Supporting Information File 1

for

Diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues

Charlotte Collet^{*1,2,§}, Françoise Chrétien^{1,2}, Yves Chapleur^{1,2} and Sandrine Lamandé-Langle^{*1,2}

Address: ¹Université de Lorraine, Vandoeuvre-les-Nancy F-54500 – France and ²CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506 - France [§]Present address: Nancyclotep, Plateforme d'imagerie moléculaire, Vandoeuvre-les-Nancy F-54500 - France

Email: Charlotte Collet - c.collet@nancyclotep.com; Sandrine Lamandé-Langle - sandrine.langle@univ-lorraine.fr

^{*}Corresponding author

Experimental procedures, characterization data of new compounds and ¹H, ¹³C, ¹⁹F NMR spectra of synthesized compounds

Contents

General experimental details	S3
Experimental procedures and physico-chemical characterization	S3
¹ H, ¹³ C, ¹⁹ F NMR spectra of compounds <i>myo</i> - 1 to <i>myo</i> - 6 and <i>scyllo</i> - 1 to <i>scyllo</i> - 6	S31
¹ H, ¹³ C spectra of compounds <i>myo</i> - 9 to <i>myo</i> - 12 and <i>scyllo</i> - 9 to <i>scyllo</i> - 12	S56
¹ H, ¹³ C, ¹⁹ F NMR spectra of compounds <i>myo</i> -13 and <i>scyllo</i> -13	S70
¹ H, ¹³ C NMR spectrum of compounds <i>myo</i> -14, <i>myo</i> -15, <i>scyllo</i> -14 and <i>scyllo</i> -15	S76
¹ H, ¹³ C spectra of compounds <i>myo</i> -16, <i>myo</i> -17, <i>scyllo</i> -16 and <i>scyllo</i> -17	S84
¹ H, ¹³ C spectra of compounds <i>myo</i> -18, <i>myo</i> -20, <i>scyllo</i> -18 and <i>scyllo</i> -20	S90
¹ H, ¹³ C spectra of compounds <i>myo</i> -22, <i>myo</i> -23, <i>scyllo</i> -22 and <i>scyllo</i> -23	S96
¹ H, ¹³ C ¹⁹ F NMR spectra of compound <i>myo</i> - 25 S	\$104
¹ H, ¹³ C spectra of compounds <i>myo</i> -26, <i>myo</i> -27, <i>scyllo</i> -26 and <i>scyllo</i> -27	\$107
¹ H, ¹³ C spectra of compounds <i>myo</i> - 28 and <i>scyllo</i> - 28	\$115
¹ H, ¹³ C, ¹⁹ F NMR spectra of compounds <i>myo</i> - 29 and <i>scyllo</i> - 29	3119

General experimental details

Solvents and liquid reagents were purified and dried according to recommended procedures. TLC analyses were performed using standard procedures on Kieselgel 60 F₂₅₄ plates (Merck). Compounds were visualized using UV light (254 nm) or a methanolic solution of sulfuric acid and charring. Column chromatography and flash chromatography were performed on silica gel SI 60 (63–200 µm) or (40–63 µM) (Merck), respectively. Melting points were determined with a Tottoli apparatus and are uncorrected. FTIR spectra were recorded on a Perkin-Elmer Spectrum 100 by using NaCl windows (film) or KBr pellets (cm⁻¹). ¹H, ¹³C NMR and ¹⁹F spectra were recorded on a Bruker spectrometer DPX250 (250 MHz, 62.9 MHz and 235 MHz, respectively) or a DRX400 (400 MHz and 100.6 MHz, respectively). For complete assignment of ¹H and ¹³C signals, two-dimensional ¹H, ¹H COSY and ¹H, ¹³C correlation spectra were recorded. Chemical shifts (δ) are given in ppm relative to the solvent residual peak. The following abbreviations are used for multiplicity of NMR signals: s = singlet, d =doublet, t = triplet, q = quadruplet, m = multiplet, b = broad signal and app = apparentmultiplicity. The given J values refer to apparent multiplicities and do not represent the true coupling constants. In the NMR description the protons and carbons atom of the ethyl arm are numbered 7 and 8, those of the propyl arm are numbered 7, 8 and 9. High resolution mass spectrometry (HRMS) was carried out by electrospray ionization (ESI) on a Bruker MicrOTOF₀ apparatus.

Experimental procedures and physico-chemical characterization

2-O-(3-Hydroxypropyl)-myo-inositol (myo-1)

Compound *myo*-10 (2 g, 2.9 mmol) and $Pd(OH)_2$ (500 mg, 20 mol %) were dissolved in MeOH (20 mL), CH_2Cl_2 (20 mL) and H_2O (2 mL). The reaction mixture was introduced in a Parr apparatus and stirred under a hydrogen atmosphere at 45 psi overnight. After completion of the reaction, the catalyst was filtered off through a pad of Celite[®], washed with water and

the filtrate was concentrated under reduced pressure. Compound *myo*-1 (700 mg, quantitative yield) was used without further purification. ¹H NMR (400 MHz, D₂O) δ 1.85 (qt, 2H, $J_{8,7} = J_{8,9} = 6.0$ Hz, H-8), 3.25 (app t, 1H, $J_{5,4} = J_{5,6} = 9.5$ Hz, H-5), 3.56 (dd, 2H, $J_{3,4} = J_{1,6} = 9.5$ Hz, $J_{3,2} = J_{1,2} = 2.0$ Hz, H-1 and H-3), 3.60 (app t, 2H, H-4 and H-6), 3.73 (t, 2H, H-9), 3.86 (m, 3H, H-7 and H-2); ¹³C NMR (100.6 MHz, D₂O) δ 32.0 (C-8), 59.6 (C-9), 71.9 (C-7), 72.0 (C-3 and C-1), 73.1 (C-4 and C-6), 74.8 (C-5), 81.5 (C-2); IR (film, v, cm⁻¹) 3400, 2901, 1049; HRMS ESI *m/z* : calculated for C₉H₁₈NaO₇ [M+Na]⁺ 261.0945. Found: 261.0903.

1-O-(3-Hydroxypropyl)-scyllo-inositol (scyllo-1)

Compound *scyllo*-**10** (2 g, 2.9 mmol) and Pd(OH)₂ (500 mg, 20 mol %) were dissolved in MeOH (20 mL), CH₂Cl₂ (20 mL) and H₂O (2 mL). The reaction mixture was introduced in a Parr apparatus and stirred under hydrogen atmosphere at 45 psi overnight. After completion of the reaction, the catalyst was filtered off through a Celite[®] pad, washed with water and the filtrate was concentrated under reduced pressure. Compound *scyllo*-**1** (700 mg, quantitative yield) was used without further purification. ¹H NMR (400 MHz, D₂O) δ 1.92 (qt, 2H, *J*_{7,8} = *J*_{8,9} = 6.5 Hz, H-8), 3.27 (app t, 1H, *J*_{1,2} = *J*_{1,6} = 9.5 Hz, H-1), 3.36-3.50 (m, 5H, H-inositol), 3.78 (t, 2H, H-9), 3.95 (t, 2H H-7); ¹³C NMR (100.6 MHz, D₂O) δ 32.2 (C-8), 59.4 (C-9), 70.6 (C-7), 73.6 (C-2 and C-6 or C-3 and C-5), 73.9 (C-4), 73.9 (C-2 and C-6 or C-3 and C-5), 82.8 (C-1); IR (KBr, v, cm⁻¹) 3400, 2923, 1105, 996; HRMS ESI *m/z* : calculated for C9H₁₈NaO₇ [M+Na]⁺ 261.0945. Found: 261.0904.

2-O-(3-Fluoropropyl)-myo-inositol (myo-2)

To a solution of myo-13 (100 mg, 0.22 mmol) in dry MeOH (10 mL) was added under argon at 0 °C, a catalytic amount of sodium. The reaction mixture was stirred for 2 h at room temperature, then neutralized by Amberlite IR-120. Water was added to solubilize the compound, then the solution was filtered and evaporated under reduced pressure to give *myo*- **2** (50 mg, quantitative) as an oil R_f 0.43 (9/1 CH₃CN/H₂O); ¹H NMR (400 MHz, D₂O) δ 1.99 (dqt, 2H, $J_{H,F} = 27.5$ Hz, $J_{8,7} = J_{8,9} = 6.0$ Hz, H-8), 3.21 (app t, 1H, $J_{5,4} = J_{5,6} = 9.5$ Hz, H-5), 3.53 (dd, 2H, $J_{3,4} = J_{1,6} = 9.5$ Hz, $J_{3,2} = J_{1,2} = 2.5$ Hz, H-1 and H-3), 3.59 (app t, 2H, H-4 and H-6), 3.82 (app t, 1H, H-2), 3.85 (t, 2H, H-7), 4.61 (dt, 2H, $J_{H,F} = 47.0$ Hz, $J_{8,9} = 6.0$ Hz, H-9); ¹³C NMR (100.6 MHz, D₂O) δ 30.8 (d, $J_{C,F} = 19.0$ Hz, C-8), 70.4 (d, $J_{C,F} = 6.0$ Hz, C-7), 71.9 (C-4 and C-6), 73.0 (C-1 and C-3), 74.9 (C-5), 81.4 (C-2), 82.9 (d, $J_{C,F} = 157.0$ Hz, C-9); NMR (¹⁹F, 235 MHz D₂O) δ -219.4 (tt, $J_{H,F} = 47.0$ Hz, $J_{H,F} = 27.5$ Hz); IR (film, v, cm⁻¹) 3400, 2924, 999; HRMS ESI m/z : calculated for C₉H₁₇FNaO₆ [M+Na]⁺ 263.0901. Found: 263.0913.

1-O-(3-Fluoropropyl)-scyllo-inositol (scyllo-2)

To a solution of *scyllo*-**13** (100 mg, 0.22 mmol) in dry MeOH (10 mL) was added under argon at 0 °C, a catalytic amount of sodium. The reaction mixture was stirred for 2 h at room temperature, then neutralized by Amberlite IR-120. Water was added to solubilize the compound, then the solution was filtered and evaporated under reduced pressure to give *scyllo*-**2** (50 mg, quantitative) as an oil R_f 0.43 (9/1 CH₃CN/H₂O); ¹H NMR (400 MHz, D₂O) δ 2.01 (dqt, 2H, $J_{H,F} = 26.0$ Hz, $J_{7,8} = J_{8,9} = 6.0$ Hz, H-8), 3.27 (app t, 1H, $J_{1,2} = J_{1,6} = 9.0$ Hz, H-1), 3.32-3.49 (m, 5H, H-inositol), 3.97 (t, 2H, H-7), 4.69 (dt, 2H, $J_{H,F} = 47.0$ Hz, H-9); ¹³C NMR (100.6 MHz, D₂O) δ 30.8 (d, $J_{C,F} = 17.0$ Hz, C-8), 69.5 (d, $J_{C,F} = 5.5$ Hz, C-7), 73.6 (C-2 and C-6 or C3 and C-5), 73.8 (C-4), 73.9 (C-2 and C-6 or C3 and C-5), 82.8 (d, $J_{C,F} = 157.0$ Hz, C-9), 82.8 (C-1); NMR (¹⁹F, 235 MHz D₂O) δ -219.6 (tt, $J_{H,F} = 47.0$ Hz, $J_{H,F} = 28.0$ Hz); IR (film, v, cm⁻¹) 3410, 2923,1002; HRMS ESI *m*/*z* : calculated for C₉H₁₇FNaO₆ [M+Na]⁺ 263.0901. Found : 263.0907.

