2\left(\mathrm{C}^{m \mathrm{~A}}\right) ; 128.8\left(\mathrm{C}^{m \mathrm{~B}}\right) ; 138.7\left(\mathrm{C}^{\mathrm{iB}}\right) ; 143.5(\mathrm{br} \mathrm{s}, \mathrm{C}) ; 167.9\left(\mathrm{br} \mathrm{s}, \mathrm{Ph}^{\mathrm{B}} \mathrm{NHC}=\mathrm{O}\right)$ ppm. Other carbon signals cannot be clearly detected.
HRMS (ESI), m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$393.0628, found 393.0627.

Compound 3h

The stirred mixture of N-cyclohexylthiourea ($\mathbf{1 d}, 158 \mathrm{mg}, 1 \mathrm{mmol}$) and N-phenylmaleimide ($\mathbf{2 a}, 173 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 4 h . Then it was poured into water (40 mL), the formed precipitate collected by filtration, washed with water and recrystallized from $\mathrm{EtOH} /$ water 1:1. Colorless crystals, yield 264 mg (80%), mp 209-210 ${ }^{\circ} \mathrm{C}$. When this reaction was performed at rt (stirring for 48 h) amide $\mathbf{3 h}$ was obtained in 91% yield (pure enough without recrystallization). According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide $\mathbf{3 h}$ exists as tautomeric mixture of 2-(2-cyclohexylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)- N -phenylacetamide (3h-A) and 2-(2-cyclohexylimino-4-oxo-1,3-thiazolidin-5-yl)- N -phenylacetamide ($\mathbf{3 h}$-I) in a $\sim 4: 1$ ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=1.12-1.33$ (m, 5 H , c-Hex); $1.55-1.58$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{c}-\mathrm{Hex}$); 1.69-1.71 (m, 2 H, c-Hex); 1.86-1.88 (m, 2 H, c-Hex); 2.67 (dd, $J=16.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}$); 3.23 (br s, $0.2 \mathrm{H}, \mathrm{NCH}$ of I); 3.25 (dd, $J=16.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}$); 3.79 (br s, 0.8 H , NCH of A); $4.36(\mathrm{dd}, J=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}) ; 7.04\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{p}\right) ; 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}$, H^{m}); $7.55\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o}\right) ; 9.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{c}-\mathrm{HexNH}$ of $\mathbf{A}) ; 9.68$ (br s, 0.2 H, NH of I); $10.09(\mathrm{~s}, 0.8 \mathrm{H}, \mathrm{PhNH}$ of A); $10.12(\mathrm{~s}, 0.2 \mathrm{H}, \mathrm{PhNH}$ of I) ppm.
${ }^{13}$ C NMR of 3h-A (100 MHz, DMSO- d_{6}): $\delta=24.3\left(\mathrm{c}-\right.$ Hex-C $\left.{ }^{3,5}\right) ; 24.9\left(\mathrm{c}-\mathrm{Hex}^{4} \mathrm{C}^{4}\right) ; 31.9(\mathrm{c}-$ Hex- ${ }^{2,6}$); $40.1\left(\mathrm{CH}_{2}\right)$; $50.6(\mathrm{SCH}) ; 53.7(\mathrm{NCH}) ; 119.1\left(\mathrm{C}^{o}\right) ; 123.3\left(\mathrm{C}^{p}\right) ; 128.7\left(\mathrm{C}^{m}\right) ; 138.9$ (C^{i}); 168.7 ($\mathrm{PhNHC}=\mathrm{O}$); $178.4(\mathrm{C}=\mathrm{N}) ; 188.3(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.
HRMS (ESI), m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 332.1427$, found 332.1429.

