Supporting Information

for

Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy?

Ophélie Maurin, Pascal Verdié, Gilles Subra, Frédéric Lamaty ${ }^{\S *}$, Jean Martinez and Thomas- Xavier Métro ${ }^{\S} *$

Address: Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, cc 1703, Place Eugène Bataillon, 34095 Montpellier cedex 5, France

Email: frederic.lamaty@umontpellier.fr; thomas-xavier.metro@umontpellier.fr
*Corresponding author
${ }^{\text {§ }} \mathrm{http}: / / w w w . g r e e n c h e m . u n i v-m o n t p 2 . f r$

Experimental procedures and characterization data of peptides

General information

Reagents were purchased from Sigma Aldrich, Fluka, Propeptide, Novabiochem or Senn Chemicals and used without further purification. All the amino acid derivatives employed in this study displayed L absolute configuration. The milling treatments were carried out in a Retsch Mixer Mill 200. SPPS was performed at the "SynBio3 Platform" (IBMM, Université de Montpellier) using a Liberty Blue peptide synthesizer (CEM). Analyses were performed at the "Plateforme Technologique Laboratoire de Mesures Physiques" (IBMM, Université de Montpellier). ${ }^{1} \mathrm{H}$ NMR spectra were recorded either on a Bruker Avance I 300 MHz or on a Bruker Avance III HD 400 MHz spectrometer and are reported in ppm using residual solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm}, \mathrm{DMSO}-d_{6}$ at $2.50 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}$ at 3.31 ppm and $\mathrm{D}_{2} \mathrm{O}$ at 4.79 ppm$)$. Data are reported as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{qt}=$ quintuplet, $\mathrm{m}=$ multiplet; coupling constant in Hz ; integration. ${ }^{13} \mathrm{C}$ NMR spectra were
recorded either on a Bruker Avance I 75 MHz or on a Bruker Avance III HD 101 MHz and are reported in ppm using residual solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.16 ppm , DMSO- d_{6} at 39.52 ppm and $\mathrm{CD}_{3} \mathrm{OD}$ at 49.00 ppm). Mass spectra were obtained by LCESIMS using a Waters Alliance 2695 as LC, coupled to a Waters ZQ spectrometer with electrospray source, a simple quadrupole analyzer and a UV Waters 2489 detector. Purity of products was determined by HPLC (Agilent technologies 1220 infinity LC) using Ony Monolithic HD-C18 $(50 \times 4.6 \mathrm{~mm})$ column and a UV detector $(\lambda=214 \mathrm{~nm})$; samples were injected with a volume of $5 \mu \mathrm{~L}$. The solvent system used water ($0.1 \% \mathrm{TFA}$) and acetonitrile ($0.1 \% \mathrm{TFA}$) as eluent with a flow of $3 \mathrm{~mL} / \mathrm{min}(0-100 \%$ in 3 min).

Operating procedures and analytical data

Boc-Ile-Ala-OBn [70691-54-2] ${ }^{1}$

Synthesis in solution
p-TsOH•H-Ala-OBn ($239.9 \mathrm{mg}, 0.683 \mathrm{mmol}, 1.0$ equiv), Boc-Ile-OH ($189.5 \mathrm{mg}, 0.819$ mmol, 1.2 equiv), Oxyma ($116.2 \mathrm{mg}, 0.818 \mathrm{mmol}, 1.2$ equiv) and N, N-diisopropylethylamine $(475 \mu \mathrm{~L}, 2.727 \mathrm{mmol}, 4.0$ equiv) were introduced in a round-bottomed flask and solubilized in a minimum amount of DMF (1 mL) under magnetic stirring. After a few minutes of stirring, N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide ($145 \mu \mathrm{~L}, 0.819 \mathrm{mmol}, 1.2$ equiv) was added. Aliquots of the reaction mixture were withdrawn periodically and immediately quenched with a $1: 1 \mathrm{MeCN} / 1 \mathrm{~N}$ aqueous HCl solution. Conversion was determined by HPLC analysis.

