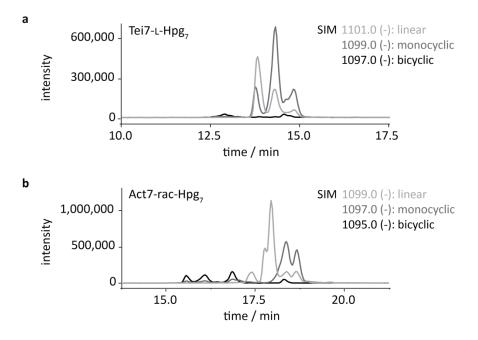
Supporting Information

for


Biochemical and structural characterisation of the second oxidative crosslinking step during the biosynthesis of the glycopeptide antibiotic A47934 Veronika Ulrich¹, Clara Brieke¹ and Max J. Cryle*^{1,2,3}

Address: ¹Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany ²EMBL Australia, Monash University, Clayton, Victoria 3800 and ³The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800.

Email: Max Cryle - max.cryle@monash.edu

*Corresponding author

HPLC–MS analysis of StaF turnover activity of Tei7-L-Hpg7 (a) and Act7-rac-Hpg7 (b) bound to MBP-PCP-X_{tei}

Figure S1: HPLC-MS analysis of StaF turnover activity of Tei7-L-Hpg₇ (a) and Act7-rac-Hpg₇ (b) bound to MBP-PCP-X_{tei}. a) Ions corresponding to singly charged, linear (methylamine m/z 1101.0; depicted in light grey), monocyclic (methylamine m/z 1099.0; depicted in grey) and bicyclic Tei7-L-Hpg₇ (methylamine m/z 1097.0; depicted in black) were recorded using single-ion monitoring (SIM) in negative mode. The minor peak of the monocyclic peptide represents Tei7-D-Hpg₇, which could not be separated completely from Tei7-L-Hpg₇ by preparative HPLC during peptide synthesis. b) Ions corresponding to singly charged, linear (methylamine m/z 1099.0; depicted in light grey), monocyclic (methylamine m/z 1097.0; depicted in grey) and bicyclic Act7-rac-Hpg₇ (methylamine m/z 1095.0; depicted in black) were recorded using single-ion monitoring (SIM) in negative mode. Major peaks for each m/z represent diastereomers due to racemisation of Hpg₇. a) and b) Smaller peaks are caused through overlapping mass signal detection.