Compound 3i

The stirred mixture of N-cyclohexylthiourea ($\mathbf{1 d}, 158 \mathrm{mg}, 1 \mathrm{mmol}$) and N-ethylmaleimide ($\mathbf{2 b}, 125 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 4 h . Then it was poured into water $(40 \mathrm{~mL})$, the resulting solution was saturated with NaCl and extracted with EtOAc ($3 \times$ 10 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvents were evaporated under reduced pressure until 5 mL remained. Upon cooling to $\sim 0^{\circ} \mathrm{C}$ the formed precipitate was collected by filtration, washed with cold EtOAc ($\sim 3 \mathrm{~mL}$) and dried. Colorless crystals, yield 210 mg (74%), mp 161-163 ${ }^{\circ} \mathrm{C}$. According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide 3i exists as tautomeric mixture of 2-(2-cyclohexylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)- N -ethylacetamide (3iA) and 2-(2-cyclohexylimino-4-oxo-1,3-thiazolidin-5-yl)-N-ethylacetamide (3i-I) in a $\sim 4: 1$ ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.00\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of A) and $1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}$, CH_{3} of \mathbf{I}), 3 H in sum; 1.09-1.18 (m, 1 H , c-Hex); 1.21-1.32 (m, 4 H , c-Hex); 1.55-1.58 (m, 1 H, c-Hex); 1.68-1.71 (m, 2 H, c-Hex); 1.84-1.86 (m, 2 H, c-Hex); 2.36 (dd, $J=15.9,11.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 2.96\left(\mathrm{dd}, J=15.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 3.03-3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 3.18(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}$, NCH of I); 3.76 (br s, $0.8 \mathrm{H}, \mathrm{NCH}$ of A); 4.23 (dd, $J=11.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}$); 7.99-8.02 (m, $1 \mathrm{H}, \mathrm{EtNH}) ; 9.12$ (d, $J=7.0 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{NH}$ of \mathbf{A}); 9.63 (br s, 0.2 H , NH of I) ppm.
${ }^{13} \mathrm{C}$ NMR of 3i-A $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=14.6\left(\mathrm{CH}_{3}\right) ; 24.3\left(\mathrm{c}-\mathrm{Hex}-\mathrm{C}^{3,5}\right) ; 24.9\left(\mathrm{c}-\mathrm{Hex}-\mathrm{C}^{4}\right)$; 31.9 (c-Hex-C ${ }^{2,6}$); $33.5\left(\mathrm{NCH}_{2}\right) ; 39.1\left(\mathrm{CH}_{2}\right) ; 50.9(\mathrm{SCH}) ; 53.7(\mathrm{NCH}) ; 169.2(\mathrm{EtNHC=O}) ;$ 178.4 ($\mathrm{C}=\mathrm{N}$); 188.4 (C=O) ppm.

HRMS (ESI), m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$284.1427, found 284.1433.

