Supporting Information

for

Application of 7-azaisatins in enantioselective

Morita–Baylis–Hillman reaction

Qing He, Gu Zhan, Wei Du and Ying-Chun Chen*

Address: Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

Email: Ying-Chun Chen* - ycchen@scu.edu.cn

* Corresponding author

Full experimental details and analytical data

1. General methods	. S2
2. Preparation of N-protected 7-azaisatins 1a-d	. S2
3. Preparation of N-protected 7-azaisatin 1e	.S4
4. Preparation of N-protected 7-azaisatins 1f and 1g	.S4
5. Preparation of <i>N</i> -protected 7-azaisatin 1h	S5
6. Preparation of N-substituted maleimides 2a-i	S5
7. General procedure for MBH reaction	S5
8. References	S13
9. NMR spectra and HPLC chromatograms	S15

1. General methods

NMR data were obtained for ¹H at 400 MHz and for ¹³C at 100 MHz or 150 MHz. Chemical shifts were given in parts per million (δ) from tetramethylsilane with the residual solvent resonance as the internal standard in CDCl₃ solution. In all cases, the enantiomeric ratio was determined by HPLC analysis on a chiral column, using a Daicel Chiralpak IC Column (250 x 4.6 mm), Chiralpak ID Column (250 x 4.6 mm), Chiralpak IE Column (250 x 4.6 mm), Chiralpak AD Column (250 x 4.6 mm) or Chiralpak AS Column (250 x 4.6 mm). UV detection was monitored at 254 nm. Optical rotation data were examined in CHCl₃ solution at 20 °C. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize the products. All commercially available chemicals were used without purification unless otherwise noted. THF, ethyl acetate, petroleum ether, methylene chloride (CH₂Cl₂), and toluene were distilled before use. Cinchona alkaloids catalysts β-ICD and α-IC were prepared according to the literature procedures [1,2].

2. Preparation of N-protected 7-azaisatins 1a-d

The preparation of the known compound **1a**: A dried round-bottomed flask equipped with a magnetic stirring bar was charged with 7-azaindole (2 g, 16.95 mmol) and DMF (10 mL) under a nitrogen atmosphere. The mixture was cooled to 0 °C, NaH (1.2 equiv) was added and stirring continued for 1 h. Then, methyl iodide (1.1 equiv) was added and the mixture was stirred for another 1 h. Afterwards the reaction was quenched with ice cold water (100 mL) and extracted with ethyl acetate (3 x 100 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure to give *N*-methyl-7-azaindoles in a quantitative yield [3].

PCC (5.37 g, 25 mmol) was ground with silica gel (5.37 g, 70–230 mesh) and transferred to a 250 mL round-bottomed flask containing DCE (40 mL). To the orange suspension was added a solution of *N*-methyl-7-azaindole (1.32 g, 10 mmol) in DCE (5 mL) while stirring at room temperature. Then, AlCl₃ (15 wt %, 1.3 mol % with respect to *N*-methyl-7-azaindole) was added and the mixture was stirred at 80 °C. The progress of the reaction was monitored by TLC. After completion, the solvent was removed under reduced pressure and the black solid was treated with 50 mL of *n*-hexane/ethyl acetate (4:1) and filtered under suction through a sintered funnel layered with silica gel (5 cm, 70–230 mesh). The filtrate was evaporated to furnish **1a** as a yellow solid (1.29 g, 80%). In addition, **1c** was prepared according to the literature procedure [4]. A similar procedure was utilized for the preparation of **1b** and **1d**.

1b: Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 4.4 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.17 (dd, J = 7.2 Hz, J = 5.2 Hz, 1H), 5.29 (s, 2H), 3.48 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 181.3, 156.3 133.4 120.2 111.8 70.0 57.7 ppm

163.2, 158.4, 156.3, 133.4, 120.2, 111.8, 70.0, 57.7 ppm.