2-C-(2-Hydroxyethyl)-myo-inositol (myo-3)

To a solution of compound *myo*-16 (2 g, 2.9 mmol) in MeOH (20 mL), CH₂Cl₂ (20 mL) and H₂O (2 mL) was added Pd(OH)₂ (500 mg, 20 mol %). The reaction mixture was placed in a Parr apparatus and was stirred under a hydrogen atmosphere at 45 psi overnight. After completion of the reaction, the mixture was filtered through a Celite[®] pad, washed with water and the filtrate was concentrated under reduced pressure. Compound *myo*-3 (670 mg) was obtained in quantitative yield and used without further purification. ¹H NMR (400 MHz, D₂O) δ 2.00 (t, 2H, *J*_{7,8} = 7.0 Hz, H-7), 3.27 (app t, 1H, *J*_{4.5} = *J*_{5.6} = 9.5 Hz, H-5), 3.34 (d, 2H, *J*_{1.6} = *J*_{3.4} = 9.5 Hz, H-1 and H-3), 3.59 (app t, 2H, H-4 and H-6), 3.69 (t, 2H, H-8); ¹³C NMR (100.6 MHz, D₂O) δ 36.5 (C-7), 57.4 (C-8), 73.0 (C-1 and C-3), 73.4 (C-4 and C-6), 74.1 (C-5), 76.0 (C-2); IR (KBr, v, cm⁻¹) 3398, 2923, 1654, 1458, 1121; HRMS ESI *m/z* : calculated for C₈H₁₆NaO₇ [M+Na]⁺ 247.0788. Found: 247.0798.

1-C-(2-Hydroxyethyl)-scyllo-inositol (scyllo-3)

Compound *scyllo*-**16** (2 g, 2.9 mmol) was dissolved in MeOH (20 mL) then CH₂Cl₂ (20 mL), H₂O (2 mL) and Pd(OH)₂ (500 mg, 20 mol %) were added. The reaction mixture was placed in a Parr apparatus and stirred under a hydrogen atmosphere at 45 psi overnight. After completion of the reaction, the mixture was filtered through a Celite[®] pad, washed with water and the filtrate was concentrated under reduced pressure. Compound *scyllo*-**3** (670 mg, quantitative yield) was used without further purification. m.p. 88-89 °C; R_f 0 (9/1 CH₃CN/H₂O); ¹H NMR (400 MHz, D₂O) δ 1.81 (t, 2H, *J*_{7,8} = 6.0 Hz, H-7), 3.27-3.48 (m, 5H, H-inositol), 3.83 (t, 2H, H-8); ¹³C NMR (100.6 MHz, D₂O) δ 32.1 (C-7), 57.3 (C-8), 73.1 (C-3 and C-5), 75.4 (C-4), 75.8 (C-2), 76.4 (C-2 and C-6); IR (NaCl, v, cm⁻¹) 3400, 2926, 1654, 1438; HRMS ESI *m*/*z* : calculated for C₈H₁₆LiO₇ [M+Li]⁺ 231.1051. Found: 231.1059.

2-C-(3-Hydroxypropyl)-myo-inositol (myo-4)

Compound *myo*-**17** (2 g, 2.9 mmol) was dissolved in MeOH (20 mL) then CH₂Cl₂ (20 mL), H₂O (2 mL) and Pd(OH)₂ (500 mg, 20 mol %) were added. The reaction mixture was introduce in a Parr apparatus and was stirred under hydrogen atmosphere at 45 Psi overnight. After completion of the reaction, the mixture was filtered through a Celite pad, washed with water and the filtrate was concentrated under reduced pressure. Compound *myo*-**4** (700 mg) was obtained in quantitative yield and was used without purification. m.p. 151-152 °C; ¹H NMR (400 MHz, D₂O) δ 1.43-1.55 (m, 2H, H-8), 1.68-1.75 (m, 2H, H-7), 3.25 (app t, 1H, $J_{4,5} = J_{5,6} = 9.5$ Hz, H-5), 3.36 (d, 2H, $J_{1,6} = J_{3,4} = 9.5$ Hz, H-1 and H-3), 3.59 (t, 2H, H-4 and H-6), 3.59 (app t, 2H, $J_{8,9} = 7.0$ Hz, H-9); ¹³C NMR (100.6 MHz, D₂O) δ 26.0 (C-8), 29.9 (C-7), 62.1 (C-9), 71.6 (C-1 and C-3), 73.6 (C-4 and C-6), 74.2 (C-5), 76.9 (C-2); IR (KBr, v, cm⁻¹) 3467, 3060, 1490, 1445; HR-ESI *m/z* : calculated for C₉H₁₈NaO₇ [M+Na]⁺ 261.0945. Found: 261.0939.

1-C-(3-Hydroxypropyl)-scyllo-inositol (scyllo-4)

Compound *scyllo*-**17** (2 g, 2.9 mmol) was dissolved in a mixture of MeOH (20 mL), CH₂Cl₂ (20 mL) and H₂O (2 mL) and then Pd(OH)₂ (500 mg, 20 mol %) was added. The reaction mixture was introduced in a Parr apparatus and stirred under a hydrogen atmosphere at 45 psi overnight. After completion of the reaction, the mixture was filtered through a Celite® pad, washed with water and the filtrate was concentrated under reduced pressure. Compound *scyllo*-**4** (700 mg, quantitative yield) was used without further purification. m.p. 104-105° °C; Rf 0 (9/1 CH₃CN/H₂O); ¹H NMR (400 MHz, D₂O) δ 1.55-1.64 (m, 2H, H-7), 1.79-1.89 (m, 2H, H-8), 3.30-3.47 (m, 5H, H-inositol), 3.58 (t, 2H, *J*_{8,9} = 5.0 Hz, H-9); ¹³C NMR (100.6 MHz, D₂O) δ 26.4 (C-8), 26.4 (C-7), 63.0 (C-9), 73.2 (C-3 and C-5), 75.5 (C-4), 75.6 (C-1), 77.2 (C-2 and C-6); IR (KBr, v, cm⁻¹) 3400, 2922, 1654, 1458, 1080.

2-C-(2-Fluoroethyl)-myo-inositol (myo-5)

To a solution of *myo*-**25** (50 mg, 0.097 mmol) in dry MeOH (10 mL) under argon, a catalytic amount of sodium was added at 0 °C and the mixture was stirred for 2 h at room temperature. Afterwards, the reaction mixture was neutralized by Amberlite IR-120 and water was added to solubilize the compound. The resin was filtered off and the filtrate was evaporated under reduced pressure to give *myo*-**5** (25mg, quantitative) R_f 0.30 (9/1 CH₃CN/H₂O); ¹H NMR (250 MHz, D₂O) δ 2.21 (dt, 2H, $J_{H,F}$ = 28.0 Hz, $J_{7,8}$ = 6.0 Hz, H-7), 3.33 (app t, 1H, $J_{5,4}$ = $J_{5,6}$ = 9.5 Hz, H-5), 3.46 (d, 2H, $J_{1,6}$ = $J_{3,4}$ = 9.5 Hz, H-1 and H-3), 3.64 (app t, 2H, H-4 and H-6), 4.67 (dt, 2H, $J_{H,F}$ = 47.0 Hz, H-8); ¹³C NMR (62.9 MHz, D₂O) δ 34.5 (d, $J_{C,F}$ = 19.0 Hz, C-7), 72.7 (C-4 and C-6), 73.4 (C-1 and C-3), 74.0 (C-5), 75.9 (d, $J_{C,F}$ = 2.5 Hz, C-2), 81.5 (d, $J_{C,F}$ = 158.0 Hz, C-8); NMR (¹⁹F, 235 MHz D₂O) δ -216.7 (tt, $J_{H,F}$ = 47.0 Hz, $J_{H,F}$ = 28.0 Hz); IR (KBr, v, cm⁻¹) 3400, 1637, 1384; HRMS ESI *m*/*z* : calculated for C₈H₁₅FNaO₆ [M+Na]⁺ 249.0745. Found: 429.0745.

2-C-(3-Fluoropropyl)-myo-inositol (myo-6)

To a solution of *myo*-**29** (48 mg, 0.097 mmol) in dry MeOH (10 mL) under argon a catalytic amount of sodium was added at 0 °C and the mixture was stirred for 2 h at room temperature. Afterwards, the reaction mixture was neutralized by Amberlite IR-120 and water was added to solubilize the precipitate. The resin was filtered off and the solvent was evaporated under reduced pressure to give *myo*-**6** (23 mg) in quantitative yield. R_f 0.38 (9/1 CH₃CN/H₂O); ¹H NMR (400 MHz, D₂O) δ 1.61-1.78 (m, 2H, H-9), 1.78-1.85 (m, 2H, H-7), 3.29 (app t, 1H, $J_{4,5} = J_{5,6} = 10.0$ Hz, H-5), 3.38 (d, 2H, $J_{1,6} = J_{3,4} = 10.0$ Hz, H-1 and H-3), 3.61 (app t, 2H, H-4 and H-6), 4.54 (dt, 2H, $J_{H,F} = 47.0$ Hz and $J_{8,9} = 6.0$ Hz, H-9); ¹³C NMR (62.9 MHz, D₂O) δ 24.5 (d, $J_{C,F} = 20.0$ Hz, C-8), 29.2 (d, $J_{C,F} = 5.0$ Hz, C-7), 71.6 (C-1 and C-3), 73.5 (C-4 and C-6), 74.1 (C-5), 76.6 (C-2), 85.5 (d, $J_{C,F} = 159.0$ Hz, C-9); NMR (¹⁹F, 235 MHz D₂O) δ -

216.6 (tt, $J_{H,F} = 47.0$ Hz and $J_{H,F} = 25.0$ Hz); IR (film, v, cm⁻¹) 3436, 2924, 1384, 1124; HRMS ESI m/z : calculated for C₉H₁₇FNaO₆ [M+Na]⁺ 263.0901. Found: 263.0896.

1-C-(3-Fluoropropyl)-scyllo-inositol (scyllo-6)

To a solution of *scyllo-29* (100 mg, 0.097 mmol) in dry MeOH (10 mL) under argon a catalytic amount of sodium was added at 0 °C and the mixture was stirred for 2 h at room temperature. Afterwards the reaction mixture was neutralized by Amberlite IR-120 and water was added to solubilize the compound. The resin was filtered off and the filtrate was evaporated under reduced pressure to give *scyllo-6* (50 mg, quantitative) as an oil R_f 0.42 (9/1 CH₃CN/H₂O); ¹H NMR (250 MHz, D₂O) δ 1.63-1.75 (m, 2H, H-7), 1.85-2.16 (m, 2H, H-8), 3.35-3.55 (m, 5H, H-inositol), 4.55 (dt, 2H, *J*_{H,F} = 47 Hz, *J*_{8,9} = 6.0 Hz, H-9); ¹³C NMR (62.9 MHz, D₂O) δ 25.0 (d, *J*_{C,F} = 19.0 Hz, C-8), 25.6 (d, *J*_{C,F} = 5.0 Hz, C-7), 73.1 (C-3 and C-5), 75.4 (C-1 and C-4), 77.1 (C-2 and C-6), 86.2(d, *J*_{C,F} = 158.0 Hz, C-9); NMR (¹⁹F, 235 MHz D₂O) δ -216.9 (tt, *J*_{H,F} = 47.0 Hz, *J*_{H,F} = 27.0 Hz); IR (KBr, v, cm⁻¹) 3394, 2923, 1654, 1005; HRMS ESI *m*/*z* : calculated for C₉H₁₇FNaO₆ [M+Na]⁺ 263.0901. Found: 263.0905.