Table of conversion

Time (min)	0.0	10.0	20.0	30.0	60.0	120.0	180.0
Conversion in solution (\%)	0.0	30.6	46.5	57.2	74.6	90.6	97.6

After completion of the reaction, the mixture was concentrated under vacuum and EtOAc (20 $\mathrm{mL})$ and deionized water (15 mL) were added. The aqueous phase was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$ and the combined organic phase was washed with 1 N aqueous HCl solution $(2 \times$ 10 mL), 1 N aqueous NaOH solution ($2 \times 10 \mathrm{~mL}$) and saturated aqueous NaCl solution $(2 \times$ 10 mL), dried over MgSO_{4}, filtered and concentrated under vacuum to furnish the desired product as a pale yellow solid ($236.5 \mathrm{mg}, 88 \%$ yield, 96% HPLC purity).

Synthesis in ball-mill

p-TsOH•H-Ala-OBn ($239.8 \mathrm{mg}, 0.682 \mathrm{mmol}, 1.0$ equiv), Boc-Ile-OH ($189.6 \mathrm{mg}, 0.820 \mathrm{mmol}$, 1.2 equiv), Oxyma ($116.5 \mathrm{mg}, 0.820 \mathrm{mmol}, 1.2$ equiv), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(327.9 \mathrm{mg}, 2.733 \mathrm{mmol}, 4.0$ equiv) and EtOAc ($450 \mu \mathrm{~L}, \eta=0.45 \mu \mathrm{~L} / \mathrm{mg}$) were introduced in a 15 mL PTFE grinding jar with one stainless steel ball (10 mm diameter). The jar was subjected to grinding for 2 min in the mixer mill operated at 25 Hz . N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide ($145 \mu \mathrm{~L}$,
$0.819 \mathrm{mmol}, 1.2$ equiv) was added and the jar was subjected to grinding for 8 min in the mixer mill operated at 25 Hz . A first aliquot of the reaction mixture was withdrawn, immediately quenched with $1: 1 \mathrm{MeCN} / 1 \mathrm{~N}$ aqueous HCl solution and analyzed by HPLC to determine the conversion. The jar was subjected to further grinding in the mixer mill operated at 25 Hz until next aliquot was withdrawn. This operation was repeated until completion of the reaction.

Table of conversion

Time (min)	0.0	10.8	20.0	29.6	39.5	48.8	59.8
Effective milling time (min)	0.0	8.0	16.0	24.0	32.0	40.0	48.0
Conversion in ball-mill $(\%)$	0.0	96.2	98.1	98.8	98.9	99.4	100.0

The reaction mixture was treated with EtOAc (20 mL) and deionized water (20 mL). The aqueous phase was extracted with $\operatorname{EtOAc}(2 \times 10 \mathrm{~mL})$ and the combined organic phase was washed with 1 N aqueous HCl solution $(2 \times 10 \mathrm{~mL}), 1 \mathrm{~N}$ aqueous NaOH solution $(2 \times 10 \mathrm{~mL})$ and saturated aqueous NaCl solution ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, filtered, concentrated under vacuum to furnish the desired product as a white solid ($238.8 \mathrm{mg}, 89 \%$ yield, 93% HPLC purity).

Characterization

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.41-7.28(5 \mathrm{H}), 6.42(\mathrm{br} \mathrm{d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{qt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.95 (br t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.33(13 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.82(6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 172.6,171.3,155.9,135.4,128.7,128.6,128.3,80.0,67.3$, 59.2, 48.2, 37.5, 28.4, 24.9, 18.4, 15.6, 11.5.

MS (ESI): m/z $393.2[\mathrm{M}+\mathrm{H}]^{+}$

TFA•H-Ile-Ala-OBn

Synthesis in solution
Boc-Ile-Ala-OBn ($213.5 \mathrm{mg}, 0.544 \mathrm{mmol}, 1.0$ equiv) was solubilized in a $1: 1 \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture (1 mL) in a round-bottomed flask with magnetic stirring. After 60 min agitation, the reaction mixture was concentrated under vacuum to furnish the desired product as a yellow solid ($234.3 \mathrm{mg},>99 \%$ yield, 99% HPLC purity).