1d: Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 4.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.52 (s, 4H), 7.20 (dd, J = 7.2 Hz, J = 5.6 Hz, 1H), ppm; ¹³C NMR (100 MHz, CDCl₃) δ 180.9, 163.4, 157.0, 155.9, 134.3, 133.6, 130.0, 129.6, 127.2, 120.6, 112.1 ppm.

3. Preparation of N-protected 7-azaisatin 1e

Ph $(N_{N})^{O}$ **1e**: Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 2.0 Hz, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.51-7.44 (m, 5H), 3.39 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 182.0, 162.9, 158.5, 154.0, 136.1,

133.5, 131.2, 129.3, 128.5, 126.6, 111.9, 25.2 ppm.

4. Preparation of N-protected 7-azaisatins 1f and 1g

To a solution of **1a** (0.10 g, 0.6 mmol) in DMF (5 mL) was added NCS or NBS (0.16 g, 0.9 mmol) at room temperature. The solution was stirred for 4 h and then at 50 °C for 41 h. The progress of the reaction was monitored by TLC. After the disappearance of **1a**, the mixture was poured into water (30 mL), followed by extraction with CH_2Cl_2 (10 mL x 3). The combined organic layers were washed three times with distilled water and dried (Na₂SO₄). After removal of the solvent, the residue was purified by flash chromatography on silica gel with dichloromethane as an eluent to give the pure product **1f** and **1g** [7].

5. Preparation of N-protected 7-azaisatin 1h

Compound 1h was synthesized by literature procedure [8].

6. Preparation of N-substituted maleimides 2a-i

Maleimides 2a-i were synthesized by known literature procedures [9-13].

7. General procedure for MBH reaction

A solution of N-protected 7-azaisatin **1** (0.1 mmol), N-substituted maleimide **2** (0.6 mmol) and catalyst β -ICD (20 mol %) in dry solvent (1.0 mL) was stirred at 50 °C. Purification by flash chromatography on silica gel (EtOAc/petroleum ether) gave the corresponding MBH product **3a–o**.

Typical procedure for the synthesis of 3p and 3q: A solution of *N*-methyl-7azaisatin (**1**, 0.1 mmol), acrylate (0.6 mmol) and catalyst β -ICD (20 mol %) in dry DCM (1.0 mL) was stirred at 30 °C. Purification by flash chromatography on silica gel (EtOAc/petroleum ether) gave the corresponding MBH product **3p** and **3q**.

Typical procedure for the synthesis of 3r: Acrolein (0.15 mmol) was added dropwise to a solution of 7-azaisatin (0.1 mmol) and β -ICD (10 mol %) in dry DCM (1.0 mL) at -20 °C. The progress of the reaction was monitored by TLC. After completion, the MBH reaction product **3r** was purified by flash chromatography on silica gel with petroleum ether/EtOAc as the eluent.

3a: 98% yield, 33.0 mg, light yellow solid, $[\alpha]_D^{20} = -80.4$ (c = 4.4 in CHCl₃), 94% ee, determined by HPLC analysis [Daicel Chiralpak AD, (*n*-hexane/*i*-PrOH = 80/20, 1 mL/min, UV 254nm, $t_{major} = 9.91$ min, $t_{minor} = 12.26$ min]; ¹H NMR (400 MHz, CDCl₃)

δ 8.29 (d, J = 4.8 Hz, 1H), 7.66 (d, J = 6.8 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.27-7.25 (m, 2H), 7.03 (dd, J = 6.8 Hz, J = 5.2 Hz, 1H), 6.94 (s, 1H), 4.24 (brs, 1H), 3.35 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 174.1, 167.8, 167.5, 157.1, 149.7, 146.1, 132.6, 130.7, 129.4, 129.1, 128.1, 125.8, 122.2, 119.2, 74.0, 25.9 ppm; ESI HRMS: calcd. for C₁₈H₁₃N₃O₄+Na⁺ 358.0798, found 358.0796.

