Supporting Information

for

Tandem processes promoted by a hydrogen shift in 6arylfulvenes bearing acetalic units at *ortho* position: a combined experimental and computational study

Mateo Alajarin¹, Marta Marin-Luna¹, Pilar Sanchez-Andrada*² and Angel Vidal¹

Address: ¹Departamento de Química Orgánica, Universidad de Murcia, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Espinardo, 30100 Murcia (Spain) and ²University Centre of Defence at the Spanish Air Force Academy, Base Aerea de San Javier, C/ Coronel López Peña s/n, 30720, Santiago de la Ribera, Murcia, Spain

Email: Pilar Sanchez-Andrada - pilar.sanchez@cud.upct.es *Corresponding author

Experimental part

General Methods

All melting points are uncorrected. Infrared (IR) spectra were recorded as Nujol emulsions or neats. HNMR spectra were recorded in CDCl₃, CD₂Cl₂ or DMSO- d_6 at 300 or 400 MHz. NMR spectra were recorded in CDCl₃, CD₂Cl₂ or DMSO- d_6 at 75 or 100 MHz. The chemical shifts are expressed in ppm, relative to Me₄Si at $\delta = 0.00$ ppm for ¹H, while the chemical shifts for ¹³C are reported relative to the resonance of CDCl₃ $\delta = 77.1$ ppm, CD₂Cl₂ $\delta = 54.0$ ppm or DMSO- $d_6 = 39.5$ ppm. Mass spectra were recorded on a HPLC/MS TOF 6220 Agilent Technologies apparatus.

Materials

2-(1,3-Dioxolan-2-yl)benzaldehyde (**4a**) [1], 2-(1,3-dioxolan-2-yl)-4-methoxybenzaldehyde (**4b**) [2], 6-(1,3-dioxolan-2-yl)-1,3-benzodioxole-5-carboxaldehyde (**4c**) [3], 2-(1,3-dioxan-2-yl)benzaldehyde (**4d**) [4], 6-(1,3-dioxan-2-yl)-1,3-benzodioxole-

5-carboxaldehyde (**4f**) [4], 2-(dimethoxymethyl)benzaldehyde (**23a**) [5], 2-(dimethoxymethyl)-4-methoxybenzaldehyde (**23b**) [6], 6-(dimethoxymethyl)-1,3-benzodioxole-5-carboxaldehyde (**23c**) [7], 2-(diethoxymethyl)benzaldehyde (**23d**) [8] and 2-(1,3-dioxolan-2-yl-2*d*)benzaldehyde [9] were prepared following published experimental procedures.

Preparation of 2-(1,3-dioxan-2-yl)-4-methoxybenzaldehyde (4e)

n-BuLi [5.8 mL, 2.6 M in hexane, 14.4 mmol] was added dropwise to a solution of 2-(2-bromo-5-methoxyphenyl)-1,3-dioxane (3.4 g, 12.0 mmol) in anhydrous tetrahydrofuran (50 mL), at -78 °C under an atmosphere of nitrogen. The solution was stirred at -78 °C for 30 min. Then, a solution of N,N-dimethylformamide (1.12 mL, 14.4 mmol) in tetrahydrofuran (10 mL) was added dropwise. The reaction mixture was stirred at -78 °C for 15 min, warmed to room temperature and the stirring was continued for 3 h. After quenching the reaction by the addition of water (25 mL), the mixture was extracted with ethyl acetate (2 × 30 mL). The combined organic layers were washed with water (2 × 100 mL) and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the resulting oil was purified by silica gel column chromatography, using hexanes/diethyl ether (3:2, v) as eluent.

2-(1,3-Dioxan-2-yl)-4-methoxybenzaldehyde 4e: (65%); mp 105-107 °C (colourless prims, diethyl ether);
$$v_{\text{max}}$$
 (Neat)/cm⁻¹ 1684 (vs), 1601 (s), 1089 (s); δ_{H} (400 MHz, CDCl₃)1.44-1.49 (1H, m), 2.19-2.28 (1H, m), 3.87 (3H, m), 4.00-4.07 (2H, m), 4.24-4.28 (2H, m), 6.08 (1H, m), 6.94 (1H, dd, $J = 2.8$, 8.4Hz), 7.23 (1H, d, $J = 2.8$ Hz), 7.85 (1H, d, $J = 8.4$ Hz), 10.3 (1H, s); δ_{C} (100 MHz, CDCl₃) 25.7, 55.6, 67.2, 99.1, 112.1, 114.6, 126.8 (s), 133.0, 142.1 (s), 163.9 (s), 190.8 (s); HRMS (ESI) m/z calcd for $C_{12}H_{15}O_{4}$ [M+H]⁺ 223.0965; found: 223.0963.

Procedure for the preparation of fulvenes 3 and 24

To a solution of the appropriate benzaldehyde **4** or **23** (3 mmol) in dry methanol (15 mL) were added cyclopentadiene (0.4 g, 6 mmol) and pyrrolidine (0.43 g, 6 mmol). The reaction mixture was stirred at room temperature overnight. Then, the reaction mixture was acidified with acid acetic (1 mL), diluted with water (40 mL) and extracted with diethyl ether (3 \times 20 mL). The organic layer was washed with brine (2 \times 10 mL), dried over

anhydrous MgSO₄, filtered and evaporated under reduced pressure. The resulting residue was purified by silica gel column chromatography.

Fulvene 3a: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (65%); red oil; v_{max} (Neat)/cm⁻¹ 1626 (vs), 1600 (s), 1572 (s); δ_{H} (300 MHz, DMSO-d₆, 100 °C) 3.95-4.09 (4H, m), 5.99 (1H, s), 6.37-6.43 (2H, m), 6.50-6.53 (1H, m), 6.61-6.64 (1H, m), 7.39-7.49 (3H, m), 7.58-7.61 (1H, m), 7.67 (1H, s); δ_{C} (75 MHz, DMSO-d₆, 100 °C) 64.2, 100.8, 119.9, 125.9, 126.0, 127.8, 128.0, 130.2, 130.7, 134.2, 134.6 (s), 135.0, 136.4 (s), 145.3 (s); HRMS (ESI) m/z calcd for C₁₅H₁₅O₂ [M+H]⁺ 227.1067; found: 227.1067.

Fulvene 3b: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (75%); red oil; v_{max} (Neat)/cm⁻¹ 1601 (vs), 1496 (s), 1287 (s); δ_{H} (400 MHz, CDCl₃) 3.87 (3H, s), 4.04-4.17 (4H, m), 6.02 (1H, s), 6.36-6.37 (1H, m), 6.53-6.55 (2H, m), 6.64-6.65 (1H, m), 6.95 (1H, dd, J = 2.8, 8.4 Hz), 7.21 (1H, d, J = 2.8 Hz), 7.53 (1H, d, J = 8.4 Hz), 7.60 (1H, s); δ_{C} (100 MHz, CDCl₃) 55.4, 65.4, 101.5, 111.6, 114.6, 120.9, 126.5, 128.1 (s), 130.8, 133.9, 134.7, 135.6, 138.4 (s), 145.2 (s), 160.3 (s); HRMS (ESI) m/z calcd for $C_{16}H_{17}O_3$ [M+H]⁺ 257.1172; found: 257.1182.

Fulvene 3c: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (65%); red oil; $v_{\rm max}$ (Neat)/cm⁻¹ 1602 (m), 1502 (vs), 1484 (vs); $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.01-4.16 (4H, m), 5.97 (2H, s), 6.01 (1H, s), 6.32-6.35 (1H, m), 6.52-6.53 (2H, m), 6.63-6.65 (1H, m), 7.04 (1H, s), 7.14 (1H, s), 7.52 (1H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 65.4, 101.1, 101.6, 106.7, 111.8, 120.6, 126.6, 129.9 (s), 131.1, 131.6 (s), 135.1, 145.7 (s), 148.1 (s), 148.3 (s); HRMS (ESI) m/z calcd for $C_{16}H_{15}O_4$ [M+H]⁺ 271.0965; found: 271.0976.

Fulvene 3d: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (56%); red oil; v_{max} (Neat)/cm⁻¹ 1602 (w), 1466 (m), 1376 (m); δ_{H} (400 MHz, CDCl₃) 1.44-1.47 (1H, m), 2.20-2.32 (1H, m), 3.98 (2H, td, J = 2.4, 12.0 Hz), 4.28 (2H, dd, J = 4.0, 10.8 Hz), 5.67 (1H, s), 6.38 (1H, dt, J = 1.7, 5.2 Hz), 6.47-6.49 (1H, m), 6.56-6.58 (1H, m), 6.62-6.65 (1H, m), 7.38-7.40 (2H, m), 7.46-7.48 (1H, m), 7.63 (1H, s), 7.67-7.69 (1H, m); δ_{C} (100 MHz, CDCl₃) 25.8, 67.6, 100.2, 121.4,

126.3, 126.4, 128.7, 128.9, 131.6, 132.0, 134.8, 134.9 (s), 136.2, 137.4 (s), 146.5 (s); HRMS (ESI) m/z calcd for $C_{16}H_{17}O_2$ [M+H]⁺ 241.1223; found: 241.1217.

Fulvene 3e: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (84%); red oil; v_{max} (Neat)/cm⁻¹ 1602 (vs), 1498 (s), 1466 (m); δ_{H} (300 MHz, CDCl₃) 1.44-1.49 (1H, m), 2.20-2.33 (1H, m), 3.87 (3H, s), 3.99 (2H, td, J = 1.8, 12.0 Hz), 4.28 (2H, dd, J = 4.8, 10.8 Hz), 5.67 (1H, s), 6.38 (1H, dt, J = 1.5, 5.1 Hz), 6.52-6.56 (2H, m), 6.62-6.66 (1H, m), 6.93 (1H, dd, J = 2.7, 8.4 Hz), 7.25 (1H, d, J = 2.7 Hz), 7.48 (1H, d, J = 8.4 Hz), 7.55 (1H, s); δ_{C} (75 MHz, CDCl₃) 25.7, 55.5, 67.6, 99.7, 111.3, 114.9, 121.1, 126.5, 127.3 (s), 130.8, 133.7, 134.5, 136.0, 139.1 (s), 145.1 (s), 160.4 (s); HRMS (ESI) m/z calcd for C₁₇H₁₉O₃ [M+H]⁺ 271.1329; found: 271.1339.

Fulvene 3f: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (74%); red oil; $v_{\rm max}$ (Neat)/cm⁻¹ 1602 (vs), 1503 (vs), 1486 (vs); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.40-1.45 (1H, m), 2.14-2.30 (1H, m), 3.96 (2H, td, J=1.8, 12.3 Hz), 4.25 (2H, dd, J=4.8, 10.8 Hz), 5.63 (1H, s), 5.98 (2H, s), 6.37-6.39 (1H, m), 6.55-6.57 (2H, m), 6.66-6.68 (1H, m), 7.05 (1H, s), 7.23 (1H, s), 7.51 (1H, s); $\delta_{\rm C}$ (75 MHz, CDCl₃) 25.5, 67.3, 99.2, 101.4, 106.9, 111.3, 120.6, 126.4, 128.6 (s), 130.9, 132.7 (s), 134.8, 135.4, 145.4 (s), 147.6 (s), 148.2 (s); HRMS (ESI) m/z calcd for C₁₇H₁₇O₄ [M+H]⁺ 285.1121; found: 285.1131.

