Supporting Information

for
Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones

Qin Zhu and Xinyu Liu*

Address: Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA

Email: Xinyu Liu - xinyuliu@pitt.edu

* Corresponding author

Additional figures
a)

b)

c)

hapalindoles and welwitindolinones isolated from H. welwitschii IC-52-3 (47g dry tissue)		
Compound	Name	Quantity isolated
1 (R=none)	12-epi-Hapalindole C isonitrile	11 mg
1 (R=S)	12-epi-Hapalindole C isothiocyanate	1 mg
1a (R=none)	12-epi-Hapalindole E isonitrile	93 mg
1a ($\mathrm{R}=\mathrm{S}$)	12-epi-Hapalindole E isothiocyanate	4 mg
2 (R=none)	12-epi-Fischerindole U isonitrile	4 mg
2 (R=S)	12-epi-Fischerindole U isothiocyanate	2 mg
2a (R=none)	12-epi-Fischerindole G isonitrile	4 mg
3 (R=none)	12-epi-Fischerindole I isonitrile	10 mg
4 (R=none)	welwitindolinone A isonitirle	2 mg
5 (R=S, R'=H)	welwitindolinone B isothiocyanate	10 mg
5 (R=S, R'=Me)	N -methylwelwitindolinone B isothiocyanate	$5+12 \mathrm{mg}$
6 (R=S, R'=H)	welwitindolinone C isothiocyanate	14 mg
6 (R=none, $\mathrm{R}^{\prime}=\mathrm{Me}$)	N -methylwelwitindolinone C isonitrile	47 mg
6 (R=S, $\mathrm{R}^{\prime}=\mathrm{Me}$)	N -methylwelwitindolinone C isothiocyanate	110 mg

Figure S1: Summary of relative and absolute quantities of 1 and its biogenetic derivatives 1a versus 2 and its biogenetic derivatives 2a, 3-6 from (b) H. welwitschii UTEX B1830 and (c) IC-52-3. The relative quantity shown in (b) was derived from the HPLC analysis of H. welwitschii UTEX B1830 crude metabolites and the absolute quantity shown in (c) was derived from what was reported in ref [1]. These data were used to generate the relative molar ratio of each metabolite in the two different producers and the comparison graphs shown in Figure 1b/1c in the main text.

we/ Gene	Size (aa)	Protein sequence identity to homolog from H. we/witschii UTEX B1830
we/O5	290	95%
we/M	329	99%
we/U2	226	99%
we/O4	359	99%
we/O3	362	99%
we/O2	357	99%
we/O1	360	99%
we/U1	228	97%
we/U3	228	Unique to IC523
we/D4	400	95%
we/P2	334	99%
we/R1	234	100%
we/R2	243	99%
we/R3	368	100%

wel Gene	Size (aa)	Protein sequence identity to momolog from welwitschii UTEX B1830
we/C3	214	100%
we/T5	365	99%
we/T4	415	99%
we/T3	274	99%
we/T2	283	99%
we/T1	734	99%
we/C2	301	99%
we/D3	408	99%
we/D2	647	99%
we/P1	308	100%
we/l3	272	100%
well2	331	99%
well1	319	99%
we/S1	169	Unique to 1830
we/S2	156	Unique to 1830
we/D1	406	99%
we/C1	183	99%

Figure S2: Sequence identity comparison of proteins encoded in the welwitindolinone BGCs from H . welwitschii IC-52-3 and UTEX B1830. The names for some of the genes in the BGC from H. we/witschii IC-52-3 (including we/U1-3, we/O1-5 and we/M) (ref [2]) were renamed according to those in the BGC in H. welwitschii UTEX B1830 (ref [3]).

Figure S3: SDS-PAGE of purified NHis7-tagged WelO5* and WelO5-var.

References

1. K. Stratmann, R. E. Moore, R. Bonjouklian, J. B. Deeter, G. M. L. Patterson, S. Shaffer, C. D. Smith, T. A. Smitka, J. Am. Chem. Soc. 1994, 116, 9935-9942.
2. M. L. Micallef, D. Sharma, B. M. Bunn, L. Gerwick, R. Viswanathan, M. C. Moffitt, BMC Microbiol. 2014, 14, 213.
3. M. L. Hillwig, H. A. Fuhrman, K. Ittiamornkul, T. J. Sevco, D. H. Kwak, X. Liu, ChemBioChem 2014, 15, 665-669.