3b: 87% yield, 30.0 mg, light yellow solid, $[\alpha]_D^{20} = -69.6$ (c = 6.5 in CHCl₃), 90% ee, determined by HPLC analysis [Daicel Chiralpak AD, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{major} = 5.40 min, t_{minor} = 6.62 min]; ¹H NMR (400 MHz,

CDCl₃) δ 8.28 (d, *J* = 5.2 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.12(d, *J* = 8.4 Hz, 2H), 7.04-7.01 (m, 1H), 6.93 (s, 1H), 4.50 (brs, 1H), 3.34 (s, 3H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 167.9, 167.6, 157.2, 149.7, 146.0, 138.2, 132.6, 129.7, 129.3, 128.0, 125.7, 122.2, 119.2, 74.0, 25.9, 21.1 ppm; ESI HRMS: calcd. for C₁₉H₁₅N₃O₄+Na⁺ 372.0955, found 372.0952.

3c: 88% yield, 32.0 mg, yellow solid, $[\alpha]_D^{20} = -86.2$ (c = 10 in CHCl₃), 92% ee, determined by HPLC analysis [Daicel Chiralpak AD, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{maior} = 6.80 min, t_{minor} = 8.34 min]; ¹H NMR (400 MHz,

CDCl₃) δ 8.27 (d, *J* = 5.2 Hz, 1H), 7.64 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 8.8 Hz, 2H), 7.04-7.01 (m, 1H), 6.93-6.90 (m, 3H), 4.60-4.54 (brs, 1H), 3.79 (s, 3H), 3.33 (s, 3H)

ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 168.1, 167.7, 159.1, 157.1, 149.6, 146.0, 132.6, 129.3, 127.3, 123.2, 122.3, 119.2, 114.4, 74.0, 55.4, 25.9 ppm; ESI HRMS: calcd. for C₁₉H₁₅N₃O₅+Na⁺ 388.0904, found 388.0909.

3d: 87% yield, 32.1 mg, white solid, $[\alpha]_D^{20} = -94.3$ (*c* = 5.5 in CHCl₃), 92% ee, determined by HPLC analysis [Daicel Chiralpak AS, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{minor} = 5.97 min, t_{maior} = 8.88 min]; ¹H NMR (400 MHz,

CDCl₃) δ 8.30 (d, *J* = 5.2 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.26-7.23 (m, 2H), 7.12-7.08 (m, 2H), 7.04 (dd, *J* = 7.2 Hz, *J* = 1.6 Hz, 1H), 6.95 (s, 1H), 4.29 (brs, 1H), 3.35 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 167.6, 167.4, 157.1, 149.8, 146.2, 132.6, 129.4, 127.7, 127.6, 122.0, 119.2, 116.2, 116.0, 74.0, 25.9 ppm; ESI HRMS: calcd. for C₁₈H₁₂ClN₃O₄+Na⁺ 392.0409, found 392.0403.

3e: 90% yield, 34.0 mg, white solid, $[\alpha]_D^{20} = -71.9$ (*c* = 4.4 in CHCl₃), 79% ee, determined by HPLC analysis [Daicel Chiralpak IE, (*n*-hexane/*i*-PrOH = 80/20, 1 mL/min, UV 254 nm, t_{maior} = 8.80 min, t_{minor} = 9.92 min]; ¹H NMR (400 MHz,

CDCl₃) δ 8.29-8.28 (m, 1H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.03 (dd, *J* = 7.2 Hz, *J* = 1.6 Hz, 1H), 6.92-6.90 (m, 3H), 4.55 (brs, 1H), 3.33 (s, 3H), 2.27 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 168.0, 167.8, 157.2, 149.7, 146.0, 139.5, 136.4, 136.2, 132.4, 129.3, 129.2, 129.0, 125.9, 122.3, 119.2, 74.0, 25.8, 21.0, 17.8, 17.7 ppm; ESI HRMS: calcd. for C₂₁H₁₉N₃O₄+Na⁺ 400.1268, found 400.1275.