Fulvene 24a: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (68%); red oil; v_{max} (Neat)/cm⁻¹ 1626 (vs), 1599 (vs), 1484 (vs); δ_{H} (400 MHz, CDCl₃) 3.31 (6H, s), 5.52 (1H, s), 6.37-6.39 (1H, m), 6.46-6.49 (1H, m), 6.54-6.56 (1H, m), 6.62-6.65 (1H, m), 7.37-7.40 (2H, m), 7.48-7.50 (1H, m), 7.62-7.63 (2H, m); δ_{C} (100 MHz, CDCl₃) 53.0, 101.5, 121.1, 126.5, 127.0, 128.4, 131.5, 132.2, 135.0, 135.3 (s), 136.2, 136.8 (s), 146.3 (s); HRMS (ESI) m/z calcd for C₁₄H₁₃O [M+H-OCH₄]⁺ 197.0966; found: 197.0959.

Fulvene 24b: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (71%); red oil; v_{max} (Neat)/cm⁻¹ 1600 (vs), 1493 (vs), 1305 (vs); δ_{H} (400 MHz, CDCl₃) 3.33 (6H, s), 3.87 (3H, s), 5.55 (1H, s), 6.37-6.39 (1H, m), 6.53-6.54 (2H, m), 6.64-6.65 (1H, m), 6.93 (1H, dd, J = 2.4, 8.4 Hz),

7.23 (1H, d, J = 2.3 Hz), 7.52 (1H, d, J = 8.4 Hz), 7.60 (1H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 53.0, 55.4, 101.2, 112.6, 114.0, 120.8, 126.6, 127.8 (s), 130.7, 133.8, 134.6, 136.0, 138.7 (s), 145.0 (s), 160.1 (s); HRMS (ESI) m/z calcd for $C_{15}H_{10}O_2$ [M+H-OCH₄]⁺ 227.1062; found: 227.1067.

Fulvene 24c: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (81%); red oil; v_{max} (Neat)/cm⁻¹ 1601 (m), 1502 (s), 1482 (vs); δ_{H} (400 MHz, CDCl₃) 3.30 (6H, s), 5.50 (1H, s), 6.01 (2H, s), 6.34-6.36 (1H, m), 6.51-6.53 (2H, m), 6.63-6.67 (1H, m), 7.04 (1H, s), 7.16 (1H, s), 7.52 (1H, s); δ_{C} (100 MHz, CDCl₃) 52.9, 100.7, 101.6, 107.6, 111.8, 120.6, 126.8, 129.3 (s), 131.0, 132.2 (s), 135.0, 135.6, 145.3 (s), 147.5 (s), 148.2 (s); HRMS (ESI) m/z calcd for $C_{15}H_{13}O_3$ [M+H-OCH₄]⁺ 241.0865; found: 241.0867.

Fulvene 24d: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (74%); red oil; v_{max} (Neat)/cm⁻¹ 1626 (m), 1481 (m), 1373 (m); δ_{H} (400 MHz, CDCl₃) 1.21 (6H, t, J = 7.2 Hz), 3.50-3.63 (4H, m), 5.67 (1H, s), 6.39-6.40 (1H, m), 6.47-6.49 (1H, m), 6.55-6.57 (1H, m), 6.63-6.65 (1H, m), 7.37-7.40 (2H, m), 7.48-7.50 (1H, m), 7.67-7.69 (2H, m); δ_{C} (100 MHz, CDCl₃) 15.2, 61.3, 99.7, 121.2, 126.4, 126.7, 128.3, 128.5, 131.4, 132.1, 134.9, 135.2 (s), 136.5, 137.8 (s), 146.1 (s); HRMS (ESI) m/z calcd for $C_{15}H_{15}O$ [M+H-OC₂H₆]⁺ 211.1123; found: 211.1124.

Procedure for the preparation of benz[f]indenes 5, 6, 25 and 26

A solution of the fulvene **3** or **24** (1 mmol) in dimethylsulfoxide (5 mL) was heated by microwave at 120 °C and at 120 W for 20–40 min. Then, the reaction mixture was poured into water (10 mL) and extracted with dichloromethane (3 \times 10 mL). The organic layer was washed with water (3 \times 10 mL) and dried over anhydrous MgSO₄. The solvent was evaporated and the resulting material was purified by column chromatography on silica gel.

Benz[f]indenes 5a and 6a: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v); (34%).

9-(2-Hydroxy)ethoxybenz[f]indene (5a): yellow oil; v_{max} (Neat)/cm⁻¹ 3384 (s), 1683 (m), 1579 (s); δ_{H} (300 MHz, CDCl₃) 2.36 (1H, br s), 3.60 (2H, t, J

= 2.0 Hz), 4.05 (2H, t, J = 4.4 Hz), 4.33 (2H, t, J = 4.4 Hz), 6.61 (1H, dt, J = 2.0, 5.6 Hz), 6.95 (1H, dt, J = 2.0, 5.6 Hz), 7.44-7.49 (2H, m), 7.60 (1H, s), 7.85-7.87 (1H, m), 8.19-8.22 (1H, m); $\delta_{\rm C}$ (75 MHz, CDCl₃) 36.5, 62.5, 73.8, 115.1, 121.8, 124.9, 125.7, 126.1 (s), 128.1, 128.7 (s), 132.2, 134.9 (s), 135.3, 145.2 (s), 149.4 (s); HRMS (ESI) m/z calcd for $C_{15}H_{15}O_2$ [M+H]⁺ 227.1067; found: 227.1067.

4-(2-Hydroxy)ethoxybenz[f]indene (6a): yellow oil; v_{max} (Neat)/cm⁻¹ 3384 (m), 1579 (m), 1398 (m); δ_{H} (300 MHz, CDCl₃) 2.09 (1H, br s), 3.56-3.57 (2H, m), 4.05 (2H, t, J = 5.0 Hz), 4.30 (2H, t, J = 5.0 Hz), 6.59 (1H, dt, J = 2.1, 5.7 Hz), 7.16-7.19 (1H, m), 7.41-7.50 (2H, m), 7.69 (1H, s), 7.82-7.85 (1H, m), 8.20-8.23 (1H, m); δ_{C} (75 MHz, CDCl₃) 38.7, 62.5, 75.8, 118.6, 121.8, 125.2, 125.3, 127.1 (s), 128.0, 128.5, 133.3 (s) 133.4 (s), 135.0, 143.0 (s), 146.6 (s); HRMS (ESI) m/z calcd for C₁₅H₁₅O₂ [M+H]⁺ 227.1067; found: 227.1068.

Benz[f]indenes 5b and 6b: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v), (30%).

9-(2-Hydroxy)ethoxy-7-methoxybenz[f]indene (5b): yellow oil; v_{max} (Neat)/cm⁻¹ 3454 (m), 1618 (vs), 1500 (s); δ_{H} (300 MHz, CDCl₃) 2.00 (1H, br s), 3.59 (2H, t, J = 1.8 Hz), 3.94 (3H, s), 4.05 (2H, t, J = 5.0 Hz), 4.30 (2H, t, J = 5.0 Hz), 6.53-6.56 (1H, m), 6.91-6.94 (1H, m), 7.13 (1H, dd, J = 2.7, 9.0 Hz), 7.53 (1H, s), 7.54 (1H, d, J = 2.7 Hz), 7.76 (1H, d, J = 9.0 Hz); δ_{C} (75 MHz, CDCl₃) 36.4, 55.4, 62.6, 73.6, 100.6, 115.1, 118.1, 127.3 (s), 129.6, 129.9 (s), 130.3 (s), 132.2, 134.0, 143.1 (s), 148.7 (s), 157.4 (s); HRMS (ESI) m/z calcd for $C_{16}H_{17}O_3$ [M+H]⁺ 257.1172; found: 257.1179.

4-(2-Hydroxy)ethoxy-6-methoxybenz[f]indene (6b): yellow oil; v_{max} (Neat)/cm⁻¹ 3423 (s), 1617 (vs), 1501 (s); δ_{H} (300 MHz, CDCl₃) 1.86 (1H, br s), 3.53-3.54 (2H, m), 3.95 (3H, s), 4.05 (2H, t, J = 4.8 Hz), 4.28 (2H, t, J = 4.8 Hz), 6.58-6.61 (1H, m), 7.11 (1H, dd, J = 2.7, 9.0 Hz), 7.15-7.17 (1H, m), 7.54 (1H, d, J = 2.7 Hz), 7.62 (1H, s), 7.73 (1H, d, J = 9.0 Hz); δ_{C} (75 MHz, CDCl₃) 38.6, 55.4, 62.6, 75.5, 100.2, 117.8, 118.4, 128.1 (s), 128.4, 128.9 (s), 129.5, 134.0 (s), 135.2, 140.5 (s), 145.9 (s), 157.5 (s); HRMS (ESI) m/z calcd for C₁₆H₁₇O₃ [M+H]⁺ 257.1172; found: 257.1182.

Benz[f]indenes 5c and 6c: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v), (45%).

9-(2-Hydroxy)ethoxy-6,7-(methylenedioxy)benz[f]indene (5c): yellow oil; v_{max} (Neat)/cm⁻¹ 3317 (m), 1498 (s), 1298 (s); δ_{H} (400 MHz, CDCl₃) 2.11 (1H, br s), 3.56 (2H, t, J = 2.0 Hz), 4.04 (2H, t, J = 4.8 Hz), 4.29 (2H, t, J = 4.8 Hz), 6.04 (2H, s), 6.55 (1H, dt, J = 2.0, 5.6 Hz), 6.89 (1H, dt, J = 2.0, 5.6 Hz), 7.14 (1H, s), 7.43 (1H, s), 7.51 (1H, s); δ_{C} (100 MHz, CDCl₃) 36.4, 62.5, 73.6, 98.7, 101.1, 104.3, 114.3, 122.7 (s), 127.9 (s), 131.8 (s), 132.1, 134.3, 144.0 (s), 147.2 (s), 147.5 (s), 149.2 (s); HRMS (ESI) m/z calcd for $C_{16}H_{15}O_{4}$ [M+H]⁺ 271.0965; found: 271.0973.

OH 4-(2-Hydroxy)ethoxy-6,7-(methylenedioxy)benz[f]indene (6c): yellow oil; v_{max} (Neat)/cm⁻¹ 3503 (m), 1498 (m), 1462 (vs); δ_{H} (400 MHz, CDCl₃) 2.01 (1H, br s), 3.50-3.52 (2H, m), 4.04 (2H, t, J = 4.8 Hz), 4.24 (2H, t, J = 4.8 Hz), 6.04 (2H, s), 6.52 (1H, dd, J = 2.4, 5.6 Hz), 7.11-7.12 (2H, m), 7.51-7.52 (2H, m); δ_{C} (100 MHz, CDCl₃) 38.6, 62.5, 75.6, 98.5, 101.1, 104.2, 117.9, 123.6 (s), 128.4, 130.3 (s), 132.3 (s), 134.0, 141.8 (s), 146.4 (s), 147.2 (s), 147.4 (s); HRMS (ESI) m/z calcd for C₁₆H₁₅O₄ [M+H]⁺ 271.0965; found: 271.0972.

Benz[f]indenes 5d and 6d: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (57%).

9-(3-Hydroxy)propoxybenz[f]indene (5d): white oil; v_{max} (Neat)/cm⁻¹ 3373 (s), 1692 (m), 1579 (vs); δ_{H} (300 MHz, CDCl₃) 2.02 (1H, br s), 2.17 (2H, quint, J = 5.7 Hz), 3.63 (2H, t, J = 2.1 Hz), 4.03 (2H, t, J = 6.0 Hz), 4.40 (2H, t, J = 6.0 Hz), 6.61 (1H, dt, J = 2.1, 5.5 Hz), 6.95 (1H, dt, J = 2.1, 5.5 Hz), 7.42-7.48 (2H, m), 7.57 (1H, s), 7.83-7.86 (1H, m), 8.16-8.19 (1H, m); δ_{C} (75 MHz, CDCl₃) 33.1, 36.6, 61.0, 70.9, 114.9, 121.9, 124.8, 125.6, 126.2 (s), 128.0, 128.3 (s), 132.2, 134.9 (s), 135.3, 145.3 (s), 149.7 (s); HRMS (ESI) m/z calcd for $C_{16}H_{17}O_{2}$ [M+H]⁺ 241.1223; found: 241.1230.

