Supporting Information

forRegiodefined synthesis of brominated
hydroxyanthraquinones related to proisocrininsJoyeeta Roy, Tanushree Mal, Supriti Jana and Dipakranjan Mal*
Address: Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India, Fax: +913222282252
Email: Dipakranjan Mal - dmal@chem.iitkgp.ernet.in
*Corresponding author
Experimental procedures, compound characterization data, and copies of NMR spectra
Table of contents
General remarks s2
Experimental procedures and compound characterization s2-s10
Copies of spectra s11-s22

Experimental

General remarks:

All solvents used for chromatography were distilled. Reactions with moisturesensitive reagents were performed under an inert atmosphere. According to the standard protocols, solvents like DMF, DCM, THF, etc. were dried prior to use. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates (60-F254). Products of the reactions were purified by column chromatography on silica gel. Column chromatography was performed over silica gel (60-120 mesh and 230-400 mesh) using hexane and ethyl acetate as eluents. NMR spectra were recorded with a $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$ or a 200 MHz (${ }^{1} \mathrm{H}: 200 \mathrm{MHz},{ }^{13} \mathrm{C}: 50 \mathrm{MHz}$) spectrometer and referenced to the residual solvent peak. $\left(\mathrm{CHCl}_{3}, \delta_{\mathrm{H}}=7.26\right.$ and $\delta_{\mathrm{C}}=77.23 ; \mathrm{DMSO}-d_{6}, \delta_{\mathrm{H}}=2.50$ and $\left.\delta_{\mathrm{C}}=39.5\right)$. Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; dd, double doublet; t , triplet; q , quartet; m , multiplet. Infrared spectra were recorded with FT-IR spectrophotometers and reported in cm^{-1}. Melting points are uncorrected. Highresolution mass spectra were recorded with a mass spectrometer in positive ion mode. The phrase "usual work-up" refers to washing of an organic phase with water $(2 \times 1 / 4$ the volume of organic phase) and brine ($1 \times 1 / 4$ the volume of organic phase) and drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtration, and concentration under reduced pressure. All known compounds are characterized by comparison of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data with those reported in the literature. Commercially available starting materials were used without any purification.

4,6-Dibromo-5,7-dimethoxyisobenzofuran-1(3H)-one (23): To a stirred solution of compound $21(840 \mathrm{mg}, 2.30 \mathrm{mmol})$ in dry $\mathrm{CCl}_{4}(25 \mathrm{~mL})$, NBS ($480 \mathrm{mg}, 2.70 \mathrm{mmol}$)
and a catalytic amount of AIBN were added. The mixture was heated at reflux under a 100 W lamp for 7 h . After completion of reaction, the contents were filtered and the crude bromo product was washed with dry CCl_{4}. The filtrate was concentrated under vacuum. The solid 22 was dissolved in dioxane:water (2:1, 21 mL) and heated at reflux for 24 h . After completion of the reaction as monitored by TLC analysis usual work-up was carried out. The crude was purified by column chromatography to afford 23 as a white solid in 45% yield ($360 \mathrm{mg}, 1.03 \mathrm{mmol}$) over two steps. $\mathrm{R}_{f}=0.3$ in 1:5 EtOAc:hexane; mp $186-188^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $\mathrm{v}_{\max } 1758,1612,1442,1245,1059$; ${ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl 3): $\delta 5.11$ (s, 2H), 4.16 (s, 3H), 3.98 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.7,160.1,156.8,148.6,115.4,114.6,105.6,69.4\left(\mathrm{CH}_{2}\right), 63.0$ $\left(\mathrm{CH}_{3}\right), 61.1\left(\mathrm{CH}_{3}\right)$.