Compound 3j

The stirred mixture of N-ethylthiourea ($\mathbf{1 e}, 156 \mathrm{mg}, 1.5 \mathrm{mmol}$) and N-phenylmaleimide (2a, $260 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{EtOH}(6 \mathrm{~mL})$ was refluxed for 3.5 h . After cooling, the formed precipitate was collected by filtration and washed with cold EtOH ($1-2 \mathrm{~mL}$). Colorless crystals, yield $276 \mathrm{mg}(66 \%), \mathrm{mp} 223-224{ }^{\circ} \mathrm{C}$ (dec.). According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide 3j exists as tautomeric mixture of 2-(2-ethylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)- N phenylacetamide ($\mathbf{3 j}-\mathbf{A}$) and 2-(2-ethylimino-4-oxo-1,3-thiazolidin-5-yl)- N -phenylacetamide ($\mathbf{3 j} \mathbf{j}$ I) in a $\sim 4: 1$ ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.13\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{H}, \mathrm{CH}_{3}\right.$ of A); $1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $0.6 \mathrm{H}, \mathrm{CH}_{3}$ of I); $2.68\left(\mathrm{dd}, J=16.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.21-3.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}^{\mathrm{b}}\right) ; 4.36$ (dd, $J=11.2,3.4 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{SCH}$ of I); $4.38(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{SCH}$ of A); 7.04 (t,
$\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{p}\right) ; 7.28-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{m}\right) ; 7.55\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o}\right) ; 9.20(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $0.8 \mathrm{H}, \mathrm{EtNH}$ of \mathbf{A}); $9.62(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}, \mathrm{NH}$ of $\mathbf{I}) ; 10.10(\mathrm{~s}, 0.8 \mathrm{H}, \mathrm{PhNH}$ of $\mathbf{A}) ; 10.12(\mathrm{~s}, 0.2 \mathrm{H}$, PhNH of I) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $\left.d_{6}\right)$: $\delta=14.1\left(\mathrm{CH}_{3}\right.$ of $\left.\mathbf{A}\right) ; 14.3\left(\mathrm{CH}_{3}\right.$ of $\left.\mathbf{I}\right) ; 39.2\left(\mathrm{CH}_{2}\right.$ of $\left.\mathbf{I}\right) ; 39.3$ $\left(\mathrm{CH}_{2}\right.$ of $\left.\mathbf{A}\right)$; $39.8\left(\mathrm{CH}_{2}\right.$ of $\left.\mathbf{I}\right) ; 40.1\left(\mathrm{CH}_{2}\right.$ of $\left.\mathbf{A}\right) ; 50.6(\mathrm{SCH}$ of $\mathbf{I}) ; 50.8(\mathrm{SCH}$ of $\mathbf{A}) ; 119.1\left(\mathrm{C}^{o}\right)$; $123.3\left(\mathrm{C}^{p}\right) ; 128.7\left(\mathrm{C}^{m}\right) ; 138.8\left(\mathrm{C}^{i}\right) ; 168.7(\mathrm{PhNHC}=\mathrm{O}) ; 179.2(\mathrm{C}=\mathrm{N}) ; 188.2(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.
HRMS (ESI), $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$300.0777, found 300.0791.

Compound 3k

The stirred mixture of N-methylthiourea ($\mathbf{1 f}, 135 \mathrm{mg}, 1.5 \mathrm{mmol}$) and N-phenylmaleimide ($\mathbf{2 a}$, $260 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{EtOH}(6 \mathrm{~mL})$ was refluxed for 4 h . Then it was poured into water $(40 \mathrm{~mL})$, the resulting solution was saturated with NaCl and extracted with EtOAc ($3 \times$ 10 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated under reduced pressure until 5 mL remained. Upon cooling to $0{ }^{\circ} \mathrm{C}$, a precipitate began to form, which was isolated by slow addition of hexane $(1-2 \mathrm{~mL})$ and filtration. Pale yellow crystals, yield 198 mg (50%), mp 197-198 ${ }^{\circ} \mathrm{C}$. According to ${ }^{1} \mathrm{H}$ NMR spectrum, amide $\mathbf{3 k}$ exists as tautomeric mixture of 2-(2-methylamino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-Nphenylacetamide (3k-A) and 2-(2-methylimino-4-oxo-1,3-thiazolidin-5-yl)- N phenylacetamide ($3 \mathbf{k}-\mathrm{I}$) in a $\sim 4: 1$ ratio.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=2.68\left(\mathrm{dd}, J=16.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 2.88(\mathrm{~s}, 0.6 \mathrm{H}, \mathrm{Me}$ of $\mathbf{I}) ; 2.95(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2.4 \mathrm{H}, \mathrm{Me}$ of $\mathbf{A}) ; 3.26\left(\mathrm{dd}, J=16.5,3.5 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$ of $\left.\mathbf{A}\right) ; 3.28$ (dd, $J=16.6,3.6 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}$ of I); 4.36 (dd, $J=11.2,3.6 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{SCH}$ of I); 4.39 (dd, J $=11.2,3.5 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{SCH}$ of A); $7.04\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{p}\right) ; 7.28-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{m}\right) ; 7.55$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o}$); $9.13(\mathrm{q}, J=4.4 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{MeNH}$ of \mathbf{A}); 9.49 (br s, $0.2 \mathrm{H}, \mathrm{NH}$ of \mathbf{I}); 10.11 (s, $0.8 \mathrm{H}, \mathrm{PhNH}$ of A); 10.13 ($\mathrm{s}, 0.2 \mathrm{H}, \mathrm{PhNH}$ of I) ppm .
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right)$: $\delta=30.3\left(\mathrm{CH}_{3}\right.$ of $\left.\mathbf{I}\right) ; 30.9\left(\mathrm{CH}_{3}\right.$ of $\left.\mathbf{A}\right) ; 40.1\left(\mathrm{CH}_{2}\right.$ of $\left.\mathbf{A}\right) ; 51.0$ $(\mathrm{SCH}$ of $\mathbf{I}) ; 51.1(\mathrm{SCH}$ of $\mathbf{A}) ; 119.1\left(\mathrm{C}^{o}\right) ; 123.3\left(\mathrm{C}^{p}\right) ; 128.8\left(\mathrm{C}^{m}\right) ; 138.9\left(\mathrm{C}^{i}\right) ; 168.7$ ($\mathrm{PhNHC}=\mathrm{O}$); $180.1(\mathrm{C}=\mathrm{N}) ; 188.2(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.
HRMS (ESI), $m / z:$ calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$264.0801, found 264.0811.