1,3,4,5,6-Pentakis-O-(phenylmethyl)-2-O-(2-propen-1-yl)-myo-inositol (myo-9)

To a solution of *myo*-**8** (8 g, 12.7 mmol) in allylbromide (200 mL) was added NaH (3 g, 12.7 mmol) and the mixture was stirred for 2 h at 70 °C. The solvent was removed under reduced pressure, and the residue was diluted and extracted in CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica gel, hexane 100% to hexane/EtOAc 80:20) to give *myo*-**9** (6.8 g, 80% yield) as a white solid m.p. 82-83 °C; R_f 0.80 (8/2 H/A); ¹H NMR (400 MHz, CDCl₃) δ 3.34 (dd, 2H, $J_{3,4} = J_{1,6} = 9.5$ Hz, $J_{3,2} = J_{1,2} = 2.0$ Hz, H-1 and H-3), 3.48 (app t, 1H, $J_{5,4} = J_{5,6} = 9.5$ Hz, H-5), 3.98 (app t, 1H, H-2), 4.05 (app t, 2H, H-4 and H-6), 4.35 (bd, 2H, $J_{7,8} = 5.5$ Hz, H-7), 4.69 (s, 4H, CH₂Ph), 4.86 (d, 2H,

J = 10.5 Hz, CH₂Ph), 4.89 (s, 2H, CH₂Ph), 4.93 (d, 2H, J = 10.5 Hz, CH₂Ph), 5.19 (dd, 1H, $J_{8,9} = 10.5$ Hz, $J_{9,9'} = 2.0$ Hz, H-9'), 6.00 (ddt, 1H, H-8), 7.24-7.42 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 72.9 (2CH₂), 73.6 (C-7), 74.1 (C-2), 76.0 (2CH₂), 76.0 (CH₂), 80.9 (C-3 and C-1), 81.8 (C-4 and C-6), 83.8 (C-5), 116.9 (C-9), 127.6 (3C-Ar), 127.8 (5C-Ar), 127.9 (2C-Ar), 128.2 (3C-Ar), 128.4 (3C-Ar), 128.5 (1C-Ar), 128.5 (3C-Ar), 135.9 (C-8), 138.5 (2Cq-Ar), 139.0 (Cq-Ar), 139.0 (2Cq-Ar); IR (film, v, cm⁻¹) 3030, 2868, 1454, 1071; HRMS ESI *m*/*z* : calculated for C₄₄H₄₆NaO₆ [M+Na]⁺ 693.3187. Found: 693.3177.

1,3,4,5,6-Pentakis-O-(phenylmethyl)-2-O-(2-propen-1-yl)-scyllo-inositol (scyllo-9)

To a solution of *scyllo*-**8** (8 g, 12.7 mmol) in allylbromide (200 mL) was added NaH (3 g, 12.7 mmol) and the mixture was stirred for 2 h at 70 °C. The solvent was removed under reduced pressure, and the residue was diluted and extracted in CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica gel, hexane 100% to hexane/EtOAc 80:20) to give *scyllo*-**9** (7.0 g, 82% yield) as an oil R_f 0.71 (8/2 H/A); ¹H NMR (400 MHz, CDCl₃) δ 3.39-3.45 (m, 1H, H-4), 3.48-3.57 (m, 5H, H-inositol), 4.36 (bd, 2H, *J*_{7,8} = 5.5 Hz, H-7), 4.82-4.90 (m, 10H, 5CH₂Ph), 5.17 (dd, 1H, *J*_{8,9} = 10.5 Hz, *J*_{9,9} = 1.5 Hz, H-9), 5.28 (dd, 1H, *J*_{8,9} = 17.0 Hz, *J*_{9,9} = 1.5 Hz, H-9'), 5.97 (ddt, 1H, H-8), 7.18-7.42 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 74.8 (C-7), 76.1 (3CH₂), 76.2 (3CH₂), 82.7 (C-4), 83.0 (C-2 and C-6 or C-3 and C-5), 83.1 (C-1, C-2 and C-6 or C-3 and C-5), 117.0 (C-9), 127.8 (3C-Ar), 127.8 (2C-Ar), 128.0 (4C-Ar), 128.2 (3C-Ar), 128.5 (8C-Ar), 135.2 (C-8), 138.7 (5Cq-Ar); IR (film, v, cm⁻¹) 2925, 1638, 1067; HRMS ESI *m*/*z* : calculated for C₄₄H₄₆NaO₆ [M+Na]⁺ 693.3187. Found: 693.3185.

2-O-(3-Hydroxypropyl)-1,3,4,5,6-pentakis-O-(phenylmethyl)-myo-inositol (myo-10)

To a solution of myo-9 (7 g, 10 mmol) in dry THF (250 mL) was added dropwise BH₃ (120 mL of a 1 M solution in hexane, 120 mmol) under argon at 0 °C. The mixture was stirred for 6 h at room temperature, then H₂O₂ (30%, 500 mL) and an aqueous solution of 2 M NaOH (600 mL) were added slowly. After 12 h, the mixture was diluted with ethyl acetate (200 mL) and extracted. The remaining aqueous phase was further extracted with ethyl acetate (2 x 100 mL), the combined organic layers were dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane 100% to hexane/EtOAc 70:30) to give myo-10 (5.6 g, 78% yield) as a white solid m.p. 70-71 °C; R_f 0.3 (7/3 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.78 (qt, 2H, $J_{8,7} = J_{8,9} = 5.5$ Hz, H-8), 3.32 (dd, 2H, $J_{3,4} = J_{1,6} = 9.5$ Hz, $J_{3,2} = J_{1,2} = 2.0$ Hz, H-1 and H-3), 3.43 (app t, 1H, *J*_{5,4} = *J*_{5,6} = 9.5 Hz, H-5), 3.74 (app t, 1H, H-2), 3.78 (t, 2H, H-7), 3.92 (t, 2H, H-9), 3.94 (app t, 2H, H-4 and H-6), 4.65 (d, 2H, J = 11.5 Hz, CH₂Ph), 4.71 (d, 2H, J = 11.5 Hz, CH₂Ph), 4.83 (d, 2H, J = 10.5 Hz, CH₂Ph), 4.86 (s, 2H, CH₂Ph), 4.87 (d, 2H, J = 11.5 Hz, CH₂Ph), 7.24-7.38 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 32.2 (C-8), 60.8 (C-9), 72.2 (C-7), 73.4 (2CH₂), 76.1 (2CH₂), 76.1 (CH₂), 76.8 (C-2), 80.5 (C-3 and C-1), 81.8 (C-4 and C-6), 83.5 (C-5), 127.7 (3C-Ar), 128.0 (2C-Ar), 128.1 (5C-Ar), 128.2 (3C-Ar), 128.5 (3C-Ar), 128.5 (1C-Ar), 128.7 (3C-Ar), 138.0 (2Cq-Ar), 138.8 (3Cq-Ar); IR (KBr, v, cm⁻¹) 3463, 3030, 2871, 1070; HRMS ESI *m/z* : calculated for C₄₄H₄₈NaO₇ [M+Na]⁺ 711.3292. Found: 711.3292.

1-O-(3-Hydroxypropyl)-2,3,4,5,6-pentakis-O-(phenylmethyl)-scyllo-inositol (scyllo-10)

Obtained in 75% yield starting from *scyllo*-**9** using the above protocol m.p. 108-109 °C; R_f 0.18 (7/3 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.83 (qt, 2H, $J_{8,7} = J_{8,9} = 6.0$ Hz, H-8), 2.05 (brs, 1H, OH), 3.37 (app t, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 3.46-3.59 (m, 5H, H-inositol), 3.71 (t, 2H, H-9), 4.00 (t, 2H, H-7), 4.86 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.87 (d, 2H, J = 11.0 Hz,

CH₂Ph), 4.89 (s, 2H, CH₂Ph), 4.90 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.92 (d, 2H, J = 11.0 Hz, CH₂Ph), 7.26-7.40 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 33.0 (C-8), 61.5 (C-9), 72.7 (C-7), 75.9 (2CH₂), 76.0 (2CH₂), 76.1 (CH₂), 82.8 (C-2 and C-6 or C-3 and C-5), 82.9 (C-1), 83.0 (C-2 and C-6 or C-3 and C-5), 83.1 (C-4), 127.7 (3C-Ar), 127.7 (2C-Ar), 127.8 (4C-Ar), 127.9 (4C-Ar), 128.0 (2C-Ar), 128.5 (5C-Ar), 128.6 (5C-Ar), 138.4 (3Cq-Ar), 138.5 (2Cq-Ar); IR (film, v, cm⁻¹) 3468, 3030, 2823, 1070; HRMS ESI *m*/*z* : calculated for C₄₄H₄₈NaO₇ [M+Na]⁺ 711.3292. Found: 711.3259.

1,3,4,5,6-Pentaacetyl-2-O-(3-triphenylmethyloxypropyl)-myo-inositol (myo-11)

To a solution of *myo-1* (190 mg, 0.80 mmol) in pyridine (20 mL) were added trityl chloride (675 mg, 2.42 mmol) and a catalytic amount of DMAP. The mixture was stirred at 40 °C for 3 d and then the reaction was allowed to reach room temperature. Acetic anhydride (10 mL) was added and the solution was stirred for further 2 h. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 60:40) to give myo-11 (440 mg, 80% yield). m.p. 128-130 °C; Rf 0.55 (1/1 H/A); ¹H NMR (400 MHz, D₂O) δ 1.84 (qt, 2H, $J_{8,7} = J_{8,9} = 6.5 \text{ Hz}$, H-8), 1.95 (s, 6H, 2Me), 1.99 (s, 3H, Me), 1.99 (s, 6H, 2Me), 3.19 (t, 2H, H-9), 3.72 (t, 2H, H-7), 3.94 (app t, 1H, $J_{2,1} = J_{2,3} = 2.5$ Hz, H-2), 4.93 (dd, 2H, $J_{3,4} = J_{1,6} = 10.0$ Hz, $J_{3,2} = J_{1,2} = 2.5$ Hz, H-1 and H-3), 5.10 (app t, 1H, *J*_{5,4} = *J*_{5,6} = 10.0 Hz, H-5), 5.48 (app t, 2H, H-4 and H-6), 7.22 (brt, 3H, J = 7.5 Hz, H-Ar), 7.29 (brt, 6H, J = 7.5 Hz, H-Ar), 7.41 (brd, 6H, H-Ar); ¹³C NMR (100.6) MHz, D₂O) δ 20.6 (Me), 20.7 (4Me), 30.8 (C-8), 60.5 (C-9), 70.0 (C-4 and C-6), 71.0 (C-1 and C-3), 71.2 (C-5), 71.4 (C-7), 76.0 (C-2), 127.0 (3C-Ar), 127.9 (6C-Ar), 128.7 (6C-Ar), 144.3 (3Cq-Ar), 169.7 (2CO), 169.9 (2CO), 170.3 (CO); IR (film, v, cm⁻¹) 2936, 1756, 1368, 1230; HRMS ESI *m/z* : calculated for C₃₈H₄₂NaO₁₂ [M+Na]⁺ 713.2568. Found: 713.2568.