OH **4-(3-Hydroxy)propoxybenz**[f]indene (6d) white oil; v_{max} (Neat)/cm⁻¹ 3386 (m), 1581 (m), 1363 (vs); δ_{H} (300 MHz, CDCl₃) 2.18 (2H, quint, J = 6.0 Hz), 2.30 (1H, br s), 3.55 (2H, br s), 4.04 (2H, t, J = 6.0 Hz), 4.34

(2H, t, J = 6.0 Hz), 6.58 (1H, dt, J = 2.1, 5.4 Hz), 7.17-7.19 (1H, m), 7.42-7.51 (2H, m), 7.67 (1H, s), 7.82-7.85 (1H, m), 8.19-8.22 (1H, m); $\delta_{\rm C}$ (75 MHz, CDCl₃) 33.1, 38.6, 61.0, 73.0, 118.3, 121.9, 125.0, 125.2, 127.0 (s), 127.8, 128.6, 133.0 (s), 133.3 (s), 134.7, 142.9 (s), 146.9 (s); HRMS (ESI) m/z calcd for $C_{16}H_{17}O_2$ [M+H]⁺ 241.1223; found: 241.1231.

Benz[f]indenes 5e and 6e: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (46%).

9-(3-Hydroxy)propoxy-7-methoxybenz[f]-OH indene (5e) and 4-(3-hydroxy)propoxy-6-methoxybenz[f]indene (6e): white oil; v_{max} (Neat)/cm⁻¹ 3417 (m), 1617 (vs), 1500 (vs); δ_{H} (300 MHz, CDCl₃) 2.10-2.21 (4H, m)_{minor+major}, 2.49 (2H, br s)_{minor+major}, 3.50-3.51 (2H, m)_{minor+major}, 3.57 (2H, t, J = 2.1 Hz)_{major}, 3.94 (3H, s)_{major}, 3.95 (3H, s)_{minor}, 4.00-4.03 (4H, m)_{minor+major}, 4.28-4.35 (4H, m)_{minor+major}, 6.51-6.58 (2H, m)_{minor+major}, 6.91 (1H, dt, J = 2.1, 5.4 Hz)_{major}, 7.10-7.16 (2H, m)_{minor+major}, 7.49-7.51 (4H, m)_{minor+major}, 7.57 (1H, s)_{minor}, 7.71 (1H, d, J = 9.0 Hz)_{minor}, 7.73 (1H, d, J = 9.0 Hz)_{major}; δ_{C} (75 MHz, CDCl₃) 33.1, 36.4, 38.5, 55.3, 60.7, 60.8, 70.3, 72.5, 100.3, 100.5, 114.7, 117.6, 117.8, 118.1, 127.1 (s), 127.9 (s), 128.5, 128.8 (s), 129.2 (s), 129.3, 129.5, 130.1 (s), 132.1, 133.6 (s), 133.9, 134.9, 140.4 (s), 143.1 (s), 146.0 (s), 148.8 (s), 157.1 (s), 157.3 (s); HRMS (ESI) m/z calcd for C₁₇H₁₈NaO₃ [M+Na]⁺ 293.1154; found: 293.1153.

Benz[f]indenes 5f and 6f: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (53%).

9-(3-Hydroxy)propoxy-6,7-(methylenedioxy)benz[f]indene (5f): white oil; v_{max} (Neat)/cm⁻¹ 3382 (m), 1617 (m), 1497 (s); δ_{H} (300 MHz, CDCl₃) 2.09-2.18 (3H, m), 3.57 (2H, t, J = 1.8 Hz), 4.00 (2H, t, J = 6.0 Hz), 4.33 (2H, t, J = 6.0 Hz), 6.02 (2H, s), 6.53 (1H, dt, J = 1.8, 5.7 Hz), 6.88 (1H, dt, J = 1.8, 5.7 Hz), 7.12 (1H, br s), 7.40 (1H, s), 7.47 (1H, s); δ_{C} (75 MHz, CDCl₃) 33.1, 36.5, 60.9, 70.6, 98.8, 101.0, 104.2, 122.7 (s), 127.6 (s), 131.8 (s), 132.1, 134.3, 144.1 (s), 147.0 (s), 147.4 (s), 149.5 (s); HRMS (ESI) m/z calcd for $C_{17}H_{16}NaO_4$ [M+Na]⁺ 307.0946; found: 307.0950.

4-(3-Hydroxy)propoxy-6,7-(methylenedioxy)benz[f]indene (6f): white oil; v_{max} (Neat)/cm⁻¹ 3384 (m), 1498 (s), 1460 (vs); δ_{H} (300 MHz, CDCl₃) 1.86 (1H, br s), 2.16 (2H, quint, J = 5.7 Hz), 3.49-3.51 (2H, m), 4.03 (2H, t, J = 5.7 Hz), 4.28 (2H, t, J = 5.7 Hz), 6.03 (2H, s), 6.51 (1H, dt, J = 2.1, 5.7 Hz), 7.10-7.12 (2H, m), 7.48 (1H, s), 7.50 (1H, s); δ_{C} (75 MHz, CDCl₃) 33.1, 38.6, 61.1, 72.9, 98.7, 101.1, 104.1, 117.8, 123.6 (s), 128.5, 130.3 (s), 132.2 (s), 133.8, 141.8 (s), 146.7 (s), 147.2 (s), 147.3 (s); HRMS (ESI) m/z calcd for C₁₇H₁₆NaO₄ [M+Na]⁺ 307.0946; found: 307.0947.

Benz[f]indenes 25a and 26a: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (54%).

9-Methoxybenz[f]indene (25a): white oil; v_{max} (Neat) /cm⁻¹ 1632 (m), 1579 (vs), 1499 (s); δ_{H} (300 MHz, CDCl₃) 3.64 (2H, t, J = 2.1 Hz), 4.10 (3H, s), 6.62 (1H, dt, J = 1.5, 5.4 Hz), 6.95 (1H, dt, J = 1.5, 5.7 Hz), 7.44-7.47 (2H, m), 7.57 (1H, s), 7.83-7.86 (1H, m), 8.19-8.22 (1H, m); δ_{C} (75 MHz, CDCl₃) 36.6, 60.2, 114.7, 122.1, 124.7, 125.7, 126.1 (s), 127.7 (s), 127.9, 132.3, 134.9 (s), 135.3, 145.4 (s), 150.9 (s); HRMS (ESI) m/z calcd for C₁₄H₁₃O [M+H]⁺ 197.0966; found: 197.0960.

4-Methoxybenz[f]indene (26a): $\delta_{\rm H}$ (300 MHz, CDCl₃) 3.57-3.59 (2H, br s), 4.13 (3H, s), 6.60 (1H, dt, J=1.5, 4.2 Hz), 7.22-7.25 (1H, m), 7.47-7.52 (2H, m), 7.69 (1H, s), 7.85-7.89 (1H, m), 8.24-8.28 (1H, m); $\delta_{\rm C}$ (75 MHz, CDCl₃) 38.5, 62.2, 118.1, 122.0, 124.9, 125.3, 126.9 (s), 127.8, 128.7, 132.4 (s), 133.4 (s), 134.5, 143.1 (s), 148.1 (s). HRMS (ESI) m/z calcd for C₁₄H₁₃O [M+H]⁺ 197.0966; found: 197.0962.

Benz[f]indenes 25b and 26b: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (42%).

7,9-Dimethoxybenz[f]indene (25b): white oil; v_{max} (Neat)/cm⁻¹ 1617 (s), 1501 (m), 1465 (m); δ_{H} (400 MHz, CDCl₃) 3.64 (2H, t, J = 2.0 Hz), 3.96 (3H, s), 4.11 (3H, s), 6.54-6.57 (1H, m), 6.92-6.94 (1H, m), 7.13 (1H, dd, J = 2.8, 8.8 Hz), 7.51 (1H, d, J = 2.8 Hz), 7.51 (1H, s), 7.75 (1H, d, J = 8.8 Hz); δ_{C} (100 MHz, CDCl₃) 36.5, 55.4, 59.9, 100.5, 114.5, 118.1, 127.0 (s), 128.5 (s), 129.4, 130.2 (s), 132.2, 134.0, 143.2 (s), 150.1 (s), 157.2 (s); HRMS (ESI) m/z calcd for $C_{15}H_{15}O_{2}$ [M+H]⁺ 227.1072; found: 227.1062.

4,6-Dimethoxybenz[f]indene (26b): white oil; v_{max} (Neat)/cm⁻¹ 1617 (vs), 1502 (s), 1466 (s); δ_{H} (300 MHz, CDCl₃) 3.52-3.54 (2H, m), 3.96 (3H, s), 4.09 (3H, s), 6.58 (1H, dt, J = 2.1, 5.7 Hz), 7.11 (1H, dd, J = 2.7, 9.0 Hz), 7.17-7.20 (1H, m), 7.51 (1H, d, J = 2.7 Hz), 7.60 (1H, s), 7.73 (1H, d, J = 9.0 Hz); δ_{C} (75 MHz, CDCl₃) 38.5, 55.4, 61.9, 100.3, 117.8, 117.9, 127.8 (s), 128.7, 128.8 (s), 129.3, 133.1 (s), 134.7, 140.6 (s), 147.4 (s), 157.4 (s); HRMS (ESI) m/z calcd for C₁₅H₁₅O₂ [M+H]⁺ 227.1072; found: 227.1068.

Benz[f]indenes 25c and 26c: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (47%).

9-Methoxy-6,7-(methylenedioxy)benz[f]indene (25c): white oil; v_{max} (Neat)/cm⁻¹ 1499 (m), 1464 (vs), 1299 (m); δ_{H} (400 MHz, CDCl₃) 3.60 (2H, t, J = 2.4 Hz), 4.06 (3H, s), 6.03 (2H, s), 6.55 (1H, dt, J = 2.0, 5.6 Hz), 6.90 (1H, dt, J = 2.0, 5.6 Hz), 7.13 (1H, s), 7.41 (1H, s), 7.50 (1H, s); δ_{C} (100 MHz, CDCl₃) 36.5, 60.1, 98.9, 101.1, 104.1, 114.2, 122.6 (s), 127.1 (s), 131.8 (s), 132.1, 134.3, 144.2 (s), 147.0 (s), 147.5 (s), 150.6 (s); HRMS (ESI) m/z calcd for $C_{15}H_{13}O_3$ [M+H]⁺ 241.0865; found: 241.0851.

4-Methoxy-6,7-(methylenedioxy)benz[f]indene (26c): white oil; v_{max} (Neat)/cm⁻¹ 1499 (m), 1465 (vs), 1300 (m); δ_{H} (300 MHz, CDCl₃) 3.50-3.51 (2H, m), 4.03 (3H, s), 6.03 (2H, s), 6.51 (1H, dt, J = 2.1, 5.7 Hz), 7.11-7.14 (2H, m), 7.50 (2H, m),; δ_{C} (75 MHz, CDCl₃) 38.6, 62.1, 98.8, 101.1, 104.1, 114.1 (s), 117.6, 123.5 (s), 128.6, 130.3 (s), 131.7 (s), 133.6, 141.9 (s), 147.3 (s), 148.0 (s); HRMS (ESI) m/z calcd for C₁₅H₁₃O₃ [M+H]⁺ 241.0865; found: 241.0852.