2-(3-Ethyl-2-imino-4-oxo-1,3-thiazolidin-5-yl)- N -phenylacetamide (4j). The mixture of N ethylthiourea ($\mathbf{1} \mathbf{e}, 156 \mathrm{mg}, 1.5 \mathrm{mmol}$) and N-phenylmaleimide ($\mathbf{2 a}, 260 \mathrm{mg}, 1.5 \mathrm{mmol}$) in EtOH (6 mL) was stirred at rt overnight. The precipitate was filtered and washed with cold

EtOH ($1-2 \mathrm{~mL}$). Yield $284 \mathrm{mg}(68 \%)$. According to ${ }^{1} \mathrm{H}$ NMR spectrum, a mixture of $\mathbf{4 j}$ and amide $\mathbf{3 j}$ (ratio $\mathbf{3 j} \mathbf{j} \mathbf{A} / \mathbf{3 j} \mathbf{- I} \sim 4: 1$) in the ratio 1:0.6 was obtained.
${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 j}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=1.09\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.89(\mathrm{dd}, J=16.5$, $\left.9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.22\left(\mathrm{dd}, J=16.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 3.58-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.52(\mathrm{dd}$, $J=9.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}) ; 7.04\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{p}\right) ; 7.28-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{m}\right) ; 7.54(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\circ}$); $9.16(\mathrm{~s}, 1 \mathrm{H},=\mathrm{NH}) ; 10.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhNH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 j}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=12.2\left(\mathrm{CH}_{3}\right) ; 36.2\left(\mathrm{NCH}_{2}\right) ; 39.1\left(\mathrm{CH}_{2}\right) ; 44.2(\mathrm{SCH})$; $119.1\left(\mathrm{C}^{o}\right) ; 123.4\left(\mathrm{C}^{p}\right) ; 128.7\left(\mathrm{C}^{m}\right) ; 138.7\left(\mathrm{C}^{i}\right) ; 157.0(\mathrm{C}=\mathrm{NH}) ; 167.8(\mathrm{PhNHC}=\mathrm{O}) ; 173.5$ ($\mathrm{C}=\mathrm{O}$) ppm.
HRMS (ESI), m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$300.0777, found 300.0772.