1,3,4,5,6-Pentaacetyl-2-O-(3-triphenylmethyloxypropyl)-scyllo-inositol (scyllo-11)

Scyllo-**11** was obtained as a white solid in 76% yield starting from *scyllo*-**1** using the above protocol. R_f 0.62 (1/1 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.75 (qt, 2H, $J_{7,8} = J_{8,9} = 6.5$ Hz, H-8), 1.95 (s, 3H, Me), 1.98 (s, 6H, 2Me), 2.00 (s, 3H, Me), 2.05 (s, 3H, Me), 3.09 (t, 2H, H-9) 3.50 (app t, 1H, $J_{1,2} = J_{1,6} = 7.0$ Hz, H-1), 3.68 (t, 2H, H-7), 5.08-5.21 (m, 5H, H-inositol), 7.20-7.41 (mt, 15H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.5 (Me), 20.6 (2Me), 20.7 (2Me), 31.0 (C-8), 60.5 (C-9), 70.2 (C-7), 70.6 (C-2 and C-6 or C-3 and C-5), 70.8 (C-4), 71.7 (C-2 and C-6 or C-3 and C-5), 78.1 (C-1), 86.7 (Cq-Tr), 127.1 (3C-Ar), 127.9 (6C-Ar), 128.7 (6C-Ar), 144.3 (3Cq-Ar), 169.3 (2CO), 169.5 (CO), 169.9 (2CO); IR (KBr, v, cm⁻¹) 3061, 1755, 1446, 1228; HRMS ESI *m*/*z* : calculated for C₃₈H₄₂NaO₁₂ [M+Na]⁺ 729.2308. Found: 729.2307.

2-O-(3-Hydroxypropyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-12)

A solution of *myo*-**11** (1 g, 1.45 mmol) and FeCl₃ (1.01 g, 6.8 mmol) diluted in dry CH₂Cl₂ (10 mL) was stirred at room temperature overnight. The reaction was quenched by adding water and extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 20:80) to give *myo*-**12** (455 mg, 70% yield) as a white solid m.p. 148-150 °C; R_f 0.70 (A); ¹H NMR (400 MHz, CDCl₃) δ 1.83 (qt, 2H, $J_{8,7} = J_{8,9} = 6.0$ Hz, H-8), 1.99 (s, 9H, 3Me), 2.07 (s, 6H, 2Me), 3.78 (t, 2H, H-7), 3.82 (t, 2H, H-9), 4.00 (app t, 1H, $J_{2,1} = J_{2,3} = 2.5$ Hz, H-2), 4.97 (dd, 2H, $J_{3,4} = J_{1,6} = 9.5$ Hz, $J_{3,2} = J_{1,2} = 2.5$ Hz, H-1 and H-3), 5.13 (app t, 1H, $J_{5,4} = J_{5,6} = 9.5$ Hz, H-5), 5.53 (app t, 2H, H-4 and H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (Me), 20.7 (2Me), 20.8 (2Me), 32.6 (C-8), 60.2 (C-9), 69.9 (C-4 and C-6), 71.1 (C-1, C-3 and C-5), 71.7 (C-7),

76.4 (C-2), 169.9 (2CO), 169.9 (2CO), 169.9 (CO); IR (KBr, v, cm⁻¹) 3448, 2944, 1755, 1229; HRMS ESI *m/z* : calculated for C₁₉H₂₈NaO₁₂ [M+Na]⁺ 471.1473. Found: 471.1473.

1-O-(3-Hydroxypropyl)-2,3,4,5,6-pentaacetyl-scyllo-inositol (scyllo-12)

Scyllo-12 was obtained as a white solid in 73% yield starting from *scyllo*-11 using the above protocol. m.p. 184-185 °C; R_f 0.75 (A); ¹H NMR (400 MHz, CDCl₃) δ 1.74 (qt, $J_{7,8} = J_{8,9} = 6.0$ Hz, H-8), 2.02 (s, 3H, Me), 2.03 (s, 6H, 2Me), 2.10 (s, 6H, 2Me), 3.58 (app t, 1H, $J_{1,2} = J_{1,6} = 10.0$ Hz, H-1), 3.67 (t, 2H, H-9), 3.73 (t, 2H, H-7), 5.14-5.27 (m, 5H, H-inositol); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (Me), 20.6 (2Me), 20.8 (2Me), 32.7 (C-8), 60.2 (C-9), 70.2 (C-7), 10.5 (C-2 and C-6 or C-3 and C-5), 70.7 (C-4), 71.5 (C-2 and C-6 or C-3 and C-5), 78.3 (C-1), 169.5 (CO), 169.7 (2CO), 169.9 (2CO); IR (KBr, v, cm⁻¹) 3472, 2941, 1747, 1226; HRMS ESI *m/z* : calculated for C₁₉H₂₈NaO₁₂ [M+Na]⁺ 471.1473. Found: 471.1471.

2-O-(3-Fluoroypropyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-13)

To a solution of *myo*-**12** (50 mg, 0.1 mmol) in dry CH₂Cl₂ (8 mL) was added DAST (0.2 mL). The mixture was stirred at room temperature for 5 min, then quenched by adding MeOH and diluted with CH₂Cl₂ (20 mL). The solution was washed with a saturated aqueous solution of sodium hydrogencarbonate and water, dried over MgSO₄ and filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 40:60) to give *myo*-**13** (48 mg, 95% yield) as a white solid. m.p. 156-157 °C; Rf 0.30 (1/1 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.95 (dqt, 2H, $J_{H,F} = 27.0$ Hz, $J_{8,7} = J_{8,9} = 5.5$ Hz, H-8), 1.99 (s, 3H, Me), 2.00(s, 6H, 2Me), 2.06 (s, 6H, 2Me), 3.73 (t, 2H, H-7), 3.99 (app t, 1H, $J_{2,1} = J_{2,3} = 2.5$ Hz, H-2), 4.63 (dt, 2H, $J_{H,F} = 47.0$ Hz, $J_{8,9} = 5.5$ Hz, H-9), 4.95 (dd, 2H, $J_{3,4} = J_{1,6} = 10.0$ Hz, $J_{3,2} = J_{1,2} = 2.5$ Hz, H-1 and H-3), 5.12 (app t, 1H, $J_{5,4} = J_{5,6} = 10.0$ Hz, H-5), 5.53 (app t, 2H, H-4 and H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (Me), 20.7 (4Me), 31.3 (d, $J_{C,F} = 20.0$ Hz, C-8), 69.7 (d,

 $J_{C,F} = 4.5$ Hz, C-7), 69.9 (C-4 and C-6), 71.1 (C-1 and C-3), 71.2 (C-5), 76.8 (C-2), 80.4 (d, $J_{C,F} = 164.0$ Hz, C-9), 169.9 (2CO), 169.9 (CO), 170.0 (2CO); NMR (¹⁹F, 235 MHz CDCl₃) δ -223.3 (tt, $J_{H,F} = 47.0$ Hz, $J_{H,F} = 27.0$ Hz); IR (film, v, cm⁻¹) 2971, 1755, 1640, 1229, 2971, 1755, 1640, 1229; HRMS ESI m/z : calculated for C₁₉H₂₇FNaO₁₁ [M+Na]⁺ 473.1430. Found: 473.1410.

1-O-(3-Fluoropropyl)-2,3,4,5,6-pentaacetyl-scyllo-inositol (scyllo-13)

Scyllo-13 was obtained as a white solid in 92% yield starting from *scyllo*-12 using the above protocol. m.p. 199-200 °C; $R_f 0.33 (1/1 \text{ H/A})$; ¹H NMR (400 MHz, CDCl₃) δ 1.84 (dt, 2H, $J_{\text{H,F}} = 27.0 \text{ Hz}$, $J_{7,8} = J_{8,9} = 6.0 \text{ Hz}$, H-8), 1.98 (s, 3H, Me), 1.99 (s, 6H, 2Me), 2.05 (s, 6H, 2Me), 3.54 (app t, 1H, $J_{1,2} = J_{1,6} = 9.0 \text{ Hz}$, H-1), 3.68 (t, 2H, H-7), 4.44 (dt, $J_{\text{H,F}} = 47.0 \text{ Hz}$, 2H, H-9), 5.09-5.25 (m, 5H, H-inositol); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (Me), 20.6 (2Me), 20.7 (2Me), 31.1 (d, $J_{\text{C,F}} = 20.0 \text{ Hz}$, C-8), 68.6 (d, $J_{\text{C,F}} = 5.0 \text{ Hz}$, C-7), 70.3 (C-4), 70.5 (C-2 and C-6 or C3 and C-5), 71.7 (C-2 and C-6 or C-3 and C-5), 78.2 (C-1), 80.3 (d, $J_{\text{C,F}} = 163.0 \text{ Hz}$, C-9), 169.5 (CO), 169.6 (2CO), 169.9 (2CO); NMR (¹⁹F, 235 MHz CDCl₃) δ - 223.5 (tt, $J_{\text{H,F}} = 47.0 \text{ Hz}$, $J_{\text{H,F}} = 27.0 \text{ Hz}$); IR (film, v, cm⁻¹) 2961, 1745, 1227; HRMS ESI m/z : calculated for C₁₉H₂₇FNaO₁₁ [M+Na]⁺ 473.1430. Found: 473.1451.

1-C-(1-Vinyl)-2,3,4,5,6-pentakis-O-(phenylmethyl)-scyllo-inositol (scyllo-14)

To a solution of 7 (10 g, 15.9 mmol) in dry THF (50 mL) was added dropwise vinylmagnesium bromide (105 mL of a 1 M solution in diethyl ether, 105 mmol) under argon at 0 °C. The mixture was stirred for 2 h at room temperature, then quenched by adding a saturated aqueous solution of NH₄Cl (100 mL) and extracted with EtOAc (200 mL). The remaining aqueous phase was further extracted with ethyl acetate (2 x 50 mL), the combined organic layers dried over MgSO₄ and filtered. The solvent was removed under reduced

pressure. The crude product was purified by flash column chromatography (silica gel, hexane 100% to hexane/EtOAc 85:15) to give *scyllo*-**14** (3.8 g, 37%) as a white solid and *myo*-**14** (5.7 g, 56%) as a yellow oil. R_f 0.62 (8/2 H/A); ¹H NMR (400 MHz, CDCl₃) δ 2.21(s, 1H, OH), 3.61 (brd, 2H, $J_{2,3} = J_{5,6} = 9.0$ Hz, H-2 and H-6), 3.70-3.80 (m, 3H, H-3, H-4 and H-5), 4.89 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.90 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.93 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.95 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.98 (s, 2H, CH₂Ph), 5.56 (dd, 1H, $J_{7,8} = 11.0$ Hz et J8,8' = 1.5 Hz, H-8), 5.72 (dd, 1H, $J_{7,8}' = 17.0$ Hz, H-8'), 6.08 (dd, 1H, H-7), 7.31-7.40 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 75.9(4CH₂), 76.2 (CH₂), 78.6 (C-1), 82.5 (C-3 and C-5), 83.7 (C-4), 84.7 (C-2 and C-6), 119.2 (C-8), 127.8 (4C-Ar), 127.8 (5C-Ar), 128.0 (6C-Ar), 128.5 (6C-Ar), 135.3 (C-7), 138.5 (3Cq-Ar), 138.8 (2Cq-Ar); IR (film, v, cm⁻¹) 3552, 3030, 2910, 1497, 1066; HRMS ESI *m*/*z* : calculated for C4₃H₄₄NaO₆ [M+Na]⁺ 679.3030. Found: 679.3050.