3f: 84% yield, 23.0 mg, white solid, $[\alpha]_D^{20} = -114.4$ (*c* = 4.0 in CHCl₃), 89% ee, determined by HPLC analysis [Daicel Chiralpak ID, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{major} = 6.17 min, t_{minor} = 7.48 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 5.2 Hz,

1H), 7.58 (d, J = 7.2 Hz, 1H), 7.03-7.00 (m, 1H), 6.80 (s, 1H), 4.89-4.86 (brs, 1H), 3.33 (s, 3H), 2.92 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 169.1, 168.7, 157.1, 149.6, 146.3, 132.5, 129.2, 122.3, 119.1, 73.9, 25.8, 23.8 ppm; ESI HRMS: calcd. for C₁₃H₁₁N₃O₄+Na⁺ 296.0642, found 296.0656.

3g: 86% yield, 30.0 mg, white solid, $[\alpha]_D^{20} = -79.7$ (*c* = 5.0 in CHCl₃), 89% ee, determined by HPLC analysis [Daicel Chiralpak AS, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{minor} = 6.54 min, t_{maior} = 15.29 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* =

5.2 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.26 (m, 5H), 7.02-6.99 (m, 1H), 6.73 (s, 1H), 4.58 (s, 2H), 4.34 (brs, 1H), 3.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 168.6, 168.4, 157.1, 149.7, 145.8, 135.6, 132.7, 129.2, 128.7, 128.5, 128.0, 122.0, 119.2, 73.9, 41.7, 25.8 ppm; ESI HRMS: calcd. for C₁₉H₁₅N₃O₄+Na⁺ 372.0955, found 372.0958.

3h: 86% yield, 26.7 mg, white solid, $[\alpha]_D^{20} = -62.8$ (c = 8.0 in CHCl₃), 66% ee, determined by HPLC analysis [Daicel Chiralpak IC, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{minor} = 4.97 min, t_{major} = 6.11 min]; ¹H NMR (400 MHz, CDCl₃) δ

8.28 (d, J = 4.4 Hz, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.02 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 6.73 (s, 1H), 4.52 (brs, 1H), 3.41 (t, J = 3.2 Hz, 2H), 3.34 (s, 3H), 1.51-1.46 (m, 2H), 1.27-1.20 (m, 2H), 0.90-0.86 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.2,

169.1, 168.8, 157.1, 149.6, 145.7, 132.6, 129.1, 122.2, 119.1, 73.9, 38.0, 30.4, 25.8, 19.9, 13.5 ppm; ESI HRMS: calcd. for C₁₆H₁₇N₃O₄+Na⁺ 338.1111, found 338.1107.

3i: 84% yield, 28.6 mg, white solid, $[\alpha]_D^{20} = -80.1$ (c = 9.5 in CHCl₃), 61% ee, determined by HPLC analysis [Daicel Chiralpak ID, (*n*-hexane/*i*-PrOH = 80/20, 1 mL/min, UV 254 nm, $t_{major} = 7.10$ min, $t_{minor} = 8.07$ min]; ¹H NMR (400 MHz, CDCl₃) δ

8.27 (d, J = 5.2 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.02 (dd, J = 7.2 Hz, J = 1.6 Hz, 1H), 6.66 (s, 1H), 4.45-4.36 (brs, 1H), 3.82-3.77 (m, 1H), 3.34 (s, 3H), 2.01-1.88 (m, 2H), 1.80-1.77 (m, 2H), 1.62-1.60 (m, 3H), 1.30-1.14 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 169.1, 168.9, 157.1, 149.6, 145.3, 132.6, 129.0, 122.4, 119.1, 73.9, 51.2, 29.8, 25.8, 24.9 ppm; ESI HRMS: calcd. for C₁₈H₁₉N₃O₄+Na⁺ 364.1268, found 364.1275.

3j: 92% yield, 33.6 mg, light yellow solid, $[\alpha]_D^{20} = -86.3$ (c = 4.0 in CHCl₃), 91% ee, determined by HPLC analysis [Daicel Chiralpak AD, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{major} = 6.45 min, t_{minor} = 7.32 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 4.8

Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.44-7.40 (m, 2H), 7.35-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.08 (dd, J = 5.2 Hz, J = 1.6 Hz, 1H), 7.00 (s, 1H), 5.27 (s, 2H), 4.48 (brs, 1H), 3.47 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 167.8, 167.5, 156.3, 150.1, 146.0, 133.1, 130.6, 129.6, 129.1, 128.1, 125.8, 121.6, 119.7, 73.9, 70.7, 57.5 ppm; ESI HRMS: calcd. for C₁₉H₁₅N₃O₅+Na⁺ 388.0904, found 388.0898.