Synthesis in ball-mill

Boc-Ile-Ala-OBn ($672.0 \mathrm{mg}, 1.712 \mathrm{mmol}, 1.0$ equiv) and trifluoroacetic acid (TFA, $655 \mu \mathrm{~L}$, 5.0 equiv) were introduced in a 15 mL PTFE grinding jar equipped with one PTFE ball (10 mm diameter). The jar was subjected to grinding for 4 h in the mixer mill operated at 25 Hz . The reaction mixture was recovered with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated under vacuum to furnish the desired product as a pale yellow solid ($703.2 \mathrm{mg},>99 \%$ yield, 100% HPLC purity).

Characterization

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathrm{OD}$): $\delta 7.40-7.27(5 \mathrm{H}), 5.19(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H})$, $1.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.10(1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D}_{3} \mathrm{OD}$): $\delta 173.4,169.3,137.1,129.6,129.4,68.1,58.9,38.0,25.3$, 17.2, 14.8, 11.6.

MS (ESI): m/z $292.9[\mathrm{M}+\mathrm{H}]^{+}$

$\mathrm{HCl} \cdot \mathrm{H}-I l e-A l a-O B n[178313-32-1]^{2}$

Synthesis in ball-mill

Boc-Ile-Ala-OBn ($210.8 \mathrm{mg}, 0.537 \mathrm{mmol}, 1.0$ equiv) was submitted to gaseous HCl for 3.5 h . $\mathrm{HCl} \cdot \mathrm{H}-\mathrm{Ile}-\mathrm{Ala}-\mathrm{OBn}$ was recovered as a white solid ($181.1 \mathrm{mg},>99 \%$ yield, 97% HPLC purity).

Characterization

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{D}_{\mathbf{2}} \mathbf{O}$): $\delta 7.49-7.38(5 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.83(1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(1 \mathrm{H}), 1.45(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.17(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\left.D_{2} \mathrm{O}\right): \delta 173.7,168.9,135.0,128.82,128.77,128.5,67.8,57.5,49.0$, 36.3, 24.0, 15.8, 13.6, 10.5.

MS (ESI): m/z $293.3[\mathrm{M}+\mathrm{H}]^{+}$

Boc-Val-Ile-Ala-OBn

Synthesis in solution

TFA.H-Ile-Ala-OBn ($178.1 \mathrm{mg}, 0.438 \mathrm{mmol}, 1.0$ equiv), Boc-Val-OH ($114.7 \mathrm{mg}, 0.528$ mmol, 1.2 equiv), Oxyma ($74.9 \mathrm{mg}, 0.527 \mathrm{mmol}, 1.2$ equiv) and N, N-diisopropylethylamine ($305 \mu \mathrm{~L}, 1.751 \mathrm{mmol}, 4.0$ equiv) were introduced in a round-bottomed flask and solubilized in a minimum of DMF $(700 \mu \mathrm{~L})$ with magnetic stirring. After a few minutes, N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide ($93.1 \mu \mathrm{~L}, 0.526 \mathrm{mmol}, 1.2$ equiv) was added. Aliquots of the reaction mixture were withdrawn periodically and immediately quenched with 1:1 MeCN/ 1 N aqueous HCl solution. The conversion was determined by HPLC analysis.

Table of conversion

Time (min)	0.0	5.0	10.0	15.0	20.0	30.0	40.0	60.0
Conversion in solution (\%)	0.0	17.4	27.1	37.3	45.6	59.9	69.1	82.8

After stirring for 15 h , the reaction mixture was concentrated under vacuum and EtOAc (20 mL) and deionized water (20 mL) added. The aqueous phase was extracted with EtOAc ($2 \times$ 10 mL) and the combined organic phase was washed with 1 N aqueous HCl solution $(2 \times 10$ $\mathrm{mL}), 1 \mathrm{~N}$ aqueous NaOH solution $(2 \times 10 \mathrm{~mL})$ and saturated aqueous NaCl solution $(2 \times 10$ mL), dried over MgSO_{4}, filtered and concentrated under vacuum to furnish the desired product as a pale white solid ($165.8 \mathrm{mg}, 77 \%$ yield, 90% HPLC purity).