Benz[f]indenes 25d and 26d: eluent for column chromatography: hexanes/diethyl ether (4:1 v/v), (60%).

9-Ethoxybenz[f]indene (25d) and 4-ethoxybenz[f]indene (26d): white oil; v_{max} (Neat)/cm⁻¹ 1607 (m), 1580 (vs), 1418 (vs); δ_{H} (300 MHz, CDCl₃) 1.55 (6H, t, J = 7.2 Hz)_{minor+major}, 3.58 (2H, br s)_{minor}, 3.64 (6H, t, J = 2.1 Hz)_{major}, 4.28-4.38 (4H, m)_{minor+major}, 6.56-6.60 (1H, m)_{minor}, 6.61-6.65 (1H, m)_{major}, 6.97 (1H, dt, J = 1.8, 5.4 Hz)_{major}, 7.17-7.20 (1H, m)_{minor}, 7.45-7.50 (4H, m)_{minor+major}, 7.59 (1H, s)_{major}, 7.68 (1H,

s)_{minor}, 7.83-7.88 (2H, m)_{minor+major}, 8.21-8.28 (2H, m)_{minor+major}; $\delta_{\rm C}$ (75 MHz, CDCl₃) 16.0, 16.1, 36.7, 38.6, 68.3, 70.5, 114.6, 118.0, 122.3, 124.6, 124.8, 125.2, 125.5, 126.6 (s), 127.4 (s), 127.8, 127.9, 128.3 (s), 129.0, 132.2, 133.1 (s), 133.4 (s), 134.2, 134.9 (s), 135.2, 143.0 (s), 145.3 (s), 147.2 (s), 150.0 (s); HRMS (ESI) m/z calcd for C₁₅H₁₅O [M+H]⁺ 211.1123; found: 211.1124.

Procedure for the preparation of 2-(1,3-dioxolan-2-yl)benzaldehyde-formyl-d

n-BuLi (12.3 mL, 2.6 M in hexane) was added dropwise to a solution of 2-(2-bromophenyl)-1,3-dioxolane (3.0 g, 12.3 mmol) in anhydrous tetrahydrofuran (50 mL), at −78 °C under an atmosphere of nitrogen. The mixture was stirred at −78 °C for 30 min. Then, a solution of N-formylpiperidine- d_7 (1.4 gr, 12.3 mmol) in tetrahydrofuran (10 mL) was added dropwise. The mixture was stirred at −78 °C for 15 min, warmed to room temperature and stirred for 3 h. Then, the reaction was quenched with the addition of water (25 mL) and extracted with ethyl acetate (2 × 30 mL). The combined organic layers were washed with water (2 × 100 mL) and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the resulting oil was purified by silica gel column chromatography using hexanes/diethyl ether (3:2 v/v) as eluent.

2-(1,3-Dioxolan-2-yl)benzaldehyde formyl-*d***:** (72%); yellow oil; v_{max} (Neat)/cm⁻¹ 1673 (vs), 1599 (vs), 1407 (m); δ_{H} (400 MHz, CDCl₃) 4.07-4.16 (4H, m), 6.39 (1H, s), 7.52 (1H, t, J = 7.6 Hz), 7.61 (1H, t, J = 7.6 Hz), 7.72 (1H, dd, J = 7.6, 1.2 Hz), 7.93 (1H, dd, J = 7.6, 1.2 Hz); δ_{C} (100 MHz, CDCl₃) 65.4, 101.2, 127.0, 129.5, 130.1, 133.7, 134.4 (t, $J_{CD} = 3.5$ Hz) (s), 139.1 (s), 191.5 (t, $J_{CD} = 27.2$ Hz); HRMS (ESI) m/z calcd for C₁₀H₁₀DO₃ [M+H]⁺ 180.0771; found: 180.0777.

Procedure for the preparation of the fulvenes 14 and 20

To a solution of the appropriate benzaldehyde (3 mmol) in anhydrous methanol (15 mL) were added cyclopentadiene (6 mmol) and pyrrolidine (6 mmol). The reaction mixture was stirred at room temperature overnight. Then, the reaction mixture was acidified with acetic acid (1 mL), diluted with water (40 mL) and extracted with diethyl ether (3 × 20 mL). The organic layer was washed with brine (2 × 10 mL), dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The resulting residue was purified by silica gel column chromatography.

Fulvene 14: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (77%); red oil; v_{max} (Neat)/cm⁻¹ 1626 (w), 1482 (m), 1229 (s); δ_{H} (400 MHz, CDCl₃) 4.03-4.17 (4H, m), 6.37 (1H, td, J = 2.0, 5.2 Hz), 6.48-6.50 (1H, m), 6.55-6.57 (1H, m), 6.63-6.65 (1H, m), 7.38-7.44 (2H, m), 7.50-7.52 (1H, m), 7.63-7.65 (1H, m); δ_{C} (100 MHz, CDCl₃) 65.5, 101.6 (t, $J_{CD} = 25.5$ Hz), 121.2, 126.2, 126.3, 128.8, 129.0, 131.7, 132.2, 135.1, 135.7 (s), 135.8, 136.4 (s), 146.6 (s); HRMS (ESI) m/z calcd for $C_{15}H_{14}DO_2$ [M+H]⁺ 228.1135; found: 228.1136.

Fulvene 20: eluent for column chromatography: hexanes/diethyl ether (9:1 v/v); (77%); red oil; v_{max} (Neat)/cm⁻¹ 1616 (m), 1484 (m), 1361 (s); δ_{H} (300 MHz, CDCl₃) 4.02-4.18 (4H, m), 6.02 (1H, s), 6.36-6.38 (1H, m), 6.47-6.50 (1H, m), 6.54-6.56 (1H, m), 6.63-6.65 (1H, m), 7.38-7.42 (2H, m), 7.49-7.53 (1H, m), 7.62-7.65 (1H, m); δ_{C} (75 MHz, CDCl₃) 65.4, 102.1, 121.2, 126.3, 126.4, 128.7, 129.0, 131.6, 132.2, 135.1, 135.7 (s), 136.6 (s), 146.5 (s); HRMS (ESI) m/z calcd for C₁₅H₁₃DO₂ [M+H]⁺ 228.1135; found: 228.1138.

Procedure for the preparation of the benz[f]indenes 18, 19, 21 and 22

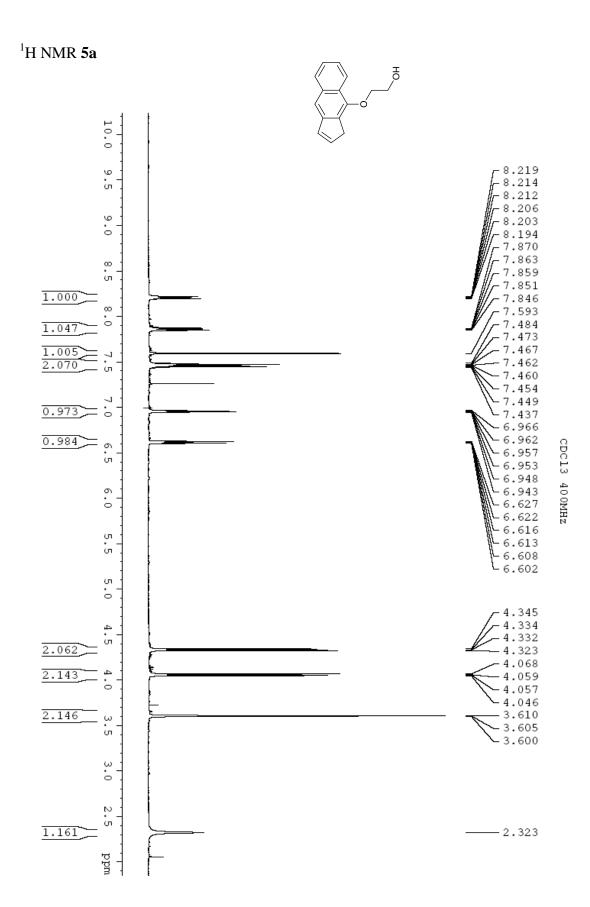
A solution of the fulvene **14** or **20** (1 mmol) in dimethylsulfoxide (5 mL) was heated by microwave at 120 °C and at 120 W for 40 min. Then, the reaction mixture was poured into water (10 mL) and extracted with dichloromethane (3 \times 10 mL). The organic layer was washed with water (3 \times 10 mL) and dried over anhydrous MgSO₄. The solvent was evaporated and the resulting material was purified by column chromatography on silica gel.

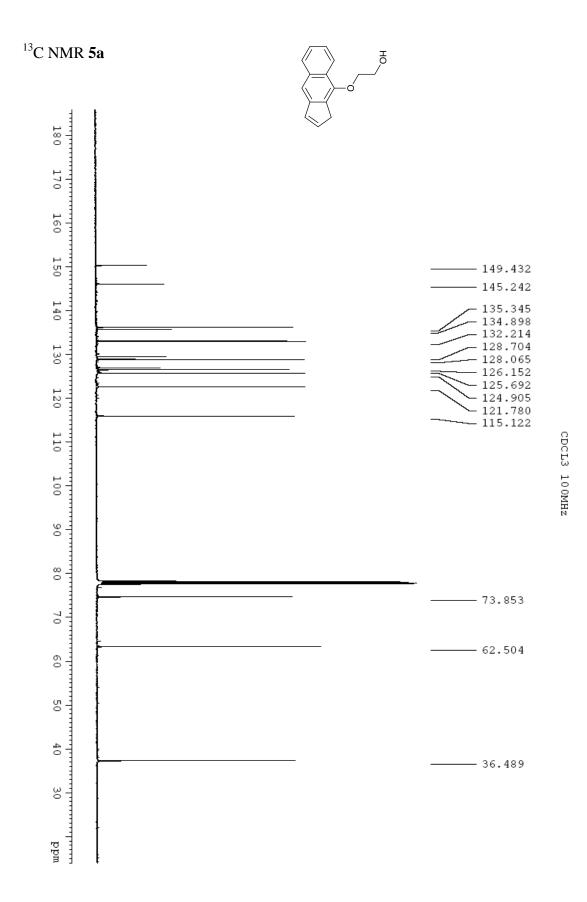
Benz[f]indenes 18 and 19: eluent for column chromatography: hexanes/diethyl ether (7:3 v/v), (43%).

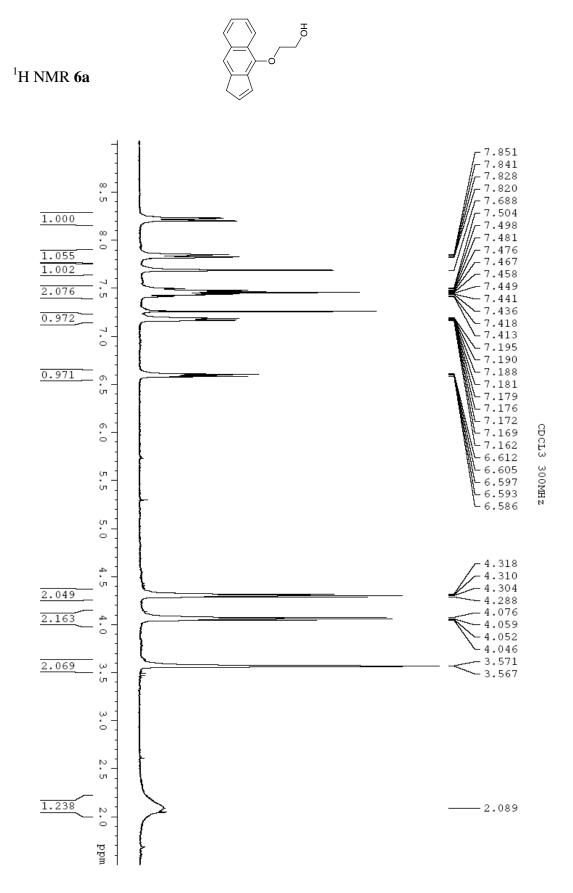
9-(2-Hydroxy)ethoxybenz[f]indene-1-d (18): white oil; v_{max} (Neat)/cm⁻¹ 3383 (vs), 1579 (s), 1494 (m); δ_{H} (400 MHz, CDCl₃) 2.43 (1H, br s), 3.59- 3.61 (1H, m), 4.06 (2H, t, J = 4.1 Hz), 4.34 (2H, t, J = 4.1 Hz), 6.61 (1H, dd, J = 2.4, 5.6 Hz), 7.45-7.48 (2H, m), 7.59 (1H, s), 7.84-7.87 (1H, m), 8.19-8.22 (1H, m); δ_{C} (75 MHz, CDCl₃) 36.2 (t, $J_{\text{CD}} = 19.7$ Hz), 62.5, 73.9, 115.1, 121.8, 124.9, 125.7, 126.2 (s), 128.1, 128.6 (s), 132.3, 134.9 (s), 135.3, 145.3 (s), 149.5 (s); HRMS (ESI) m/z calcd for $C_{15}H_{14}DO_2$ [M+H]⁺ 228.1135; found: 228.1140.