3k: 93% yield, 38.0 mg, light yellow solid, $[\alpha]_D^{20} = -99.5$ (*c* = 5.6 in CHCl₃), 87% ee, determined by HPLC analysis [Daicel Chiralpak ID, (*n*-hexane/*i*-PrOH = 70/30, 1 mL/min, UV 254 nm, t_{maior} = 9.66 min, $t_{minor} = 10.71 \text{ min}$]; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J =

4.8 Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 7.2 Hz, 2H), 7.42-7.39 (m, 2H), 7.34-7.28 (m, 3H), 7.26-7.24 (m, 3H), 7.01-6.98 (m, 1H), 6.88 (s, 1H), 5.02 (s, 2H), 4.57-4.56 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 167.8, 167.5, 156.7, 149.8, 145.7, 135.5, 132.9, 130.7, 129.4, 129.1, 128.6, 128.3, 128.1, 127.8, 125.8, 122.9, 119.3, 74.0, 43.3 ppm; ESI HRMS: calcd. for C₂₄H₁₇N₃O₄+K⁺ 450.0851, found 450.0862.

3I: 37% yield, 16.0 mg, light yellow solid, $[\alpha]_D^{20} = -58.1$ (*c* = 5.0 in CHCl₃), 71% ee, determined by HPLC analysis [Daicel Chiralpak AD, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{maior} = 9.10 \text{ min}, t_{minor} = 15.10 \text{ min}$]; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 4.8Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.55-7.49 (m, 4H), 7.45-7.41 (m, 2H), 7.36-7.33 (m, 1H), 7.27-7.26 (m, 2H),

7.13-7.10 (m, 1H), 7.05 (s, 1H), 4.10 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 167.7, 167.5, 156.9, 145.0, 146.6, 134.5, 133.2, 130.8, 130.6, 129.6, 129.4, 129.1, 128.2, 127.9, 125.8, 121.5, 120.0, 74.0 ppm; ESI HRMS: calcd. for C₂₃H₁₄ClN₃O₄+Na⁺ 454.0565, found 454.0571.

3m: 87.8% yield, 36.0 mg, yellowish solid, $[\alpha]_D^{20} = +53.9$ (*c* = 7.5 in CHCl₃), 92% ee, determined by HPLC analysis [Daicel Chiralpak AS, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{minor} = 6.00 \text{ min}$, $t_{maior} = 8.88 \text{ min}$]; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 2.0

Hz, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.47-7.42 (m, 3H), 7.41-7.37 (m, 3H), 7.32 (t, J = 7.2 Hz, 1H), 7.27-7.25 (m, 2H), 7.00 (s, 1H), 4.42 (brs, 1H), 3.39 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 167.6, 167.5, 156.2, 148.0, 146.1, 137.0, 133.1, 131.6, 130.6, 129.4, 129.2, 129.1, 128.1, 128.1, 126.8, 125.8, 122.2, 74.1, 26.0 ppm; ESI HRMS: calcd. for C₂₄H₁₇N₃O₄+Na⁺ 434.1111, found 434.1108.

3n: 81% yield, 30.0 mg, white solid, $[\alpha]_D^{20} = -18.9$ (c = 10.0 in CHCl₃), 85% ee, determined by HPLC analysis [Daicel Chiralpak IE, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{maior} = 6.61$ min, $t_{minor} = 7.91$ min]; ¹H NMR (400 MHz, CDCl₃) δ

8.24 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 1.6. Hz, 1H), 7.44-7.40 (m, 2H), 7.36-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.00 (s, 1H), 4.74 (brs, 1H), 3.32 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 167.6, 167.4, 155.4, 148.2, 145.6, 133.0, 130.5, 129.7, 129.1, 128.2, 127.1, 125.8, 123.1, 73.9, 26.0 ppm; ESI HRMS: calcd. for C₁₈H₁₂ClN₃O₄+Na⁺ 392.0409, found 392.0412.