4,6-Dibromo-3-hydroxy-5,7-dimethoxyisobenzofuran-1(3H)-one (24): To a stirred solution of the compound $23(800 \mathrm{mg}, 2.28 \mathrm{mmol})$ in dry $\mathrm{CCl}_{4}(30 \mathrm{~mL})$, NBS (450 $\mathrm{mg}, 2.51 \mathrm{mmol}$) and AIBN (ca. 20 mg) were added and the contents were heated at reflux under the exposure of a 100 W bulb for 1.5 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, filtered and then concentrated under reduced pressure to afford a liquid (670 mg). The crude product was then dissolved in dioxane: water (2:1, 20 mL) and heated at $100^{\circ} \mathrm{C}$ for 7 h . After completion of the reaction, the usual work-up was performed and the residue was purified by column chromatography to afford phthalaldehydic acid 24 as a solid in 69% yield ($577 \mathrm{mg}, 1.57 \mathrm{mmol}$) over two steps. mp $194-196^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}) $\mathrm{v}_{\max } 1734,1630,1478,1293,938,770 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$\left.d_{6}\right): \delta 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 164.4, 160.1, 155.7, 148.7, 116.7, 115.8, 107.8, $97.3(\mathrm{CH}), 62.9\left(\mathrm{CH}_{3}\right), 61.2\left(\mathrm{CH}_{3}\right)$. To a stirred suspension of the phthalaldehydic acid 24 ($600 \mathrm{mg}, 1.64 \mathrm{mmol}$) in water $(10 \mathrm{~mL})$ and THF (10 mL), KCN ($160.2 \mathrm{mg}, 2.46 \mathrm{mmol}$) was added in portions and the mixture was allowed to stir at rt for 10 min , the reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and treated with conc. $\mathrm{HCl}(6 \mathrm{~mL})$. Stirring was continued again at rt for 1 h and the kept overnight at $0^{\circ} \mathrm{C}$. The reaction mixture was worked up in the usual manner. The crude was purified by column chromatography to afford 12 in 75% yield ($460 \mathrm{mg}, 1.23 \mathrm{mmol}$). $\mathrm{R}_{f}=0.3$ in $1: 5$ EtOAc:hexane; $\mathrm{mp} 180-182^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ $v_{\max } 3468,2260,1672,1256,1053,772 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84(\mathrm{~s}, 1 \mathrm{H})$, 4.19 (s, 3H), 4.02 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.3,161.3,157.2,142.3$, 117.3, 113.8, 111.7, 106.5, $65.7(\mathrm{CH}), 63.3\left(\mathrm{CH}_{3}\right), 61.3\left(\mathrm{CH}_{3}\right)$. HRMS (TOF ESI+): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$375.8820, found 375.8827.

(6,8-Dibromo-4-hydroxy-5,7-dimethoxy-9,10-dioxo-9,10-dihydroanthracen-2-

 yl)methyl acetate (28): To a stirred solution of lithium tert-butoxide ($420 \mathrm{mg}, 5.28$ mmol) in THF (40 mL) at $-60^{\circ} \mathrm{C}$ under an inert atmosphere was added a solution of phthalide 12 ($600 \mathrm{mg}, 1.64 \mathrm{mmol}$) in THF (5 mL). The resulting yellowish solution was stirred at $-60^{\circ} \mathrm{C}$ for 25 min , after which a solution of cyclohexenone 13 (300 $\mathrm{mg}, 1.80 \mathrm{mmol}$) in THF (5 mL) was added. The cooling bath was removed after 1 h and stirring continued for another 8 h . The reaction was then quenched with 10% $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The resulting solution was diluted with ethyl acetate $(50 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with ethyl acetate (3×25 mL). The combined extracts were processed in usual manner. The resulting crude material was dissolved in minimum quantity of DMF (5 mL), heated at $100^{\circ} \mathrm{C}$, while oxygen bubbling was continuously through the solution for 10-12 h. After addition of25 mL of water, the solution was up in usual manner. The crude product was purified by column chromatography on silica gel to afford 28 as an orange solid (460 mg , $0.90 \mathrm{mmol})$ in 55% yield. $\mathrm{R}_{f}=0.4$ in $1: 5$ EtOAc:hexane; $\mathrm{mp} 170-175^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right) \mathrm{v}_{\max } 3541,2940,1731,1660,1586,1209,921 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $12.4(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 185.6,181.4,170.4,162.0,161.4,159.2,145.6,133.8$, 133.2, 124.8, 123.7, $121.8(\mathrm{CH}), 117.5(\mathrm{CH}), 115.5,115.3,64.6\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{3}\right)$, $60.9\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$.