2-C-(1-Vinyl)-1,3,4,5,6-pentakis-O-(phenylmethyl)-myo-inositol (myo-14)

m.p. 119-120 °C; R_f 0.77 (8/2 H/A); ¹H NMR (400 MHz, CDCl₃) δ 3.45 (d, 2H, $J_{1,6} = J_{3,4} =$ 10.0 Hz, H-1 and H-3), 3.65 (app t, 1H, $J_{4,5} = J_{5,6} =$ 10.0 Hz, H-5), 4.06 (app t, 2H, H-4 and H-6), 4.70 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.85 (d, 2H, J = 10.0 Hz, CH₂Ph), 4.93 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.98 (d, 2H, J = 10.0 Hz, CH₂Ph), 4.99 (s, 2H, CH₂Ph), 5.43 (dd, 1H, $J_{7,8} =$ 10.5 Hz et J8,8' = 1.0 Hz, H-8), 5.64 (dd, 1H, $J_{7,8}' =$ 17.0 Hz, H-8'), 5.82 (dd, 1H, H-7), 7.30-7.40 (m, 25 H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 76.0 (3CH₂), 76.0 (2CH₂), 78.1 (C-2), 82.0 (C-1 and C-3), 82.6 (C-4 and C-6), 83.0 (C-5), 116.8 (C-8), 127.6 (3C-Ar), 127.9 (3C-Ar), 127.9 (4C-Ar), 128.3 (4C-Ar), 128.4 (6C-Ar), 128.5 (5C-Ar), 137.9 (2Cq-Ar), 138.6 (Cq-Ar), 138.7 (2Cq-Ar), 140.0 (C-7); IR (film, v, cm⁻¹) 3551, 3031, 2864, 1453, 1356, 1060; HRMS ESI *m*/z : calculated for C43H44NaO₆ [M+Na]⁺ 679.3030. Found : 679.3022.

2-C-(2-Allyl)-1,3,4,5,6-pentakis-O-(phenylmethyl)-myo-inositol (myo-15)

To a solution of 7 (10 g, 15.9 mmol) in dry THF (50 mL) was added dropwise allylmagnesium bromide (127 mL of a 1 M solution in diethyl ether, 127.2 mmol) under argon at 0 °C. The mixture was stirred for 2 h at room temperature, then quenched by adding a saturated aqueous solution of NH_4Cl (100 mL) and extracted with EtOAc (200 mL). The remaining aqueous phase was further extracted with ethyl acetate (2 x 50 mL) and the combined organic layers were dried over MgSO₄, and filtered. The solvents were removed under reduced pressure and the crude product was purified by flash column chromatography (silica gel, hexane 100% to hexane/EtOAc 85:15) to give scyllo-15 (4.0 g, 38%) and myo-15 (5.6 g, 53%) Rf 0.7 (8/2 H/A); ¹H NMR (400 MHz, CDCl₃) δ 2.36 (brs, 1H, OH), 2.66 (d, 2H, $J_{7,8} = 7.5$ Hz, H7), 3.44 (d, 2H, $J_{1,6} = J_{3,4} = 9.5$ Hz, H-1 and H-3), 3.56 (app t, 1H, $J_{4,5} =$ $J_{5.6} = 9.5$ Hz, H-5), 4.08 (app t, 2H, H-4 and H-6), 4.72 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.87 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.96 (s, 2H, CH₂Ph), 4.99 (d, 2H, J = 11.0 Hz, CH₂Ph), 5.06 (d, 2H, J = 11.0 Hz, CH₂Ph), 5.07-5.15 (m, 2H, H-9), 5.60 (ddt, 1H, J_{8,9} = 17.5 Hz, J_{8,9}'= 9.5 Hz, H-8), 7.25-7.40 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 39.6 (C-7), 75.4 (2CH₂), 75.9 (3CH₂), 77.7 (C-2), 79.8 (C-3 and C-1), 83.3 (C-4, C-6 and C-5), 119.5 (C-9), 127.7 (3C-Ar), 127.8 (3C-Ar), 127.9 (5C-Ar), 127.9 (4C-Ar), 128.5 (10C-Ar), 132.9 (C-8), 138.3 (2Cq-Ar), 138.6 (3Cq-Ar); IR (NaCl, v, cm⁻¹) 3553, 3063, 3031, 2866; ESI m/z : calculated for C44H46NaO6 [M+Na]⁺. Found: 693 [M+Na]⁺.

1-C-(2-Allyl)-2,3,4,5,6-pentakis-O-(phenylmethyl)-scyllo-inositol (scyllo-15)

R_f 0.73 (8/2 H/A); ¹H NMR (400 MHz, CDCl₃) δ 2.57 (d, 2H, $J_{7,8}$ = 7.5 Hz, H-7), 3.54 (d, 2H, $J_{2,3} = J_{5,6} = 8.5$ Hz, H-2 and H-6), 3.60-3.70 (m, 3H, H-3, H-4 and H-5), 4.80-4.96 (m, 10H, CH₂Ph), 5.20 (brd, 1H, J = 17.5 Hz, H-9), 5.21 (brd, 1H, J = 10.0 Hz, H-9'), 6.19 (ddt, 1H, H-8), 7.25-7.42 (m, 25H, H-Ar). ; ¹³C NMR (100.6 MHz, CDCl₃) δ 36.3 (C-7), 76.0 (2CH₂), 76.2 (2CH₂ and C-1),76.4 (CH₂) 82.5 (C-3 and C-5), 83.8 (C-4), 85.5 (C-2 and C-6),

119.2 (C-9), 127.6 (2C-Ar), 127.7 (4C-Ar), 127.8 (3C-Ar), 128.0 (2C-Ar), 128.1 (4C-Ar), 128.5 (4C-Ar), 128.5 (4C-Ar), 128.6 (2C-Ar), 134.7 (C-8), 138.6 (2Cq-Ar), 138.6 (Cq-Ar), 139.0 (2Cq-Ar); IR (NaCl, ν, cm⁻¹) 3554, 3064, 3030, 2913, 1497,1066; ESI *m/z* : calculated for C₄₄H₄₆NaO₆ [M+Na]⁺. Found: 693 [M+Na]⁺.

2-C-(2-Hydroxyethyl)-3,4,5,6-tetrakis-O-(phenylmethyl)-myo-inositol (myo-16)

To a solution of myo-14 (10.0 g, 15.2 mmol) in dry THF (250 mL) was added dropwise BH₃ (60 mL of a 1 M solution in hexane, 60 mmol) under argon at 0 °C. The mixture was stirred for 8 h at room temperature, then H₂O₂ (30%, 500 mL) and an aqueous solution of 2 M NaOH (600 mL) were added slowly. After 12 h, the mixture was diluted with ethyl acetate (200 mL) and extracted. The remaining aqueous phase was further extracted with ethyl acetate (2 x 100 mL), the combined organic layers were dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane 100% to hexane/EtOAc 70:30) to give myo-16 (8.2 g, 80% yield) as a white solid. m.p. 140-141 °C; $R_f 0.55$ (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.94 (t, 2H, $J_{7,8} = 6.5$ Hz, H-7), 2.75 (s, 1H, OH3.37 (d, 2H, $J_{1,6} = J_{3,4} = 10.0$ Hz, H-1 and H-3), 3.52 (t, 2H, H-8), 3.57 (app t, 1H, $J_{4,5} = J_{5,6} = 10.0$ Hz, H-5), 4.07 (app t, 2H, H-4 and H-6), 4.70 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.85 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.94 (s, 2H, CH₂Ph), 4.97 (d, 2H, J = 11.0 Hz, CH₂Ph), 5.05 (d, 2H, J = 11.0 Hz, CH₂Ph), 7.25-7.35 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) & 37.3 (C-7), 59.2 (C-8), 75.5 (2CH₂), 75.9 (3CH₂), 76.6 (C-2), 81.3 (C-1 and C-3), 83.2 (C-4 and C-6), 83.4 (C-5), 127.7 (3C-Ar), 127.8 (3C-Ar), 127.9 (4C-Ar), 128.0 (2C-Ar), 128.2 (4C-Ar), 128.6 (5C-Ar), 128.6 (4C-Ar), 138.2 (2Cq-Ar), 138.6 (3Cq-Ar); IR (NaCl, v, cm⁻¹) 3448, 2927, 2875, 1065; HRMS ESI m/z : calculated for C₄₃H₄₆NaO₇ [M+Na]⁺ 697.3136. Found: 697.3153.

1-C-(2-Hydroxyethyl)-2,3,4,5,6-pentakis-O-(phenylmethyl)-scyllo-inositol (scyllo-16)

Scyllo-16 was obtained as a white solid in 70% yield starting from scyllo-14 using the above

protocol. R_f 0.28 (7/3 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.99 (t, 2H, $J_{7,8} = 5.0$ Hz, H-7), 3.50-3.55 (m, 2H, H-inositol), 3.60-3.70 (m, 3H, H-inositol), 3.89 (t, 2H, H-8), 4.85-4.95 (m, 10H, CH₂Ph), 7.25-7.38 (m, 25H, H-Ar); ¹³C NMR (62.9 MHz, CDCl₃) δ 34.3 (C-7), 58.3 (C-8), 75.9 (2CH₂), 76.1 (CH₂), 76.7 (2CH₂), 77.0 (C-1), 82.3 (C-3 and C-5), 84.2 (C-4), 85.6 (C-2 and C-6), 127.8 (C-Ar), 127.8 (2C-Ar), 127.9 (2C-Ar), 128.0 (4C-Ar), 128.1 (6C-Ar), 128.5 (6C-Ar), 128.7 (4C-Ar), 138.2 (2Cq-Ar), 138.4 (2Cq-Ar), 138.6 (Cq-Ar); IR (NaCl, v, cm⁻¹) 3401, 3064, 2919, 1060; HRMS ESI *m*/*z* : calculated for C₄₃H₄₆NaO₇ [M+Na]⁺ 697.3136. Found: 697.3150.

2-C-(3-Hydroxypropyl)-3,4,5,6-tetrakis-O-(phenylmethyl)-myo-inositol (myo-17)

To a solution of myo-15 (10.0 g, 14.9 mmol) in dry THF (25 mL) was added dropwise BH₃ (60 mL of a 1 M solution in hexane, 60 mmol) under argon at 0 °C. The mixture was stirred for 8 h at room temperature, then H₂O₂ (30%, 500 mL) and a solution of 2 M NaOH (600 mL) were added slowly. After 12 h, the mixture was diluted with ethyl acetate (200 mL) and extracted. The remaining aqueous phase was further extracted with ethyl acetate (2 x 100 mL), the combined organic layers were dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane 100% to hexane/EtOAc 70:30) to give myo-17 (8.2 g, 80% yield) as a white solid. m.p. 121-122 °C; Rf 0.30 (7/3 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.15-1.20 (m, 2H, H-8), 1.71-1.78 (m, 2H, H-7), 2.35 (brs, 1H, OH), 3.29 (t, 2H, J_{8.9} = 6.5 Hz, H-9), 3.37 (d, 2H, $J_{1,6} = J_{3,4} = 9.5$ Hz, H-1 and H-3), 3.54 (app t, 1H, $J_{4,5} = J_{5,6} = 9.5$ Hz, H-5), 4.08 (app t, 2H, H-4 and H-6), 4.68 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.87 (d, 2H, J = 11.0 Hz, CH₂Ph), 4.95 (s, 2H, CH₂Ph), 4.97 (d, 2H, J = 11.0 Hz, CH₂Ph), 5.02 (d, 2H, J = 11.0 Hz, CH₂Ph), 7.25-7.40 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.5 (C-8), 31.2 (C-7), 62.8 (C-9), 75.6 (2CH₂), 76.0 (3CH₂), 77.2 (C-2), 79.7 (C-1 and C-3), 83.4 (C-5), 83.5 (C-4 and C-6), 127.7 (C-Ar), 127.8 (2C-Ar), 127.8 (2C-Ar), 128.0 (6C-Ar), 128.4 (4C-Ar), 128.6 (10C-Ar), 138.4 (2Cq-Ar), 138.6 (2Cq-Ar), 138.7 (Cq-Ar); IR (NaCl, v, cm⁻¹) 3435, 2926, 2868, 1065; ESI m/z : calculated for C₄₄H₄₈O₇ 689 . Found : 689 [M]⁺, 711 [M+Na]⁺Anal. Calcd for C₄₄H₄₈O₇: C, 76.71; H, 7.02 %. Found: C, 76.16; H, 7.68 %.