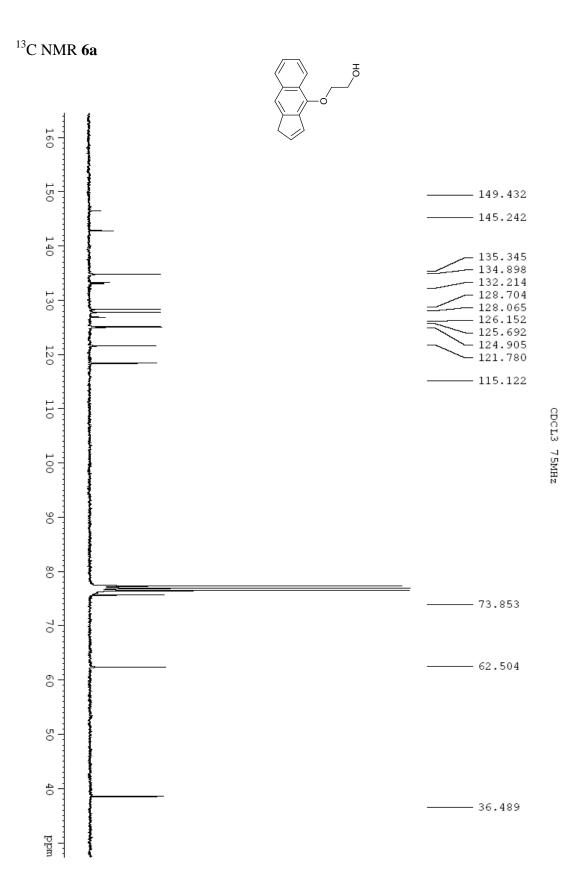
4-(2-Hydroxy)ethoxybenz[f]indene-1-d (19): white oil; v_{max} (Neat)/cm⁻¹ 3384 (vs), 1579 (m), 1499 (m); δ_{H} (400 MHz, CDCl₃) 2.36-2.38 (1H, m), 3.50-3.57 (1H, m), 4.04-4.08 (2H, m), 4.29-4.31(2H, m), 6.59 (1H, dd, J = 2.0, 5.6 Hz), 7.18 (1H, dd, J = 2.0, 5.6 Hz), 7.42-7.50 (2H, m), 7.68 (1H, s), 7.83-7.85 (1H, m), 8.21-8.23 (1H, m); δ_{C} (100 MHz, CDCl₃) 38.4 (t, $J_{CD} = 19.6 \text{ Hz}$), 62.6, 75.8, 118.6, 121.9, 125.2, 125.4, 127.1 (s), 128.0, 128.6, 133.3 (s), 133.4 (s), 135.0, 143.0 (s), 146.6 (s); HRMS (ESI) m/z calcd for C₁₅H₁₄DO₂ [M+H]⁺ 228.1135; found: 228.1139.

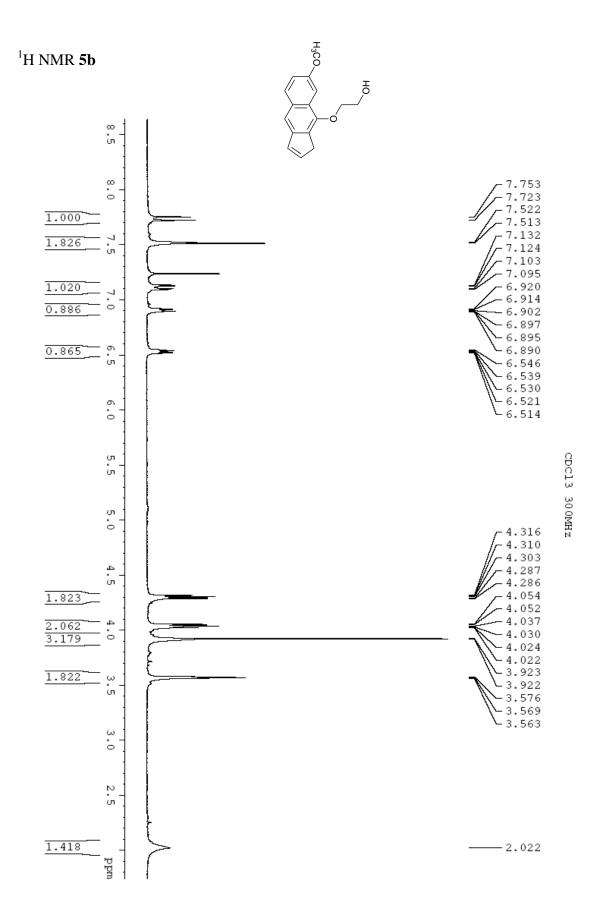
Benz[f]indenes 21 and 22: eluent for column chromatography: hexanes/diethyl ether (7:3 v/v), (43%).

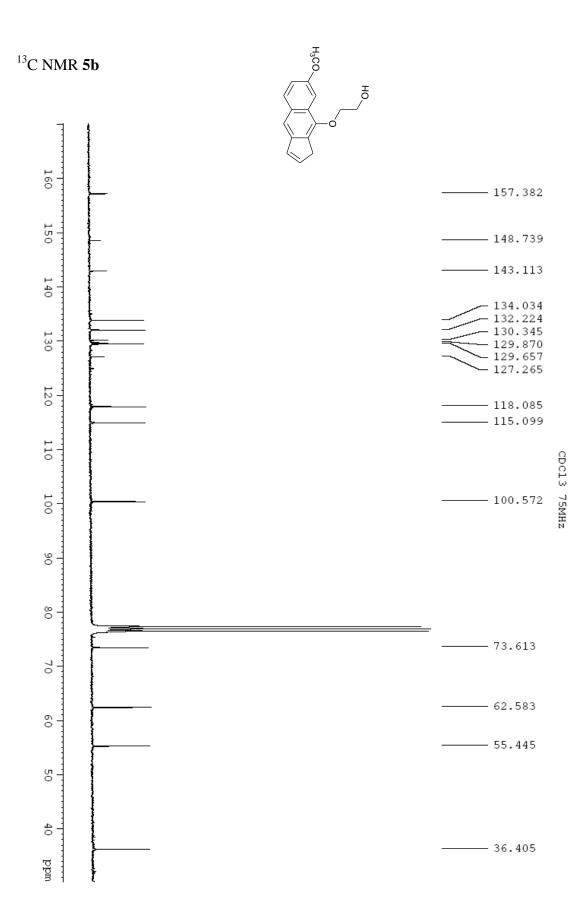

9-(2-Hydroxy)ethoxybenz[f]indene-4-d (21): white oil; v_{max} (Neat)/cm⁻¹ 3384 (vs), 1578 (m), 1418 (vs); δ_{H} (400 MHz, CDCl₃) 2.39 (1H, br s), 3.60 (2H, t, J = 2.0 Hz), 4.05 (2H, t, J = 4.0 Hz), 4.32 (2H, t, J = 4.0 Hz), 6.61 (1H, dt, J = 2.0, 5.6 Hz), 6.95 (1H, dt, J = 2.0, 5.6 Hz), 7.43-7.48 (2H, m), 7.84-7.87 (1H, m), 8.19-8.22 (1H, m); δ_{C} (100 MHz, CDCl₃) 36.5, 62.5, 114.8 (t, $J_{CD} = 24.2$ Hz), 121.8, 124.9, 125.7, 126.1 (s), 128.0, 128.7 (s), 132.1, 134.8 (s), 135.3, 145.1 (s), 149.4 (s); HRMS (ESI) m/z calcd for C₁₅H₁₄DO₂ [M+H]⁺ 228.1135; found: 228.1140.

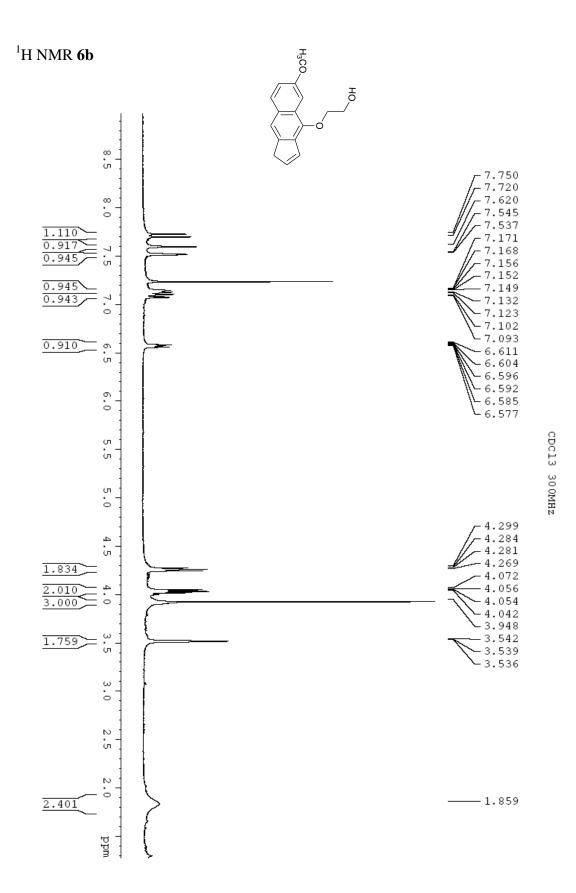

OH 4-(2-Hydroxy)ethoxybenz[f]indene-9-d (22): white oil; v_{max} (Neat)/cm⁻¹ 3384 (vs), 1580 (m), 1345 (vs); δ_{H} (400 MHz, CDCl₃) 2.28 (1H, br s), 3.57 (2H, t, J = 2.0 Hz), 4.06 (2H, t, J = 4.8 Hz), 4.30 (2H, t, J = 4.8 Hz), 6.59 (1H, dt, J = 2.4, 5.6 Hz), 7.18 (1H, dt, J = 2.4, 5.6 Hz), 7.42-7.50 (2H, m), 7.83-7.85 (1H, m), 8.21-8.24 (1H, m); δ_{C} (100 MHz, CDCl₃) 38.6, 62.5, 75.8, 118.2 (t, $J_{\text{CD}} = 24.1$ Hz), 121.8, 125.2, 125.3, 127.0 (s), 127.9, 128.5, 133,2 (s), 133.3 (s), 135.0, 142.9 (s), 146.6 (s); HRMS (ESI) m/z calcd for C₁₅H₁₄DO₂ [M+H]⁺ 228.1135; found: 228.1139.