Synthesis in ball-mill

$\mathrm{HCl} \cdot \mathrm{H}-\mathrm{Ile}-\mathrm{Ala}-\mathrm{OBn}(111.3 \mathrm{mg}, 0.338 \mathrm{mmol}, 1.0$ equiv), Boc-Val-OH ($88.8 \mathrm{mg}, 0.409 \mathrm{mmol}$, 1.2 equiv), Oxyma ($57.9 \mathrm{mg}, 0.407 \mathrm{mmol}, 1.2$ equiv), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(162.4 \mathrm{mg}, 1.354 \mathrm{mmol}, 4.0$ equiv) and EtOAc ($450 \mu \mathrm{~L}, \eta=0.93 \mu \mathrm{~L} / \mathrm{mg}$) were introduced in a 15 mL PTFE grinding jar equipped with one stainless steel ball (10 mm diameter). The jar was subjected to grinding for 2 min in the mixer mill operated at 25 Hz . Then, N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide ($71.9 \mu \mathrm{~L}, 0.406 \mathrm{mmol}, 1.2$ equiv) was added and the jar was subjected to grinding for 3 min in the mixer mill operated at 25 Hz . A first aliquot of the reaction mixture was withdrawn, immediately quenched with $1: 1 \mathrm{MeCN} / 1 \mathrm{~N}$ aqueous HCl solution and analyzed by HPLC to determine the conversion. The jar was subjected to further grinding in the mixer mill operated at 25 Hz until next aliquot was withdrawn. This operation was repeated until completion of the reaction.

Table of conversion

Time (min)	0.0	5.0	10.0	20.0	30.0	40.0	60.0
Effective milling time (min)	0.0	3.0	6.0	14.0	22.0	30.0	50.0
Conversion in ball-mill	0.0	95.3	98.8	100.0	100.0	100.0	100.0

To the reaction mixture was added $\mathrm{EtOAc}(25 \mathrm{~mL})$ and deionized water (20 mL). The aqueous phase was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$ and the combined organic phase was washed with 1 N aqueous HCl solution $(2 \times 10 \mathrm{~mL}), 1 \mathrm{~N}$ aqueous NaOH solution $(2 \times 10 \mathrm{~mL})$ and saturated aqueous NaCl solution ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, filtered, concentrated
under vacuum to furnish the desired product as a white solid (148.4 mg, 89% yield, 99% HPLC purity).

Characterization

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.28(5 \mathrm{H}), 6.90(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{br} \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$ $4.61(\mathrm{qt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.82(1 \mathrm{H}), 1.56-1.46(1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) 1.11(\mathrm{~m}, 1 \mathrm{H}), 0.95-$ 0.83 (12H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.5,172.0,170.7,156.1,135.5,128.7,128.5,128.3,80.0$, 67.2, 60.3, 57.8, 48.2, 37.0, 30.8, 28.4, 24.9, 19.4, 18.2, 18.1, 15.4, 11.3.

MS (ESI): m/z $492.1[\mathrm{M}+\mathrm{H}]^{+}$

TFA $\cdot \mathbf{H}$-Val-Ile-Ala-OBn

Synthesis in solution
Boc-Val-Ile-Ala-OBn ($141.5 \mathrm{mg}, 0.288 \mathrm{mmol}, 1.0$ equiv) was solubilized in a $1: 1$ $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture (1 mL) in a round-bottomed flask with magnetic stirring. After 90 min agitation, the reaction mixture was concentrated under vacuum to furnish the desired product as a yellow solid ($146.8 \mathrm{mg},>99 \%$ yield, 92% HPLC purity).

Characterization

${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $_{3} \mathrm{OD}$): $\delta 7.45-7.28(5 \mathrm{H}), 5.17(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.44(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ $(\mathrm{m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.97(\mathrm{~m}$, $6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 173.6,172.9,169.5,137.2,129.6,129.3,67.9,59.4,59.2$, 38.1, 31.7, 25.9, 18.9, 17.8, 17.3, 15.7, 11.3.

MS (ESI): m/z 392.3 [M+H] ${ }^{+}$
HCl-H-Val-Ile-Ala-OBn

Boc-Val-Ile-Ala-OBn ($121.2 \mathrm{mg}, 0.247 \mathrm{mmol}, 1.0$ equiv) was submitted to gaseous HCl for
 HPLC purity).