1-C-(2-Hydroxyethyl)-2,3,4,5,6-pentakis-O-(phenylmethyl)-scyllo-inositol (scyllo-17)

Scyllo-**17** was obtained as a white solid in 70% yield starting from *scyllo*-**15** using the above protocol. m.p. 152-153 °C; $R_f 0.2 (7/3 \text{ H/A})$; ¹H NMR (400 MHz, CDCl₃) δ 1.85 (t, 2H, $J_{7,8} = 6.5 \text{ Hz}$, H-7), 1.95 (app qt, 2H, J = 6.5 Hz, H-8), 3.48 (d, 2H, $J_{2,3} = J_{5,6} = 9.0 \text{ Hz}$, H-2 and H-6), 3.57-3.67 (m, 5H, H-3, H-4, H-5 and H-9), 4.75-4.95 (m, 10H, CH₂Ph), 7.04-7.43 (m, 25H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 26.8 (C-8), 29.0 (C-7), 64.0 (C-9), 76.0 (2CH₂), 76.1 (C-1), 76.2 (CH₂), 76.3 (2CH₂), 82.7 (C-3 and C-5), 84.1 (C-4), 86.3 (C-2 and C-6), 127.8 (2C-Ar), 127.8 (3C-Ar), 127.9 (4C-Ar), 128.0 (2C-Ar), 128.1 (4C-Ar), 128.5 (4C-Ar), 128.6 (6C-Ar), 138.6 (2Cq-Ar), 138.6 (4Cq-Ar), 138.8 (2Cq-Ar); IR (NaCl, v, cm⁻¹) 3445, 2927, 2634, 1236; HRMS ESI *m*/*z* : calculated for C₄₄H₄₈KO₇ [M+K]⁺ 711.3292. Found: 711.3295.

2-C-(Triphenylmethyloxyethyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-18)

To a solution of *myo-3* (680 mg, 2.9 mmol) in pyridine (20 mL) were added trityl chloride (2.5 g, 9 mmol) and a catalytic amount of DMAP. The mixture was stirred at 70 °C for 3 d then the reaction mixture was allowed to reach room temperature. Acetic anhydride (10 mL) was added and the solution was stirred for 2 h. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 60:40) to give *myo-18* (1.45 g, 74% yield). m.p. 187-188 °C; R_f 0.42 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.88 (t, 2H, $J_{7,8}$ = 6.5 Hz, H-7), 1.95 (s, 6H, 2Me), 1.98 (s, 6H, 2Me), 2.00 (s, 3H, Me), 3.26 (t, 2H, H-8), 3.80 (s, 1H, OH), 4.96 (d, 2H, $J_{1,6}$ = $J_{3,4}$ = 9.5 Hz, H-1 and H-3), 5.17 (app t, 1H, $J_{4,5}$ = $J_{5,6}$ = 9.5 Hz, H-5), 5.54 (app t, 2H, H-4)

and H-6), 7.29 (brt, 3H, J = 7.5 Hz, H-Ar), 7.33 (brt, 6H, J = 7.5 Hz, H-Ar), 7.38 (brd, 6H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (2Me), 20.7 (3Me), 34.5 (C-7), 60.1 (C-8), 70.7 (C-5), 70.9 (C-4 and C-6), 73.5 (C-1 and C-3), 74.3 (C-2), 88.0 (Cq-Tr), 127.4 (3C-Ar), 128.1 (6C-Ar), 128.5 (6C-Ar), 143.5 (3Cq-Ar), 169.8 (2 CO), 169.8 (2CO), 169.9 (CO); IR (KBr, v, cm⁻¹) 3482, 2936, 2857, 1758, 1227, 1036; HRMS ESI *m*/*z* : calculated for C₃₇H₄₀NaO₁₂ [M+Na]⁺ 699.2412. Found: 699.2441. Anal. Calculated for C₃₇H₄₀O₁₂: C, 65.67; H, 5.95%. Found: C, 65.75; H, 5.81%.

1-C-(Triphenylmetyloxyethyl)-2,3,4,5,6-penta-O-acetyl-scyllo-inositol (scyllo-18)

Scyllo-18 was obtained as a white solid in 70% yield starting from *scyllo*-3 using the above protocol. m.p. 95-96 °C; R_f 0.51 (1/1 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.92 (s, 6H, 2Me), 2.00 (s, 3H, Me), 2.01 (6H, 2Me), 2.21 (t, 2H, $J_{7,8} = 6.5$ Hz, H-7), 3.54 (t, 2H, H-8), 4.35 (s, 1H, OH) 5.13-5.25 (m, 5H, H-inositol), 7.23-7.44 (m, 15H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (2Me), 20.7 (3Me), 30.1 (C-7), 61.3 (C-8), 70.3 (C-3 and C-5), 71.5 (C-4), 74.3 (C-1), 74.6 (C-2 and C-6), 88.1 (Cq-Tr), 127.5 (3C-Ar), 128.2 (6C-Ar), 128.5 (6C-Ar), 143.5 (3Cq-Ar), 169.5 (2CO), 169.6 (CO), 170.0 (2CO); IR (film, v, cm⁻¹) 3467, 2107, 1759, 1644, 1368, 1224; HRMS ESI *m*/*z* : calculated for C₃₇H₄₀NaO₁₂ [M+Na]⁺ 699.2412. Found: 699.2400. Anal. Calculated for C₃₇H₄₀O₁₂: C, 65.67; H, 5.95%. Found: C, 63.70; H, 5.88%.

2-C-(2-Hydroxyethyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-20)

A solution of *myo*-18 (100 mg, 0.15 mmol) and FeCl₃ (200 mg, 1.5 mmol) diluted in dry CH_2Cl_2 (5 mL) was stirred at room temperature for 15 min. The reaction mixture was quenched by adding water and extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc

80:20 to 20:80) to give *myo*-**20** (29 mg, 45% yield). R_f 0.25 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.78 (t, 2H, $J_{7,8} = 6.0$ Hz, H-7), 1.98 (s, 6H, 2Me), 1.99 (s, 3H, Me), 2.11 (s, 6H, 2Me), 3.73 (t, 2H, H-8), 5.16 (d, 2H, $J_{1,6} = J_{3,4} = 10.0$ Hz, H-1 and H-3), 5.23 (app t, 1H, $J_{5,4} = J_{5,6} = 10.0$ Hz, H-5), 5.54 (app t, 2H, H-4 and H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.7 (3Me), 20.8 (2Me), 36.3 (C-7), 58.3 (C-8), 70.5 (C-5), 71.0 (C-4 and C-6), 72.9 (C-1 and C-3), 75.0 (C-2) 169.9 (3CO), 170.0 (2CO); IR (film, v, cm⁻¹) 3403, 1729, 1370, 1227; ESI *m/z*: calculated for C₁₈H₂₆NaO₁₂ [M+Na]⁺ 457. Found: 457

1-C-(2-Hydroxyethyl)-2,3,4,5,6-pentaacetyl-scyllo-inositol (scyllo-20)

A solution of *scyllo*-**18** (100 mg, 0.15 mmol) and FeCl₃ (200 mg, 1.5 mmol) diluted in dry CH₂Cl₂ (5 mL) was stirred at room temperature for 18 h. The reaction mixture was quenched by adding water and extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 20:80) to give *scyllo*-**20** (72% yield). R_f 0.20 (3/7 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.98 (s, 3H, Me), 2.01 (s, 6H, 2Me), 2.10 (s, 6H, 2Me), 2.02-2.12 (m, 2H, H-7), 2.8 (t, 1H, OH), 3.93, (s, 1H, OH), 3.98-4.04 (m, 2H, H-8), 5.20-5.25 (m, 5H, H-inositol); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (3Me), 20.8 (2Me), 32.3 (C-7), 59.7 (C-8), 70.1 (C-3 and C-5), 71.6 (C-4), 74.9 (C-2 and C-6), 75.4 (C-1), 169.7 (CO), 169.9 (2CO), 170.2 (2CO); IR (film, v, cm⁻¹) 3484, 2942, 1757, 1362, 1224; HRMS ESI *m*/*z* : calculated for C₁₈H₂₆NaO₁₂ [M+Na]⁺ 457.1316. Found: 457.1319.

2-C-(2-Tosyloxyethyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-22)

A mixture of *myo*-**20** (100 mg, 0.21 mmol), tosyl chloride (107 mg, 0.63 mmol), triethylamine (0.2 mL, 0.03 mmol) in dry CH_2Cl_2 (3 mL) was stirred at room temperature for 3 h. The reaction was quenched by adding water and extracted with CH_2Cl_2 (3 x 50 mL). The

combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 20:80) to give *myo*-**22** (86 mg, 70% yield) as a white solid m.p. 88-89 °C; R_f 0.55 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.96-2.00 (m, 2H, H-7), 1.97 (s, 6H, 2Me), 1.98 (s, 3H, Me), 2.09 (s, 6H, 2Me), 2.47 (s, 3H, MeTs), 3.98 (t, 2H, *J*_{7,8} = 7.0 Hz, H-8), 4.90 (d, 2H, *J*_{1.6} = *J*_{3.4} = 9.5 Hz, H-1 and H-3), 5.12 (app t, 1H, *J*_{4.5} = *J*_{5.6} = 9.5 Hz, H-5), 5.48 (app t, 2H, H-4 and H-6), 7.39 (d, 2H, *J* = 8.0 Hz, H-Ar), 7.79 (d, 2H, *J* = 8.0 Hz, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (5Me), 21.8 (MeTs), 34.5 (C-7), 65.1 (C-8), 70.3 (C-5), 70.8 (C-4 and C-6), 71.7 (C-1 and C-3), 74.3 (C-2), 128.2 (2C-Ar), 130.2 (2C-Ar), 132.6 (Cq-Ar), 145.4 (Cq-Ar), 169.7 (2CO), 169.8 (3CO); IR (KBr, v, cm⁻¹) 3483, 2942, 1757, 1227; HRMS ESI *m/z* : calculated for C₂₅H₃₂NaO₁₄S [M+Na]⁺ 611.1405. Found: 611.1400.

1-C-(2-Tosyloxyethyl)-2,3,4,5,6-pentaacetyl-scyllo-inositol (scyllo-22)

Scyllo-22 was obtained as a white solid in 71% yield starting from *scyllo*-20 using the above protocol. R_f 0.28 (1/1 Hex/EtOAc); ¹H NMR (250 MHz, CDCl₃) δ 1.96 (s, 3H, Me), 1.99 (s, 6H, 2Me), 2.04 (s, 6H, 2Me), 2.11 (t, 2H, $J_{7,8} = 7.5$ Hz, H-7), 2.45 (Me Ts), 2.95 (brs, 1H, OH), 4.34 (t, 2H, H-8), 5.05-5.25 (m, 5H, H-inositol), 7.36 (d, 2H, J = 8.0 Hz, H-Ar), 7.82 (d, 2H, H-Ar); ¹³C NMR (62.9 MHz, CDCl₃) δ 20.5 (2Me), 20.6 (Me), 20.7 (2Me), 21.8 (Me-Ts), 30.3 (C-7), 66.4 (C-8), 70.7 (C-3 and C-5), 71.3 (C-1), 73.9 (C-4), 74.5 (C-2 and C-6), 128.1 (2C-Ar), 130.1 (2C-Ar), 133.3 (Cq-Ar), 145.1 (Cq-Ar), 169.7 (2CO), 169.7 (CO), 170.4 (2CO); IR (film, v, cm⁻¹) 3485, 2945, 1760, 1368, 1222; HRMS ESI *m/z* : calculated for C₂₅H₃₂KO₁₄S [M+K]⁺ 627.1144. Found: 627.1146.