2-(2-Imino-3-methyl-4-oxo-1,3-thiazolidin-5-yl)- N -phenylacetamide (4k). The mixture of N-methylthiourea ($\mathbf{(f}, 135 \mathrm{mg}, 1.5 \mathrm{mmol}$) and N-phenylmaleimide ($\mathbf{2 a}, 260 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{EtOH}(7 \mathrm{~mL})$ was stirred at rt overnight. The precipitate was filtered and washed with cold EtOH ($1-2 \mathrm{~mL}$). Colorless crystals, yield 260 mg (66%), mp 174-175 ${ }^{\circ} \mathrm{C} .{ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC spectrum was used for signals assignment.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=2.90\left(\mathrm{dd}, J=16.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ; 3.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$; $3.23\left(\mathrm{dd}, J=16.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) ; 4.53(\mathrm{dd}, J=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}) ; 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{p}\right) ; 7.28-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{m}\right) ; 7.54\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{o}\right) ; 9.16(\mathrm{~s}, 1 \mathrm{H},=\mathrm{NH}) ; 10.11(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{PhNH}$) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right): \delta=28.0\left(\mathrm{CH}_{3}\right) ; 39.1\left(\mathrm{CH}_{2}\right) ; 44.4(\mathrm{SCH}) ; 119.1\left(\mathrm{C}^{o}\right) ; 123.4$ $\left(\mathrm{C}^{p}\right) ; 128.7\left(\mathrm{C}^{m}\right) ; 138.7\left(\mathrm{C}^{i}\right) ; 157.8(\mathrm{C}=\mathrm{NH}) ; 167.8(\mathrm{PhNHC}=\mathrm{O}) ; 173.8(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.
HRMS (ESI), m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$286.0621, found 286.0633.

MAK, $213, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=301 \mathrm{~K}$

3a

MAKc, $213, B F=100.612769 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

3b

MAKc, $214, B F=100.612769 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

3b

$$
\begin{array}{lll}
& \infty & 0 \\
& \infty & \sim \\
\infty & \infty & 0 \\
\infty & 0 & \infty
\end{array}
$$

MAK, 677, BF $=400.13 \mathrm{MHz}$, Solvent $-\mathrm{DMSO}, \mathrm{T}=298 \mathrm{~K}$

3c

3c

,	1	1	1	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

MAK, $676, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=298 \mathrm{~K}$

3d

\qquad 9bT' 0

(3d

MAK, $680, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

$3 e$

MAK, $679, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=296 \mathrm{~K}$

$3 f$

$3 f$

MAK, $691, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=296 \mathrm{~K}$

$3 \mathbf{g}$

$3 \mathbf{g}$

MAK, $542, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

3h

MAKc, $542, B F=100.612769 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

3h

MAK, $548, \mathrm{BF}=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

$3 i$

MAKc, $548, \mathrm{BF}=100.612769 \mathrm{MHz}$, Solvent - DMSO, $T=299 \mathrm{~K}$

MAK， $708, B F=400.13 \mathrm{MHz}$ ，Solvent－DMSO，$T=295 \mathrm{~K}$

3j
 NNNパラ

MAKc, $708, B F=100.612769 \mathrm{MHz}$, Solvent - DMSO, $T=297 \mathrm{~K}$

ORQ, $64, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=294 \mathrm{~K}$

ORQC, $123, B F=100.612769 \mathrm{MHz}$, Solvent $-\mathrm{DMSO}, \mathrm{T}=295 \mathrm{~K}$

MAK, $700, B F=400.13 \mathrm{MHz}$, Solvent $-\mathrm{DMSO}, \mathrm{T}=296 \mathrm{~K}$

3k

ORQc, $312, \mathrm{BF}=100.612769 \mathrm{MHz}$, Solvent $-\mathrm{DMSO}, \mathrm{T}=297 \mathrm{~K}$

MAK, $704, B F=400.13 \mathrm{MHz}$, Solvent - DMSO, $T=295 \mathrm{~K}$

MAKc, $704, B F=100.612769 \mathrm{MHz}$, Solvent - DMSO, $T=295 \mathrm{~K}$

X-ray analysis data for thiazolidine 3b

Figure S1: View to the $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ molecule in the structure of 3b. Carbon, nitrogen, oxygen and sulfur atoms are grey, light-blue, red and yellow, respectively. Thermal ellipsoids are drawn at the 50% probability level.

Figure S2: $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{2}$ dimers formation via "jumping" hydrogen atom bonding between equivalent N 3 and N 7 atoms in the structure of $\mathbf{3 b}$.