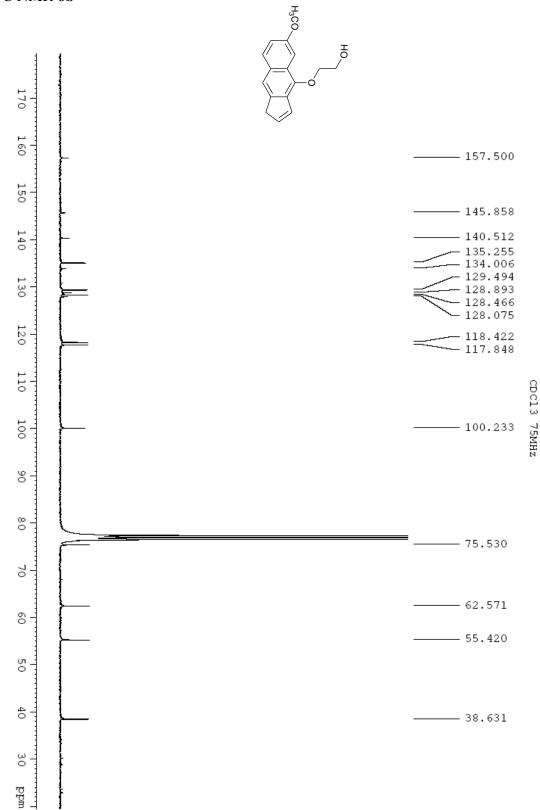

References:

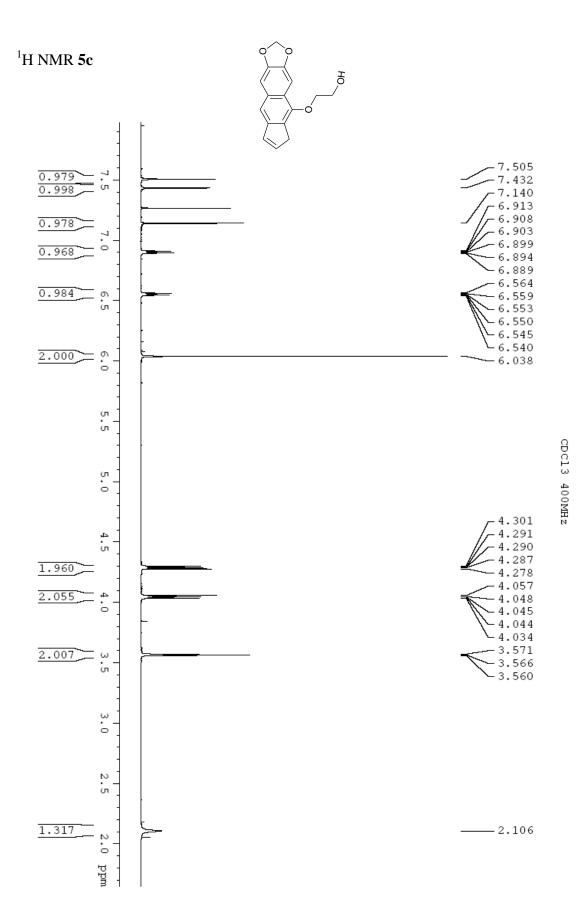

- [1] Hartman, G. D.; Phillips, B. T.; Halczenko, W. J. Org. Chem. 1985, 50, 2423-2427.
- [2] Remy, D. C.; King, S. W.; Cochran, D. J. Org. Chem. 1985, 50, 4120-4125.
- [3] Dumoulin, D.; Lebrun, S.; Deniau, E.; Couture, A.; Grandclaudon, P. Eur. J. Org. Chem. **2009**, 3741-3752.
- [4] Moody, C.J.; Warrellow, G. J. J. Chem. Soc., Perkin Trans. 1 1990, 2929-2936.

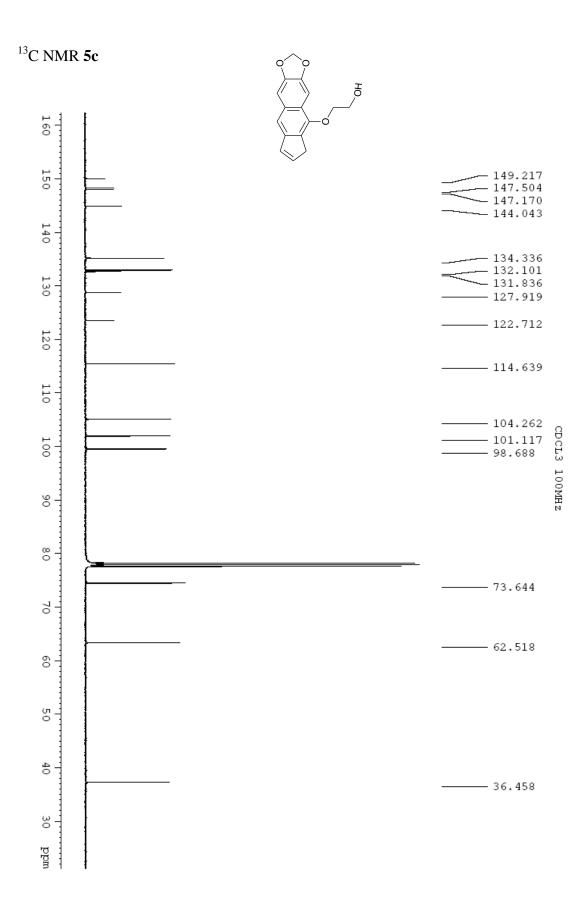

- [5] Meegalla, S. K.; Rodrigo, R. J. Org. Chem. 1991, 56, 1882-1888.
- [6] Friedrichsen, W.; Koening, B. M.; Hildebrandt, K. Heterocycles 1986, 24, 297-302.
- [7] Rodrigo, R.; Knabe, S. M.; Taylor, N. J.; Rajapaksa, D.; Chernishenko, M. J. *J. Org. Chem.* **1986**, *51*, 3973-3978.
- [8] Sanchez-Larios, E.; Holmes, J. M.; Daschner, C. L.; Gravel, M. Synthesis 2011, 1896-1904.
- [9] Alajarin, M.; Bonillo, B.; Marin-Luna, M; Sanchez-Andrada, P.; Vidal, A. *Chem. Eur. J.* **2013**, *19*, 16093-16103.