3o: 82% yield, 34.0 mg, yellow solid, $[\alpha]_D^{20} = +4.86$ (*c* = 7.0 in CHCl₃), 88% ee, determined by HPLC analysis [Daicel Chiralpak ID, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{major} = 5.36$ min, $t_{minor} = 6.45$ min]; ¹H NMR (400 MHz, CDCl₃) δ

8.34 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.43-7.40 (m, 2H), 7.35-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.00 (s, 1H), 4.70 (brs, 1H), 3.31 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 167.6, 167.4, 155.7, 150.4, 145.6, 135.4, 130.6, 129.8, 129.1, 128.1, 125.8, 123.6, 114.6, 73.9, 26.0 ppm; ESI HRMS: calcd. for C₁₈H₁₂BrN₃O₄+Na⁺ 435.9903, found 435.9910.

3p: 93% yield, 23.0 mg, white solid, $[\alpha]_D^{20} = -76.8$ (c = 7.5 in CHCl₃), 92% ee, determined by HPLC analysis [Daicel Chiralpak AS, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, tminor = 4.65

min, tmajor = 6.67 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 5.2 Hz, 1H), 7.42 (dd, *J* = 7.2 Hz, J = 6.0 Hz, 1H), 6.94 (dd, *J* = 7.2 Hz, *J* = 2.0 Hz, 1H), 6.60 (s, 1H), 6.47 (s, 1H), 4.38 (brs , 1H), 3.63 (s, 3H), 3.31(s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 164.8, 157.8, 148.6, 138.4, 131.2, 128.4, 124.3, 118.5, 75.7, 52.2, 25.5 ppm; ESI HRMS: calcd. for C₁₂H₁₂N₂O₄+Na⁺ 271.0689, found 271.0697.

3q: 98% yield, 26.0 mg, white solid, $[\alpha]_D^{20} = -95.4$ (c = 5.0 in CHCl₃), 91% ee, determined by HPLC analysis [Daicel Chiralpak AS, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, tminor =

4.49 min, tmajor = 6.13 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 5.2 Hz, 1H), 7.41 (d, *J* = 7.2 Hz, 1H), 6.93 (dd, *J* = 6.8 Hz, *J* = 1.2 Hz, 1H), 6.61 (s, 1H), 6.44 (s, 1H), 4.46-4.40 (brs , 1H), 4.06-4.02 (m, 2H), 3.29 (s, 3H), 1.14-1.10 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 164.3, 157.8, 148.5, 138.6, 131.2, 128.5, 124.5, 118.5, 75.6, 61.1, 25.5, 13.8 ppm; ESI HRMS: calcd. for C₁₃H₁₄N₂O₄+Na⁺ 285.0846, found 285.0852.

3r: 96% yield, 20.9 mg, white solid, $[\alpha]_D^{20} = -171.4$ (c = 7.0 in CHCl₃), 94% ee, determined by HPLC analysis [Daicel Chiralpak AS, (*n*-hexane/*i*-PrOH = 60/40, 1 mL/min, UV 254 nm, tminor = 5.62 min,

tmajor = 7.13 min]; ¹H NMR (400 MHz, CDCl₃) δ 9.48 (m, 1H), 8.21 (d, *J* = 4.4 Hz, 1H), 7.39 (d, *J* = 6.8 Hz, 1H), 7.00 (s, 1H), 6.95-6.92 (m, 1H), 6.44 (s, 1H), 4.19-4.14 (brs, 1H), 3.32 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 175.6, 157.6, 148.8,

148.0, 136.5, 131.3, 123.6, 118.6, 75.0, 25.6 ppm; ESI HRMS: calcd. for $C_{11}H_{10}N_2O_3+Na^+$ 241.0584, found 241.0584.