1,3-Dibromo-5-hydroxy-7-(hydroxymethyl)-2,4-dimethoxyanthracene-9,10-

dione (29): To a stirred solution of 28 ($500 \mathrm{mg}, 0.98 \mathrm{mmol}$) in THF (5 mL), 50% aqueous NaOH solution (5 mL) was added and the solution stirred for 4 h . After completion of the reaction as monitored by TLC analysis, the reaction mixture was quenched with dilute $\mathrm{HCl}(5 \mathrm{~mL})$. THF was evaporated under reduced pressure and the solution was worked up in usual manner. The crude was triturated with 1:5 (Hexane: EtOAc) to furnish alcohol 29 as a yellow solid in 80% yield ($367 \mathrm{mg}, 0.78$ $\mathrm{mmol}) . \mathrm{R}_{f}=0.1$ in 2:5 EtOAc:hexane; mp 200-205 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd_{6}): $\delta 12.09(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 185.6, 182.3, 161.3, 160.7, 158.9, 153.3, 134.2, 134.0, 125.9, 123.2, 120.5 (CH), 116.7 (CH), 115.5, 114.7, $62.6\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{3}\right), 61.3\left(\mathrm{CH}_{3}\right)$. HRMS (TOF ESI+): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 470.9079$, found 470.9085.

6,8-Dibromo-4-hydroxy-5,7-dimethoxy-9,10-dioxo-9,10-dihydroanthracene-2-

 carbaldehyde (30): To a stirred solution of alcohol 29 ($400 \mathrm{mg}, 0.85 \mathrm{mmol}$) indichloroethane, PCC (276 mg, 1.28 mmol$)$ was added and the mixture stirred at rt for 3 h . After completion of the reaction, the contents were filtered through a celite pad. The filtrate was concentrated under reduced pressure and the residue purified by column chromatography to afford 30 a yellow solid in 92% yield $(364 \mathrm{mg}, 0.78$ $\mathrm{mmol}) . \mathrm{R}_{f}=0.5$ in 2:5 EtOAc:hexane; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.29(\mathrm{~s}, 1 \mathrm{H})$, $10.02(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 190.2$ (CHO), 186.0, 181.1, 162.2, 162.0, 159.6, 141.6, 134.8, 133.2, 124.9, 124.1, $123.6(\mathrm{CH}), 119.5(\mathrm{CH}), 119.1,115.9,62.3\left(\mathrm{CH}_{3}\right), 61.1$ $\left(\mathrm{CH}_{3}\right)$.

6,8-Dibromo-5,7-dimethoxy-4-(methoxymethoxy)-9,10-dioxo-9,10-

dihydroanthracene-2-carbaldehyde (31): To a stirred solution of 30 ($360 \mathrm{mg}, 0.78$ mmol) in DCM, DIPEA ($0.16 \mathrm{ml}, 0.936 \mathrm{mmol}$) and MOMCI ($0.09 \mathrm{~mL}, 1.17 \mathrm{mmol}$) were added. After stirring for 3 h at rt , the reaction mixture was diluted with water (10 $\mathrm{mL})$ and extracted with DCM $(3 \times 40 \mathrm{~mL})$. The combined extracts were subjected to usual work-up. The resulting solution was concentrated and the residue purified by column chromatography to afford 31 ($300 \mathrm{mg}, 0.58 \mathrm{mmol}$) as an orange solid in 76% yield. $\mathrm{R}_{f}=0.7$ in 2:5 EtOAc:hexane; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.09(\mathrm{~s}, 1 \mathrm{H})$, $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 190.0(\mathrm{CH}), 181.6,179.9,159.9,157.3,156.4,139.7$, 136.6, 133.8, 132.0, 128.8, 128.4, 127.8, 127.5, 123.0, 121.7 (CH), 119.3 (CH), 113.6, $95.0\left(\mathrm{CH}_{2}\right), 62.8\left(\mathrm{CH}_{3}\right), 60.6\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right)$. HRMS (TOF ESI+): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$512.9185, found 512.9193.