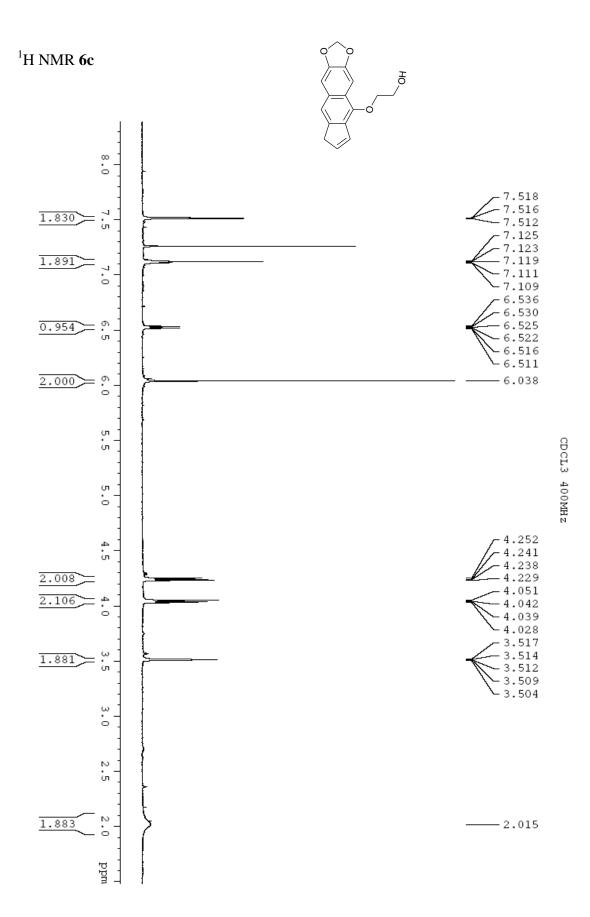


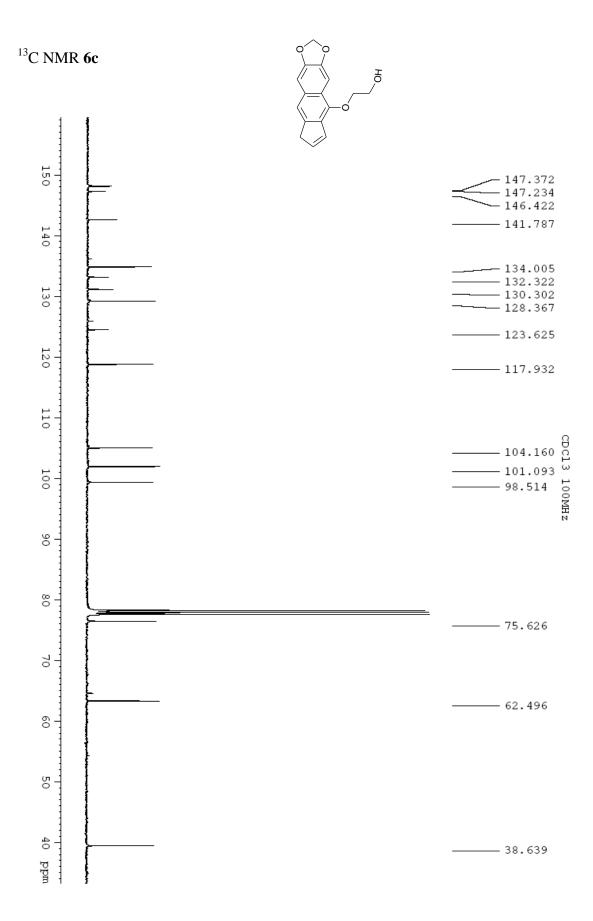


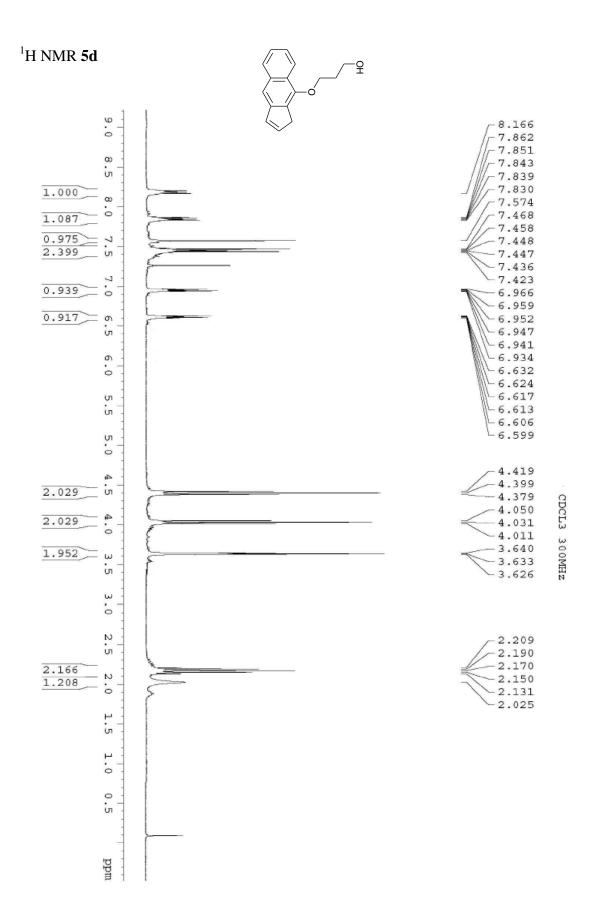


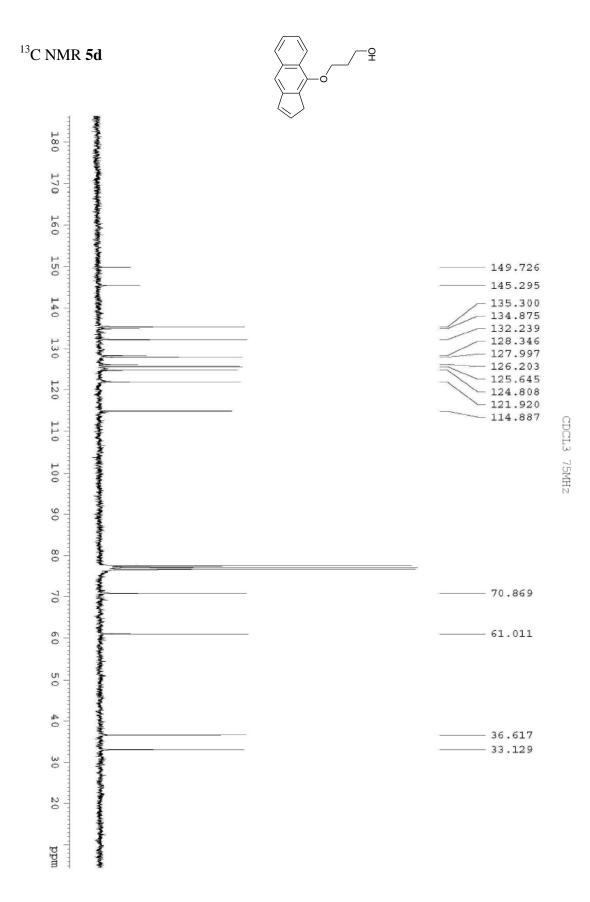


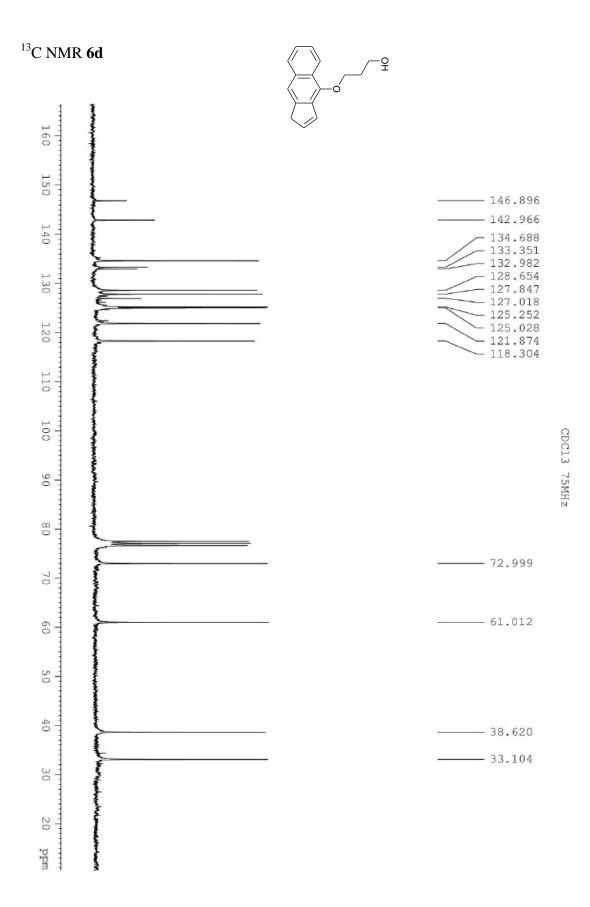


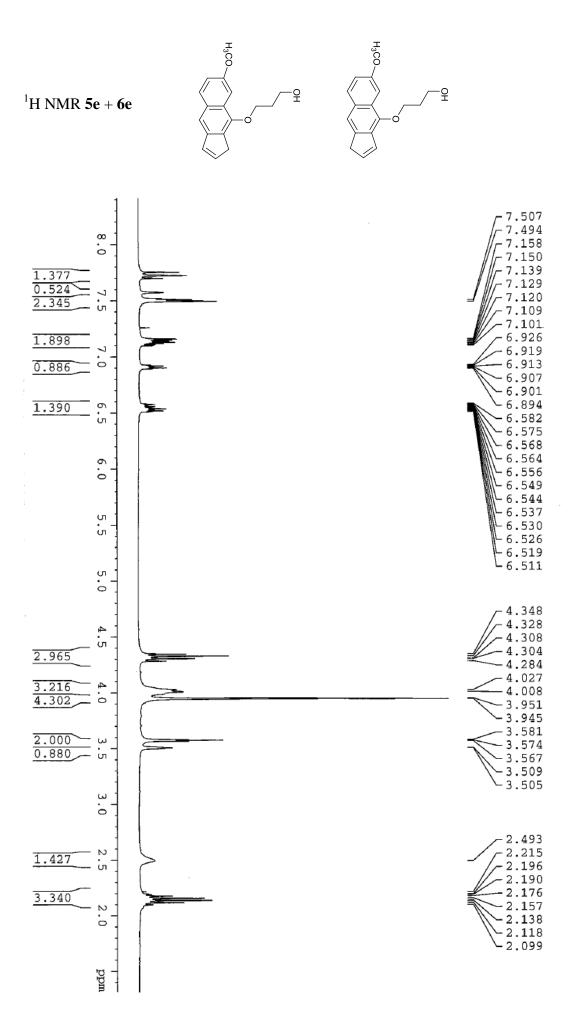


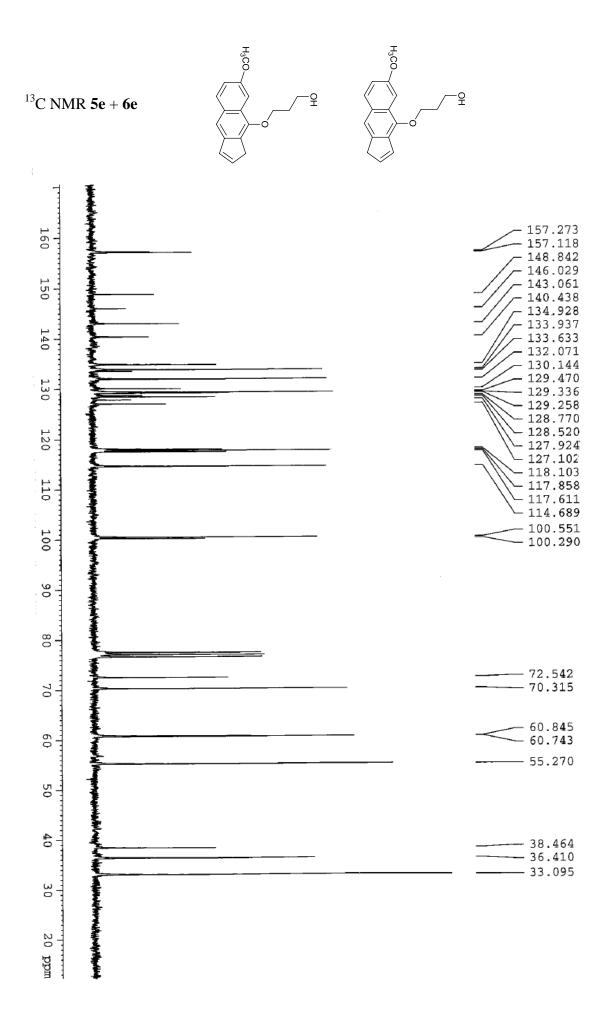


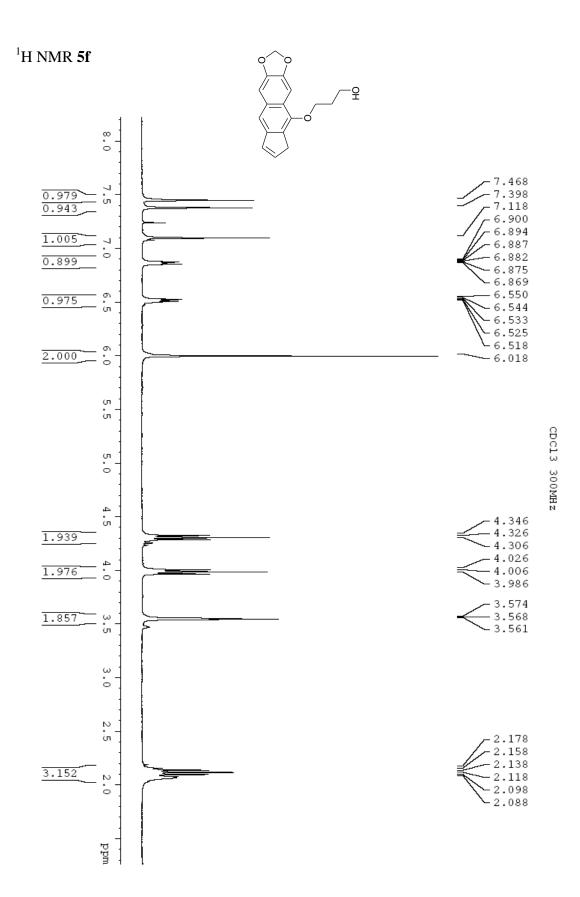


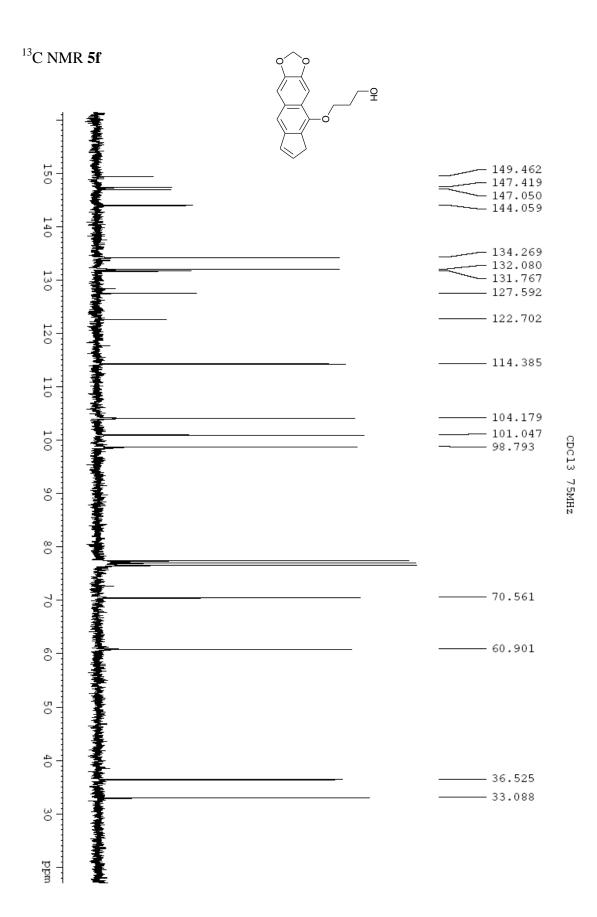


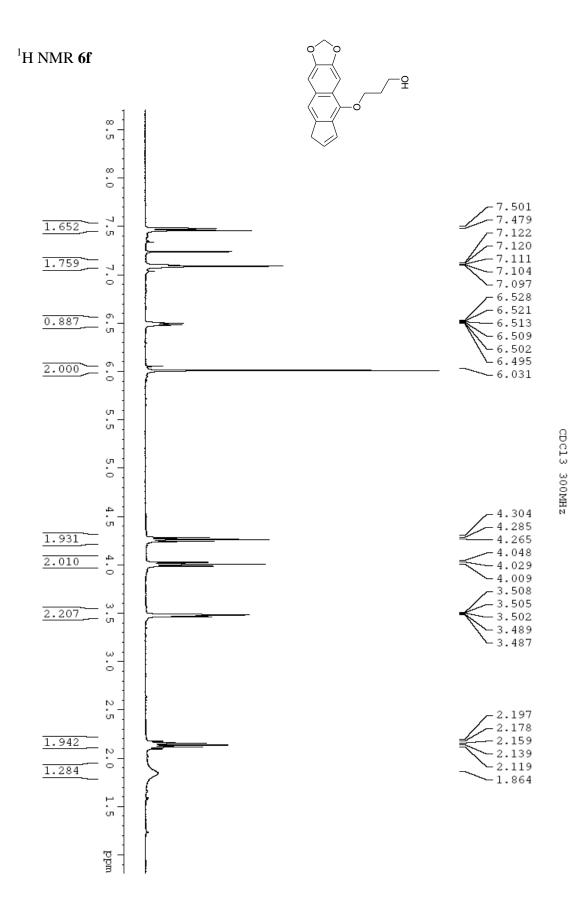