8. References

1. Nakamoto, Y.; Urabe, F.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. *Chem. – Eur. J.* **2013**, *19*, 12653–12656. doi: 10.1002/chem.201302665

2. Waldmann, H.; Khedkar, V.; Dückert, H.; Schürmann, M.; Oppel, I. M.; Kumar, K. *Angew. Chem. Int. Ed.* **2008**, *47*, 6869–6872. doi: 10.1002/anie.200802413

3. Kannaboina, P.; Anilkumar, K.; Aravinda, S.; Vishwakarma, R. A.; Das, P. *Org. Lett.* **2013**, *15*, 5718–5721. doi: 10.1021/ol4027478

4. Sriram, R.; Kumar, C. N. S. S. P.; Raghunandan, N.; Ramesh, V.; Sarangapani,
M.; Rao. V. J. Synth. Commun. 2012, 42, 3419–3428. doi: 10.1080/00397911.2011.584008

5. Wu, P.-W.; Hsieh, W.-T.; Cheng, Y.-M.; Wei, C.-Y.; Chou, P.-T. *J. Am. Chem. Soc.* **2006**, *128*, 14426–14427. doi: 10.1021/ja064310e

6. Hammond, M.; Washburn, D.-J. et al *Bioorg. Med. Chem. Lett.* **2009**, *19*, 4441–4445. doi: 10.1016/j.bmcl.2009.05.051

7. Tatsugi, J.; Tong, Z. W.; Tsuchiya, Y.; Takayoshi, I. *Arkivoc* **2009**, *2*, 132–137. doi: 10.3998/ark.5550190.0010.214

 Yan, W.-J.; Wang, D.; Feng, J.-C.; Li, P.; Zhao, D.-P.; Wang, R. Org. Lett. 2012, 14, 2512–2515. doi: 10.1021/ol3007953

9. Gaidamaviciute. G.; Tauraite, D.; Gagilas, J.; Lagunavicius, A. *Biochimica et Biophysica Act.* **2010**, *1804*, 1385–1393. doi: 10.1016/j.bbapap.2010.01.024

10. Akalay, D.; Dürner, G.; Bats, J. W.; Göbel, M. W. *Beilstein J. Org. Chem.* **2008**, *4*, No. 28. doi:10.3762/bjoc.4.28

11. Samgina, T. Y.; Gorshkov, V. A.; Vorontsov, E. A.; Bagrov, V. V.; Nifant' ev, I.
E.; Lebedev, A. T. *Anal. Chem.* **2010**, *65*, 1320–1327. doi: 10.1134/S1061934810130034

12. Hota, S. K.; Chatterjee, A.; Bhattacharya, P. K.; Chattopadhyay. P. *Green Chem.***2009**, *11*, 169–176. doi: 10.1039/b812290c

13. Rajalakshmi, R.; Chezhian, S.; Arulmani, R. *Elixir Appl. Chem.* **2014**, *7*2, 25375–25378.

9 NMR spectra and HPLC chromatograms

	(min)	(*sec)	70 Alea	()	Height
1	5.985	19128519	49.91	1299253	66.06
2	8.928	19197621	50.09	667649	33.94

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	5.973	2497291	4.06	170177	7.83
2	8.879	58975772	95.94	2002944	92.17

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	6.536	2097836	5.86	119643	24.90
2	15.294	33686572	94.14	360829	75.10

#	[min]		[min]	mAU	*s	[mAU	1	*	
1	8.497	BB	0.3072	1.550)36e4	762.	28271	49.9124	
2	13.224	BB	0.4888	1.555	580e4	495.	27643	50.0876	

		(min)	(*sec)	/0 Alea	()	Height
-	1	6.030	6658183	50.17	244390	66.78
	2	8.918	6613900	49.83	121564	33.22

	(min)	Area (*sec)	% Area	()	% Height
1	6.008	1123134	3.86	36691	6.80
2	8.883	27946419	96.14	502897	93.20

	RT (min)	Area (*sec)	% Area	Height	% Height
1	4.654	1114311	4.19	139172	7.49
2	6.671	25475615	95.81	1719491	92.51