2-C-(2-Tosyloxyethyl)-1,2,3,4,5,6-hexaacetyl-myo-inositol (myo-23)

To a solution of *myo*-22 (200 mg, 0.34 mmol) in isopropenyl acetate (100 mL) was added *p*-TSA (100 mg, 0.58 mmol) and the mixture was stirred for 2 h at 80 °C. The solvent was

removed under reduced pressure, and the residue was diluted and extracted in CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica gel, hexane/EtOAc 80:20 to 40:60) to give *myo*-**23** (170 mg, 78% yield) as a white solid. m.p. 110-111 °C; R_f 0.31 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.96 (s, 6H, 2Me), 1.97 (s, 3H, Me), 2.05 (s, 6H, 2Me), 2.17 (s, 3H, Me), 2.45 (s, 3H, MeTs), 2.64 (t, 2H, *J*_{7,8} = 7.0 Hz , H-7), 3.98 (t, 2H, H-8), 4.97 (d, 2H, *J*_{1,6} = *J*_{3,4} = 10.0 Hz, H-1 and H-3), 5.10 (appt, 1H, *J*_{4,5} = *J*_{5,6} = 10.0 Hz, H-5), 5.39 (app t, 2H, H-4 and H-6), 7.36 (d, 2H, *J* = 8.0 Hz, H-Ar), 7.78 (d, 2H, *J* = 8.0 Hz, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (5 Me), 21.8 (Me), 22.6 (MeTs), 31.0 (C-7), 65.0 (C-8), 70.3 (C-4 and C-6), 70.4 (C-5), 71.2 (C-1 and C-3), 83.7 (C-2), 128.2 (2C-Ar), 130.1 (2C-Ar), 132.7 (Cq-Ar), 145.2 (Cq-Ar), 168.7 (CO), 169.6 (2CO), 169.7 (3CO); IR (NaCl, v, cm⁻¹) 2928, 1760, 1369, 1178; HRMS ESI *m/z* : calculated for C₂₇H₃₄NaO₁₅S [M+Na]⁺ 653.1511. Found : 653.1527Anal. Calcd for C₂₇H₃₄O₁₅S: C, 51.42; H, 5.43; X, S: 5.08. Found: C, 51.49; H, 5.50; X, 1.69.

1-C-(2-Tosyloxyethyl)-1,2,3,4,5,6-hexaacetyl-scyllo-inositol (scyllo-23)

Scyllo-**23** was obtained as a white solid in quantitative yield starting from *scyllo*-**22** using the above protocol. m.p. 102-104 °C; R_f 0.36 (1/1 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.90 (s, 3H, CH3), 1.98 (s, 3H, CH3), 1.99 (s, 6H, 2 CH3), 2.02 (s, 6H, 2 CH3), 2.31 (t, 2H, $J_{7,8} = 7.5$ Hz, H-7), 2.46 (s, 3H, CH3-Ts), 4.29 (t, 2H, $J_{7,8} = 7.5$ Hz, H-8), 5.11 (t, 2H, $J_{2,3} = J_{3,4} = J_{4,5} = J_{5,6} = 10.0$ Hz, H-3 and H-5), 5.26 (t, 1H, $J_{3,4} = J_{4,5} = 10.0$ Hz, H-4), 6.15 (d, 2H, $J_{2,3} = J_{5,6} = 10.0$ Hz, H-2 and H-6), 7.39 (d, 2H, J = 8.5 Hz, H-Ts), 7.82 (d, 2H, J = 8.5 Hz, H-Ts); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (5Me), 21.8 (Me), 21.9 (Me-Ts), 30.3 (C-7), 65.5 (C-8), 70.1 (C-3 and C-5), 70.3 (C-2 and C-6), 70.6 (C-4), 81.6 (C-1), 128.1 (2C-Ar), 130.1 (2C-Ar), 133.3 (Cq-Ar), 145.2 (Cq-Ar), 168.8 (2CO), 169.4 (CO), 169.5 (CO), 169.7 (2CO);

IR (film, v, cm⁻¹) 2946, 1763, 1432, 1368, 1221; HRMS ESI m/z : calculated for C₂₇H₃₄NaO₁₅S [M+Na]⁺ 653.1511. Found: 653.1530.

2-C-(2-Fluoroethyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-25)

To a solution of *myo-22* (70 mg, 0.044 mmol) in dry CH₃CN (8 mL) was added KF (220 mg, 0.44 mmol), and [18]-crown-6 (300 mg, 0.50 mmol). The mixture was stirred at room temperature for 2 h. Afterwards the residue was diluted with CH₂Cl₂, washed with water, dried over MgSO₄ and filtered. After the solvent was removed under reduced pressure the crude product was purified by column chromatography (silica gel, hexane/EtOAc 60:40) to give *myo-25* (45 mg, 70% yield). Rf 0.36 (4/6 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.94 (dt, 2H, $J_{\rm H,F}$ = 28.0 Hz et $J_{7,8}$ = 5.5 Hz, H-7), 1.99 (s, 6H, 2Me), 2.00 (s, 3H, Me), 2.10 (s, 6H, 2Me), 2.51 (brs, 1H, OH), 4.50 (dt, 2H, $J_{\rm H,F}$ = 47.0 Hz, H-8), 5.13 (d, 2H, $J_{1,6}$ = $J_{3,4}$ = 10.0 Hz, H-1 and H-3), 5.25 (app t, 1H, $J_{4,5}$ = $J_{5,6}$ = 10.0 Hz, H-5), 5.53 (app t, 2H, H-4 and H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.7 (5Me), 35.6 (d, $J_{\rm C,F}$ = 20.0 Hz, C-7), 70.3 (C-5), 71.0 (C-4 and C-6), 72.3 (C-1 and C-3), 74.6 (d, $J_{\rm C,F}$ = 1.5 Hz, C-2), 79.3 (d, $J_{\rm C,F}$ = 165 Hz, C-8), 169.5 (2CO), 169.8 (CO), 169.9 (2CO); NMR (¹⁹F, 235 MHz CDCl₃) δ -216.3 (tt, $J_{\rm H,F}$ =.48.0 Hz, $J_{\rm H,F}$ = 28.0 Hz); IR (film, v, cm⁻¹) 3403, 2955, 1729, 1370, 1227, 1036; HRMS ESI *m/z* : calculated for C1₈H₂₅FNaO₁₁ [M+Na]⁺ 459.1273. Found: 459.1300.

2-C-(3-Triphenylmethyloxypropyl)-1,3,4,5,6-pentaacetyl-myo-inositol (myo-26)

To a solution of *myo*-4 (700 mg, 2.9 mmol) in pyridine (20 mL) were added trityl chloride (2.5 g, 9 mmol) and a catalytic amount of DMAP. The mixture was stirred at room temperature for 3 d and then the reaction mixture was allowed to reach room temperature. Acetic anhydride (10 mL) was added and the solution was stirred for further 2 h. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 60:40) to give *myo*-26 (1.3 g, 67% yield)

as a white solid. m.p. 136-137 °C; R_f 0.50 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.55-1.70 (m, 4H, H-8 et H-7), 2.01 (2Me), 2.02 (Me), 2.07 (2Me), 2.43 (brs, 1H, OH), 3.01 (t, 2H, $J_{8,9} = 5.0$ Hz, H-9), 5.19 (d, 2H, $J_{1,6} = J_{3,4} = 10.0$ Hz, H-1 and H-3), 5.25 (app t, 1H, $J_{4,5} = J_{5,6}$ = 10.0 Hz, H-5), 5.59 (app t, 2H, H-4 and H-6), 7.24 (brt, 3H, J = 7.5 Hz, H-Ar), 7.30 (brt, 6H, J = 7.5 Hz, H-Ar), 7.39 (brd, 6H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.7 (5Me), 23.8 (C-7), 32.1 (C-8), 63.2 (C-9), 70.6 (C-5), 71.0 (C-1 and C-3), 71.3 (C-4 and C-6), 75.8 (C-2), 86.7 (Cq-Tr), 127.1 (3C-Ar), 127.9 (6 C-Ar), 128.8 (6C-Ar), 144.2 (3 Cq-Ar), 169.5 (2CO), 169.9 (CO), 170.0 (2 CO); IR (KBr, v, cm⁻¹) 3471, 1756, 1445, 1230, 1033; HRMS ESI m/z : calculated for C₃₈H₄₂NaO₁₂ [M+Na]⁺ 713.2568. Found: 713.2654.

1-C-(3-Triphenylmethyloxypropyl)-2,3,4,5,6-pentaacetyl-scyllo-inositol (scyllo-26)

Scyllo-**26** was obtained as a white solid in 70% yield starting from *scyllo*-**4** using the above protocol. m.p. 128-130 °C; R_f 0.53 (6/4 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.87-1.94 (m, 2H, H-7), 1.95-2.03 (m, 2H, H-8), 2.00 (s, 3H, Me), 2.05 (s, 6H, 2Me), 2.08 (s, 6H, 2Me), 3.15 (t, 2H, *J*_{8,9} = 5.5 Hz, H-9), 3.40 (brs, 1H, OH)5.25-5.30 (m, 5H, H-inositol), 7.21 (m, 15H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.5 (2Me), 20.6 (Me), 20.7 (2Me), 23.9 (C-8), 27.7 (C-7), 64.1 (C-9), 70.3 (C-3 and C-5), 71.6 (C-4), 74.0 (C-1), 75.0 (C-2 and C-6), 86.8 (Cq-Tr), 127.0 (3C-Ar), 127.9 (6C-Ar), 128.7 (6C-Ar), 144.3 (3Cq-Ar), 169.7 (CO), 169.8 (2CO), 170.3 (2CO); IR (film, v, cm⁻¹) 3489, 2943, 1759, 1367, 1224, 1035; HRMS ESI *m/z* : calculated for C₃₈H₄₂NaO₁₂ [M+Na]⁺ 713.2568. Found: 713.2582.

2-C-(3-Triphenylmetylloxypropyl)-1,2,3,4,5,6-hexaacetyl-myo-inositol (myo-27)

To a solution of *myo*-**26** (1.0 g, 1.45 mmol) in isopropenyl acetate (200 mL) was added *p*-TSA (200 mg, 1.16 mmol) and the mixture was stirred for 2 h at 80 °C. Afterwards, the solvent was removed under reduced pressure, and the residue was diluted and extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and the

solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica gel, hexane/EtOAc 80:20 to 40:60) to give *myo*-**27**(595 mg, 56% yield) as a white solid. m.p. 121-122 °C; R_f 0.55 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.56-1.66 (m, 2H, H-8), 2.01 (s, 6H, 2Me), 2.03 (s, 3H, Me), 2.05 (s, 6H, 2Me), 2.33-2.42 (m, 2H, H-7), 2.99 (t, 2H, $J_{8,9} = 6.0$ Hz, H-9), 5.23 (app t, 1H, $J_{4,5} = J_{5,6} = 10.0$ Hz, H-5), 5.26 (d, 2H, $J_{1,6} = J_{3,4} = 10.0$ Hz, H-1 and H-3), 5.49 (app t, 2H, H-4 and H-6), 7.23 (bt, 3H, J = 7.5 Hz, H-Ar), 7.30 (brt, 6H, J = 7.5 Hz, H-Ar), 7.39 (brd, 6H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (3Me), 20.6 (2Me), 22.9 (Me), 24.3 (C-8), 27.9 (C-7), 63.4 (C-9), 70.5 (C-1 and C-3), 70.7 (C-5), 70.8 (C-4 and C-6), 77.5 (C-2) 86.6 (Cq-Tr), 127.0 (3C-Ar), 127.8 (6C-Ar), 128.9 (6C-Ar), 144.3 (3Cq-Ar), 168.7 (CO), 169.5 (2CO), 169.8 (CO), 169.9 (2CO); IR (NaCl, v, cm⁻¹) 3050, 1756, 1368, 1224; HRMS ESI *m*/*z* : calculated for C40H44NaO₁₃ [M+Na]⁺ 755.2674. Found: 755.2671.