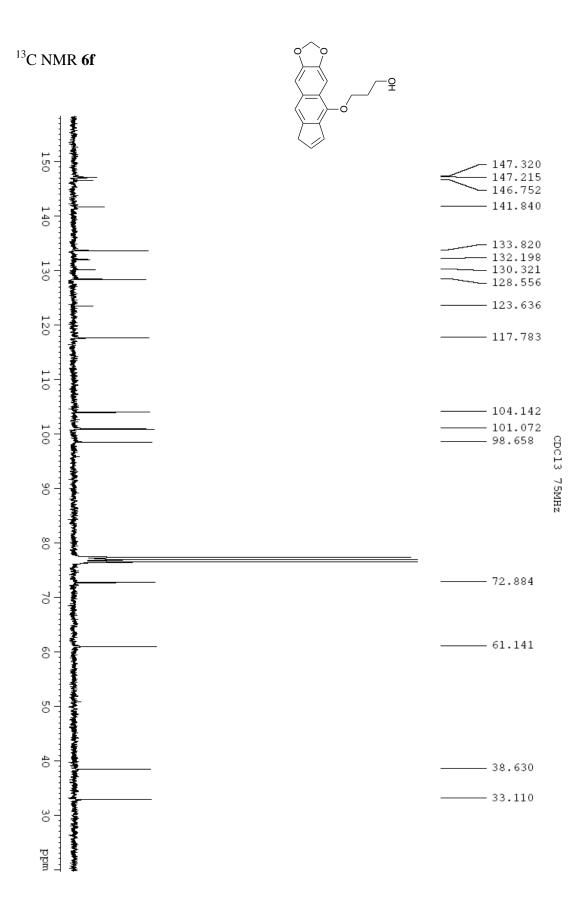


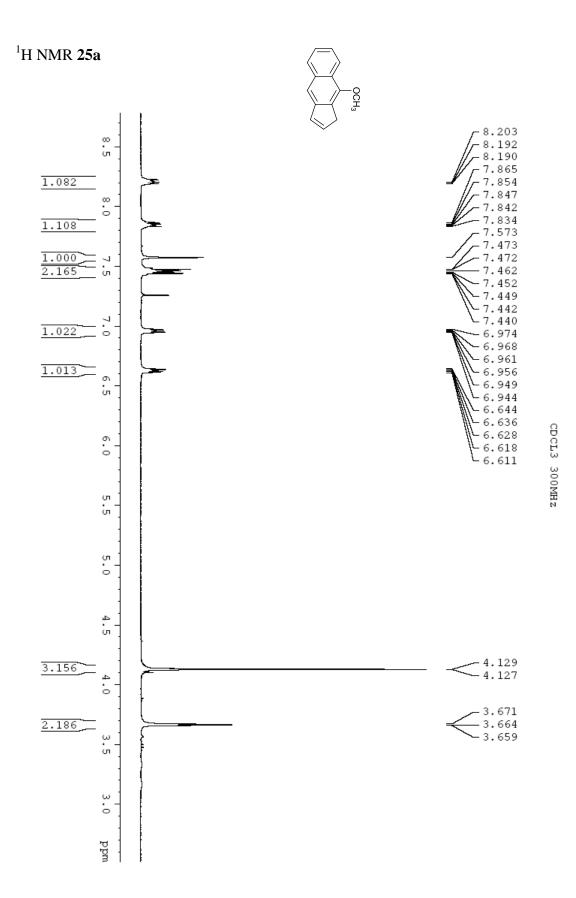


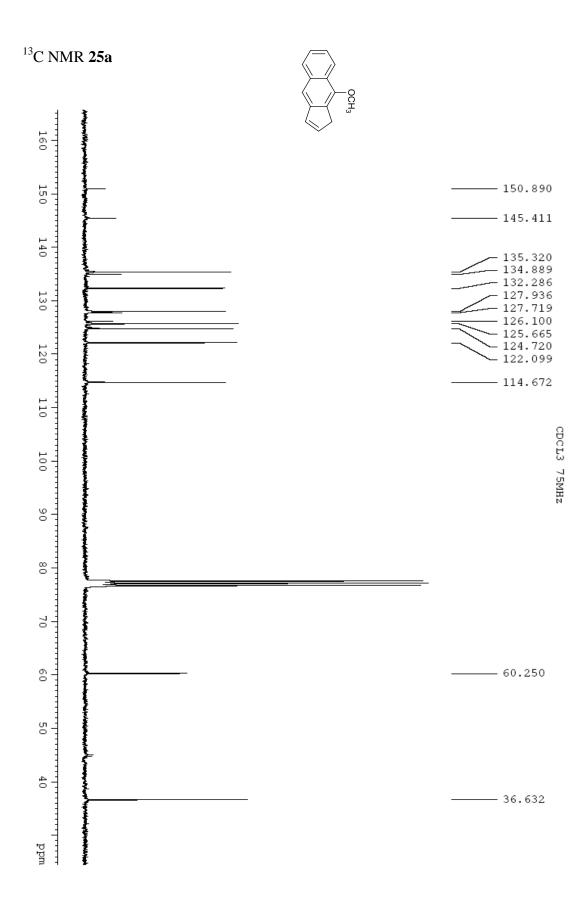


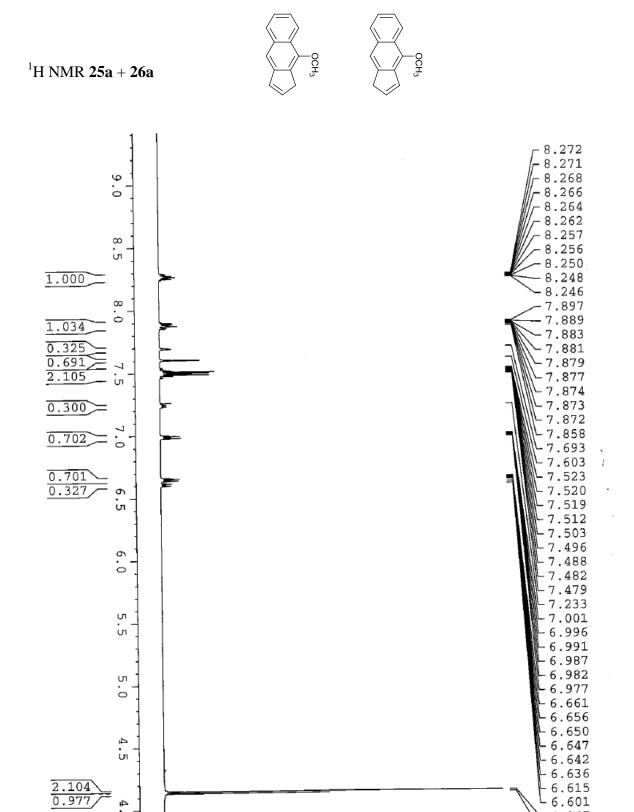








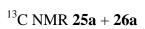


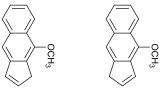


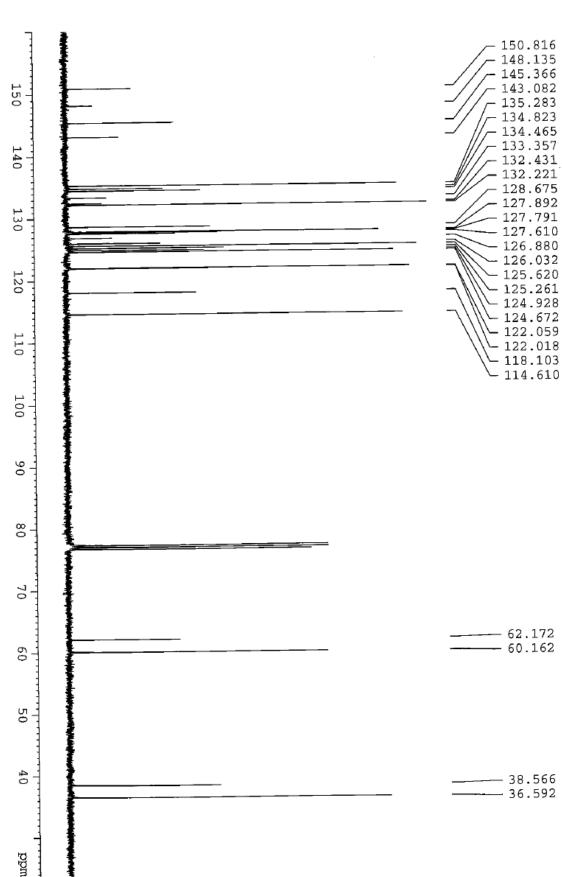
1.506

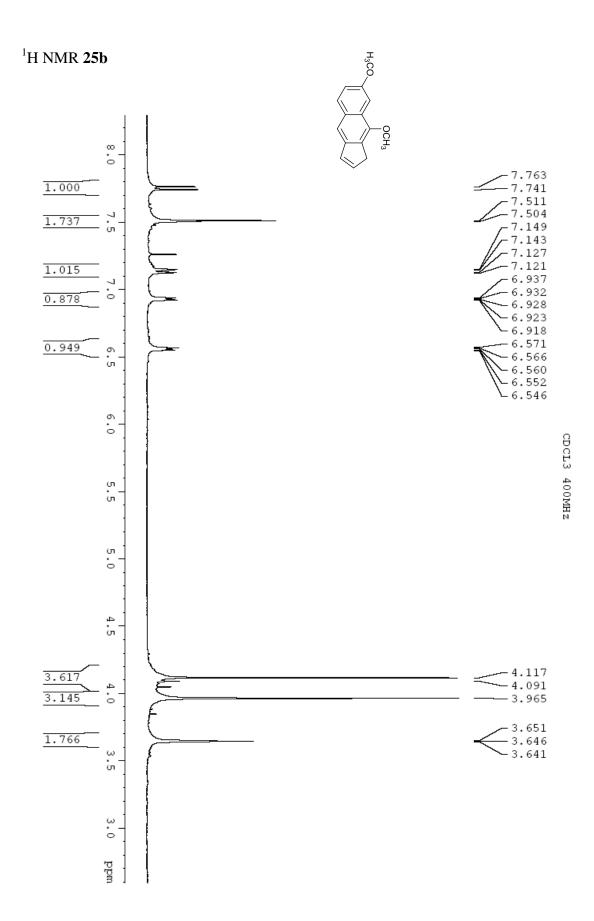
0.677

3.5


ppm


-4.147 -4.134 -3.691


-3.686


-3.680 -3.593 -3.589 -3.587 -3.584 -3.583

¹3.579