Methyl 3-(6,8-dibromo-5,7-dimethoxy-4-(methoxymethoxy)-9,10-dioxo-9,10-dihydroanthracen-2-yl)oxirane-2-carboxylate (32): To a stirred solution of NaOMe (prepared in situ from 21 mg of Na dissolved in 2 mL of absolute MeOH at $-10^{\circ} \mathrm{C}$), 350 mg (0.60 mmol) of aldehyde $31 \mathrm{in} 0.1 \mathrm{~mL}(0.9 \mathrm{mmol})$ of methyl chloroacetate was slowly added. ${ }^{11}$ After 2 h at $-5^{\circ} \mathrm{C}$ and then for another 4 h at room temperature, the reaction mixture was poured into 5 mL of ice-water containing 0.4 mL of AcOH . The oil which settled at the bottom of beaker was extracted with ethyl acetate (3×30 mL). The organic extracts were worked up in usual manner and the residue was flash chromatographed on silica with EtOAc:hexane as the eluents to afford 32 as a light yellow solid in 20% yield ($70 \mathrm{mg}, 0.12 \mathrm{mmol}$). $\mathrm{R}_{f}=0.4$ in $1: 3 \mathrm{EtOAc}:$ hexane; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.07$ $(\mathrm{s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H})(1 \mathrm{H}$ singlet is merged with 3 H singlet). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 182.7$, 180.2, 168.0, 160.1, 157.7, 156.7, 142.2, 136.8, 132.6, 128.2, 124.3, 123.3, $118.3(\mathrm{CH}), 117.6(\mathrm{CH}), 113.9,95.4\left(\mathrm{CH}_{2}\right), 63.1$ $(\mathrm{CH}), 61.0(\mathrm{CH}), 57.1\left(\mathrm{CH}_{3}\right), 56.9\left(\mathrm{CH}_{3}\right), 56.7\left(\mathrm{CH}_{3}\right), 53.0(\mathrm{CH})$. HRMS (TOF ESI+): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 584.9396$, found 584.9390 .

5-(2-Hydroxypropyl)cyclohex-2-enol (35): To a stirred solution of compound 33 ($300 \mathrm{mg}, 2.17 \mathrm{mmol}$) in DCM $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, DIBAL-H ($462.9 \mathrm{mg}, 3.3 \mathrm{mmol}$) was added and the mixture stirred for 3 h . The reaction was quenched with saturated sodium potassium tartarate (5 mL) and the mixture worked up in usual manner with DCM. $\mathrm{R}_{f}=0.2$ in 1:3 EtOAc:hexane. The product $34(238.3 \mathrm{mg}, 1.7 \mathrm{mmol})$ was subjected to the next reaction without further purification. It was dissolved in THF (20 mL) and treated with methyl magnesium bromide (1.2 mL of 1.4 M solution, 1.7 mmol) at $-78{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was quenched with saturated ammonium
chloride solution (20 mL) and the mixture worked up in usual manner. The crude product was purified by column chromatography (however the diastereomers were not separated) to afford compound 35 as an oil ($243 \mathrm{mg}, 1.56 \mathrm{mmol}$) in 72% yield. R_{f} $=0.2$ in 1:5 EtOAc:hexane. The spectral data are reported for a mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.65-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.28$ (s, 1H), 3.94-3.86 (m, 1H), $2.64(\mathrm{~s}, 1 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.82$ $(\mathrm{s}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.3(\mathrm{CH}), 128.2(\mathrm{CH})$, $128.0(\mathrm{CH}), 67.5,65.1,64.9,46.1\left(\mathrm{CH}_{2}\right), 45.1\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 32.2$ $\left(\mathrm{CH}_{2}\right)$, $31.7\left(\mathrm{CH}_{2}\right)$, 29.7, $24.1\left(\mathrm{CH}_{3}\right)$, $23.8\left(\mathrm{CH}_{3}\right)$. HRMS (TOF ESI+): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$179.1048, found 179.1055.

1-(5-Oxocyclohex-3-enyl)propan-2-yl acetate (36): To a stirred solution of diol 35 $(2.2 \mathrm{~g}, 17 \mathrm{mmol})$ in chloroform (10 mL), activated $\mathrm{MnO}_{2}(14.8 \mathrm{~g}, 170 \mathrm{mmol})$ was added and the mixture stirred for 8 h . Another amount ($7.4 \mathrm{~g}, 85 \mathrm{mmol}$) of MnO_{2} was added till completion of the reaction. On completion of the oxidation, the contents were filtered through a sintered funnel. The filtrate was concentrated under reduced pressure and the residue dissolved in DCM $(10 \mathrm{~mL})$. This solution was treated with acetyl chloride ($2.7 \mathrm{~mL}, 39.0 \mathrm{mmol}$), triethyl amine ($4.2 \mathrm{~mL}, 7.8 \mathrm{mmol}$) and DMAP $(10 \mathrm{mg})$ were sequentially. After 2 h at room temperature, the reaction mixture was quenched with water (10 mL) and worked up in usual manner. The crude product was purified by column chromatography to afford acetate 36 ($1 \mathrm{~g}, 5.14 \mathrm{mmol}$) as an oil in 66% yield. $\mathrm{R}_{f}=0.4$ in $1: 5$ EtOAc:hexane; ${ }^{1} \mathrm{H}$ NMR $\left.200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.95-$ $6.87(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.85(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.12-$ $2.06(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}$,