1-C-(3-Triphenylmetylloxypropyl)-1,2,3,4,5,6-hexaacetyl-scyllo-inositol (scyllo-27)

Scyllo-**27** was obtained as a white solid in 52% yield starting from *scyllo*-**26** using the above protocol. m.p. 158-159 °C; R_f 0.60 (6/4 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.73-1.85 (m, 2H, H-8), 1.96 (s, 3H, Me), 1.99-2.04 (m, 2H, H-7), 1.99 (s, 3H, Me), 2.00 (s, 6H, 2Me), 2.03 (s, 6H, 2Me), 3.08 (t, 2H, *J*_{8,9} = 6.5 Hz, H-9), 5.23 (app t, 2H, *J*_{2,3} = *J*_{3,4} = *J*_{4,5} = *J*_{5,6} = 10.0 Hz, H-3 and H-5), 5.34 (app t, 1H, H-4), 6.05 (d, 2H, H-2 and H-6), 7.24 (tt, 3H, *J* = 7.5 Hz, *J* = 2.0 Hz, H-Ar), 7.31 (brt, 6H, *J* = 7.5 H, H-Ar), 7.44 (brd, 6H, H-Ar); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.7 (3Me), 20.7 (2Me), 22.0 (Me), 24.2 (C-8), 27.3 (C-7), 63.6 (C-9), 70.8 (C-4), 70.9 (C-3 and C-5), 71.3 (C-2 and C-6), 82.7 (C-1), 86.6 (Cq-Tr), 127.1 (3C-Ar), 127.9 (6C-Ar), 128.8 (6C-Ar), 144.3 (3Cq-Ar), 169.1 (2CO), 169.6 (CO), 169.7 (CO), 169.8 (2CO); IR (KBr, v, cm⁻¹) 2947, 1761, 1368, 1223; HRMS ESI *m*/*z* : calculated for C₄₀H₄₄NaO₁₃ [M+Na]⁺ 755.2674. Found: 755.2674.

2-C-(3-Hydroxypropyl)-1,2,3,4,5,6-hexaacetyl-myo-inositol (myo-28)

A solution of *myo*-**27** (500 mg, 0.68 mmol) and FeCl₃ (1.01 g, 6.8 mmol) in dry CH₂Cl₂ (10 mL) was stirred at room temperature overnight. The reaction was quenched by adding water and extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 20:80) to give *myo*-**28** (210 mg, 63% yield) as a white solid. m.p. 212-213 °C; Rf 0.2 (6/4 H/A); ¹H NMR (400 MHz, CDCl₃) δ 1.43-1.53 (m, 2H, H-8), 1.96 (s, 6H, 2Me), 1.97 (s, 3H, Me), 2.05 (s, 6H, 2Me), 2.16 (s, 3H, Me), 2.26-2.33 (m, 2H, H-7), 3.49 (t, 2H, *J*_{8,9} = 6.0 Hz, H-9), 5.25 (app t, 1H, *J*_{4,5} = *J*_{5,6} = 10.0 Hz, H-5), 5.27 (d, 2H, *J*_{1,6} = *J*_{3,4} = 10.0 Hz, H-1 and H-3), 5.44 (app t, 2H, H-4 and H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.6 (3 Me), 20.6 (2Me), 22.8 (Me), 26.8 (C-8), 27.2 (C-7), 62.2 (C-9), 70.6 (C-5), 70.6 (C-1 and C-3), 70.7 (C-4 and C-6), 86.5 (C-2), 168.8 (CO), 169.8 (2CO), 169.9 (CO), 170.0 (2CO); IR (KBr, v, cm⁻¹) 3483, 2962, 1754, 1370, 1224; HRMS ESI *m*/*z* : calculated for C₂₁H₃₀NaO₁₃ [M+Na]⁺ 513.1579. Found: 513.1586.

1-C-(3-Hydroxypropyl)-1,2,3,4,5,6-hexaacetyl-scyllo-inositol (scyllo-28)

Scyllo-**28** was obtained as a white solid in 70% yield starting from *scyllo*-**27** using the above protocol. m.p. 147-149 °C; R_f 0.30 (4/6 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 158-1.78 (m, 2H, H-8), 1.97 (s, 3H, Me), 1.99 (s, 3H, Me), 2.00 (s, 6H, 2Me), 2.06 (s, 6H, 2Me), 2.03-2.13 (m, 2H, H-7), 3.65 (t, 2H, $J_{8,9} = 5.5$ Hz, H-9), 5.26 (app t, 2H, $J_{2,3} = J_{3,4} = J_{4,5} = J_{5,6} = 9.0$ Hz, H-3 and H-5), 5.31 (app t, 1H, H-4), 6.00 (d, 2H, H-2 and H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 20.7 (3Me), 20.7 (2Me), 22.0 (Me), 26.5 (C-8), 26.9 (C-7), 62.9 (C-9), 70.9 (C-3 and C-5), 70.9 (C-4), 71.4 (C-2 and C-6), 82.8 (C-1), 169.1 (2CO), 169.7 (CO), 169.7 (CO), 169.7 (CO), 169.9 (2CO); IR (film, v, cm⁻¹) 3490, 2948, 1760, 1369, 1224; HRMS-ESI *m/z* :

calculated for C₂₁H₃₀NaO₁₃ [M+Na]⁺ 513.1579. Found: 513.1582.

2-C-(3-Fluoropropyl)-1,2,3,4,5,6-hexaacetyl-myo-inositol (myo-29)

To a solution of myo-28 (50 mg, 0.1 mmol) in dry CH₂Cl₂ (8 mL) was added DAST (0.03 mL, 0.24 mmol). The mixture was stirred at room temperature for 5 min, then quenched by adding MeOH and diluted in CH₂Cl₂ (20 mL). The solution was washed with a saturated aqueous solution of sodium hydrogencarbonate and water. The organic phase was dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc 80:20 to 20:80) to give *myo*-29 (48 mg, 95% yield) as a white solid. m.p. 209-210 °C; $R_f 0.50$ (4/6 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.59-1.74 (m, 2H, H-8), 1.99 (s, 6H, 2Me), 2.00 (s, 3H, Me), 2.07 (s, 6H, 2Me), 2.19 (s, 3H, Me), 2.33-2.37 (m, 2H, H-7), 4.33 (dt, 2H, $J_{H,F} = 47.0$ Hz et $J_{8,9} =$ 5.5 Hz, H-9), 5.18 (d, 2H, $J_{1,6} = J_{3,4} = 10.0$ Hz, H-1 and H-3), 5.20 (app t, 1H, $J_{4,5} = J_{5,6} = J_{5,$ 10.0 Hz, H-5), 5.47 (app t, 2H, H-4 and H-6); ¹³C NMR (62.9 MHz, CDCl₃) δ 20.5 (2Me), 20.6 (3Me), 22.8 (Me), 24.7 (d, J = 18.0 Hz, C-8), 26.9 (d, $J_{C,F} = 5.0$ Hz, C-7), 70.6 (C-1 and C-3), 70.6 (C-4 and C-6), 70.7(C-5), 83.4 (d, J_{C,F} = 167.0 Hz, C-9), 86.1 (C-2), 168.8 (CO), 169.7 (2CO), 169.8 (3CO); NMR (¹⁹F, 235 MHz CDCl₃) δ -219.7 (tt, $J_{\rm H,F}$ = 47.0 Hz and $J_{\rm H,F}$ = 21.0 Hz); IR (NaCl, v, cm⁻¹) 2923, 1754, 1370, 1223, 1041; HRMS ESI m/z : calculated for C₂₁H₂₉FNaO₁₂ [M+Na]⁺ 515.1535. Found: 515.1546.

1-C-(3-Fluoropropyl)-1,2,3,4,5,6-hexaacetyl-scyllo-inositol (scyllo-29)

Scyllo-**29** was obtained as a white solid in 91% yield starting from *scyllo*-**28** using the above protocol. R_f 0.25 (6/4 Hex/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.77-1.94 (m, 2H, H-8), 1.96 (s, 3H, Me), 1.97 (s, 3H, Me), 1.99 (s, 6H, 2Me), 2.05 (s, 6H, 2Me), 2.09-2.15 (m, 2H, H-7), 4.43 (dt, 2H, $J_{H,F}$ = 47.0 Hz and $J_{8,9}$ = 6.0 Hz, H-9), 5.23 (app t, 2H, $J_{2,3}$ = $J_{3,4}$ = $J_{4,5}$ = $J_{5,6}$ = 9.5 Hz, H-3 and H-5), 5.32 (app t, 1H, H-4), 6.02 (d, 2H, H-2 and H-6); ¹³C NMR

(100.6 MHz, CDCl₃) δ 20.6 (3Me), 20.7 (2Me), 22.0 (Me), 24.7 (d, $J_{C,F} = 20.0$ Hz, C-8), 26.5 (d, $J_{C,F} = 5.0$ Hz, C-7), 70.8 (C-3, C-4 and C-5), 71.2 (C-2 and C-6), 82.5 (C-1), 83.8 (d, $J_{C,F} = 166.0$ Hz, C-9), 169.0 (2CO), 169.5 (CO), 169.7 (CO), 169.8 (2CO); NMR (¹⁹F, 235 MHz CDCl₃) δ -219.1 (tt, $J_{H,F} = 47.0$ Hz and $J_{H,F} = 25.0$ Hz); IR (film, v, cm⁻¹) 2963, 1760, 1369, 1224, 1036; HRMS-ESI *m*/*z* : calculated for C₂₁H₂₉FNaO₁₂ [M+Na]⁺ 515.1535. Found: 515.1515.

Figure 1: ¹H NMR spectrum

Figure 13: ¹H NMR spectrum

Figure 20: ¹H NMR spectrum

S51

Figure 28: ¹H NMR spectrum

Figure 30: ¹H NMR spectrum

Figure 32: ¹H NMR spectrum

S63

Figure 34: ¹H NMR spectrum

Figure 36: ¹H NMR spectrum

S68

Figure 43: ¹H NMR spectrum

Figure 45: ¹⁹F NMR spectrum

Figure 48: ¹H NMR spectrum

Figure 52: ¹³C NMR spectrum

Figure 53: ¹H NMR spectrum

myo-16

Figure 54: ¹³C NMR spectrum

Figure 55: ¹H NMR spectrum

Figure 56: ¹H NMR spectrum

Figure 58: ¹H NMR spectrum

Figure 59: ¹³C NMR spectrum

ppm

Figure 60: ¹H NMR spectrum

S91

Figure 62: ¹³C NMR spectrum

Figure 63: ¹H NMR spectrum

Figure 64: ¹H NMR spectrum

Figure 65: ¹³C NMR spectrum

Figure 66: ¹H NMR spectrum

Figure 68: ¹H NMR spectrum

S99

Figure 71: ¹H NMR spectrum

Figure 74: ¹H NMR spectrum

Figure 75: ¹³C NMR spectrum

Figure 83: ¹H NMR spectrum

Figure 87: ¹H NMR spectrum

Figure 89: ¹H NMR spectrum