Figure S3: Crystal structure of 3b, projection onto the (100) plane.
For the single crystal X-ray diffraction experiment, a crystal of $\mathbf{3 b}$ was fixed on a micro mount, placed on a Agilent Technologies Supernova diffractometer equipped with an Atlas CCD detector and measured at a temperature of 100 K using micro-focused monochromated $\mathrm{CuK} \alpha$ radiation. The unit cell parameters (Table S1) were refined by least square techniques using 11203 reflections in the 2θ range of $7.14-144.98^{\circ}$. The structure has been solved by the direct methods and refined $R_{1}=0.031\left(w R_{2}=0.077\right)$ for 2290 unique reflections with $\left|F_{0}\right| \geq 4 \sigma_{F}$ by means of the SHELXL-97 program [2] incorporated in the OLEX2 program package [3]. The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the 'riding' model approximation, with $\mathrm{U}_{\text {iso }}(\mathrm{H})$ set to $1.5 \mathrm{U}_{e q}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H} 0.96 \AA$ for CH_{3} groups, with $\mathrm{U}_{\text {iso }}(\mathrm{H})$ set to $1.2 \mathrm{U}_{e q}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H} 0.97 \AA$ for CH_{2} groups, $\mathrm{U}_{\text {iso }}(\mathrm{H})$ set to $1.2 \mathrm{U}_{e q}(\mathrm{C})$ and C-H $0.93 \AA$ for the CH groups. Nitrogen-bound hydrogen atoms were localized objectively with $\mathrm{U}_{\text {iso }}(\mathrm{H})$ set to $1.2 \mathrm{U}_{e q}(\mathrm{~N})$. There are two partially occupied positions (0.15 and 0.85 a.p.f.u. for H3 and H7, respectively) of "jumping" hydrogen atom in the structure of 3b with the total s.o.f. equal to 1.0. Empirical absorption correction was applied in CrysAlisPro [4] program complex using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Table S1: Crystallographic data for 3b.

Compound	3b	
Formula	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	
Crystal System	Triclinic	
a (Å)	4.8155(2)	
b (Å)	10.8952(6)	
$c(\AA)$	13.2827(6)	
$\alpha\left({ }^{\circ}\right)$	68.803(5)	
$\beta\left({ }^{\circ}\right)$	89.576(4)	
$\gamma\left({ }^{\circ}\right.$	82.881(4)	
$V\left(\AA^{3}\right)$	644.20(6)	
Molecular weight	277.34	
Space group	P-1	
$\mu\left(\mathrm{mm}^{-1}\right)$	2.259	
Temperature (K)	100(2)	
Z	2	
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.430	
Crystal size (mm^{3})	$0.26 \times 0.17 \times 0.11$	
Radiation	$\mathrm{Cu} K \alpha$	
Total reflections	11203	
Unique reflections	2532	
Angle range $2 \theta\left({ }^{\circ}\right)$	7.14-144.98	
Reflections with $\left\|F_{\mathrm{o}}\right\| \geq 4 \sigma_{F}$	2290	
$R_{\text {int }}$	0.0414	
R_{σ}	0.0294	
$R_{1}\left(\left\|F_{\mathrm{o}}\right\| \geq 4 \sigma_{F}\right)$	0.0310	
$w R_{2}\left(\left\|F_{\mathrm{o}}\right\| \geq 4 \sigma_{F}\right)$	0.0770	
R_{1} (all data)	0.0357	
$w R_{2}$ (all data)	0.0799	
S	1.065	
$\rho_{\text {min }}, \rho_{\text {max }}, e / \AA^{3}$	-0.235, 0.352	
$\begin{aligned} & R_{1}=\Sigma \\| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\right\| / F_{\mathrm{o}} \mid ; w R_{2}=\left\{\Sigma \left[w \left(F_{\mathrm{o}}^{2}-\right.\right.\right. \\ & \left.\left.\left.F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2} ; \\ & w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(\mathrm{a} P)^{2}+\mathrm{b} P\right], \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 ; s= \\ & \left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)\right] /(n-p)\right\}^{1 / 2} \text { where } n \text { is the number of } \\ & \text { reflections and } p \text { is the number of refinement parameters. } \end{aligned}$		

References

1. Marrian, D. H. J. Chem. Soc. 1949, 1797-1799.
2. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Cryst. 2009, 42, 339-341.
4. CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013).