1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.2,170.6,149.5,129.8,68.4,44.8,44.1$, 42.0, 41.8 32.3, 31.9, 31.8, 21.4, 20.6, 20.3. HRMS (TOF ESI+): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$219.0997, found 219.1001.

1-(3,6,8-Tribromo-4-hydroxy-5,7-dimethoxy-9,10-dioxo-9,10-dihydroanthracen-

 2-yl)propan-2-yl acetate (38): To a stirred solution of lithium tert-butoxide (420 mg , 5.28 mmol) in THF (40 mL) at $-60^{\circ} \mathrm{C}$ (chloroform/liquid N_{2} bath) under an inert atmosphere was added a solution of phthalide 12 ($600 \mathrm{mg}, 1.60 \mathrm{mmol}$) in THF (5 $\mathrm{mL})$. The resulting yellowish solution was stirred at $-60^{\circ} \mathrm{C}$ for 25 min , after which a solution of cyclohexenone 36 ($352 \mathrm{mg}, 1.80 \mathrm{mmol}$) in THF (5 mL) was added. The resulting mixture was stirred for 8 h at room temperature and then quenched with $10 \% \mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the resulting solution was diluted with ethyl acetate (50 mL). The aqueous layer was extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$. The combined extracts were worked in usual manner. The crude product thus obtained was dissolved in $\mathrm{AcOH}(2 \mathrm{~mL})$ and treated with bromine ($0.5 \mathrm{~mL}, 7.5 \mathrm{mmol}$) under stirring for 48 h . After completion of the reaction, work-up was done in usual manner. The crude product was purified by column chromatography on silica gel to afford 38 as a brown solid ($572 \mathrm{mg}, 0.92 \mathrm{mmol}$) in 58% yield. $\mathrm{R}_{f}=0.35$ in 1:5 EtOAc:hexane, mp $170-175{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.26(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 5.28$ (q, $J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 6 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 185.4,181.2,170.3,161.7,159.5,158.7,147.4,133.0$, 131.3, 124.6, 123.8, 121.3, $121.2(\mathrm{CH}), 115.6,114.6,69.5(\mathrm{CH}), 62.2\left(\mathrm{CH}_{3}\right), 61.0$ $\left(\mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right)$.1,3,6-Tribromo-5-hydroxy-7-(2-hydroxypropyl)-2,4-dimethoxyanthracene-9,10dione (39): To a stirred solution of 38 ($600 \mathrm{mg}, 0.95 \mathrm{mmol}$) in THF (5 mL), 5 mL of 40% aqueous NaOH solution was added and stirred for 6 h . After completion of the reaction as monitored by TLC analysis, the resulting mixture was quenched with dil $\mathrm{HCl}(5 \mathrm{~mL}, 6 \mathrm{M})$. THF was evaporated and the resulting solution was acidified to pH 3 and then worked up was done in usual manner. The crude product was triturated with $1: 6$ hexane:EtOAc to furnish diol 39 as a yellow solid in 86% yield ($482 \mathrm{mg}, 0.82$ $\mathrm{mmol}) . \mathrm{R}_{f}=0.3$ in 2:5 EtOAc: hexane; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.24(\mathrm{~s}, 1 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 6 \mathrm{H}), 3.06(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 185.7,181.5,161.9,159.7,158.9,148.7$, 133.3, 131.7, 124.8, 124.0, 121.5, $121.4(\mathrm{CH}), 115.9,114.7,67.4(\mathrm{CH}), 62.4\left(\mathrm{CH}_{3}\right)$, $61.2\left(\mathrm{CH}_{3}\right), 46.6\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{3}\right)$. HRMS (TOF ESI+): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Br}_{3} \mathrm{O}_{6}[\mathrm{M}$ $+\mathrm{H}]^{+} 576.8497$, found 576.8500

Copies of spectra