Characterization

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{D}_{2} \mathbf{O}$): $\delta 7.49-7.39(5 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.74(1 \mathrm{H}), 1.55-1.46(1 \mathrm{H})$, $1.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.98(6 \mathrm{H}), 0.92-0.80(6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}$): $\delta 174.0,172.6,169.2,135.2,128.8,128.7,128.4,67.7,58.2$, $48.9,36.0,30.1,24.5,17.6,16.8,16.5,15.9,14.5,14.3,10.0$.
MS (ESI): m/z $392.3[\mathrm{M}+\mathrm{H}]^{+}$

Boc-Val-Val-Ile-Ala-OBn

Synthesis in solution
TFA•H-Val-Ile-Ala-OBn ($121.6 \mathrm{mg}, 0.241 \mathrm{mmol}, 1.0$ equiv), Boc-Val-OH ($62.8 \mathrm{mg}, 0.289$ mmol, 1.2 equiv), Oxyma ($41.2 \mathrm{mg}, 0.290 \mathrm{mmol}, 1.2$ equiv) and N, N-diisopropylethylamine ($168 \mu \mathrm{~L}, 0.965 \mathrm{mmol}, 4.0$ equiv) were introduced in a round-bottomed flask and solubilized in a minimum amount of DMF (1.4 mL) with magnetic stirring. After a few minutes, N -(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide ($51.1 \mu \mathrm{~L}, 0.289 \mathrm{mmol}, 1.2$ equiv) was added. Aliquots of the reaction mixture were withdrawn periodically and immediately quenched with 1:1 MeCN/1 N aqueous HCl solution. The conversion was determined by HPLC analysis.

Table of conversion

Time (min)	0.0	5.0	10.0	20.0	40.0	60.0	120.0	180.0
Conversion in solution (\%)	0.0	14.7	20.8	32.0	55.3	68.1	87.1	98.2

After stirring for 16 h , the reaction mixture was concentrated under vacuum and EtOAc (30 mL) and deionized water $(25 \mathrm{~mL})$ added. The aqueous phase was extracted with EtOAc ($2 \times$ 10 mL) and the combined organic phase was washed with 1 N aqueous HCl solution $(2 \times 10$ $\mathrm{mL}), 1 \mathrm{~N}$ aqueous NaOH solution $(2 \times 10 \mathrm{~mL})$ and saturated aqueous NaCl solution $(2 \times 10$ mL), dried over MgSO_{4}, filtered and concentrated under vacuum to furnish the desired product as a white solid ($91.1 \mathrm{mg}, 64 \%$ yield, 85% HPLC purity).

Synthesis in ball-mill

$\mathrm{HCl} \cdot \mathrm{H}-\mathrm{Val}-\mathrm{Ile}-\mathrm{Ala}-\mathrm{OBn}(53.2 \mathrm{mg}, 0.124 \mathrm{mmol}, 1.0$ equiv), Boc-Val-OH ($32.5 \mathrm{mg}, 0.150$ mmol, 1.2 equiv), Oxyma ($22 \mathrm{mg}, 0.155 \mathrm{mmol}, 1.2$ equiv), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(60.0 \mathrm{mg}, 0.500 \mathrm{mmol}$,
4.0 equiv) and EtOAc ($450 \mu \mathrm{~L}, \eta=2.37 \mu \mathrm{~L} / \mathrm{mg}$) were introduced in a 15 mL PTFE grinding jar equipped with one stainless steel ball (10 mm diameter). The jar was subjected to grinding for 2 min in the mixer mill operated at 25 Hz . Then, N-(3-Dimethylaminopropyl)- N^{\prime} ethylcarbodiimide ($26.4 \mu \mathrm{~L}, 0.149 \mathrm{mmol}, 1.2$ equiv) was added and the jar was subjected to grinding for 3 min in the mixer mill operated at 25 Hz . A first aliquot of the reaction mixture was withdrawn, immediately quenched with $1: 1 \mathrm{MeCN} / 1 \mathrm{~N}$ aqueous HCl solution and analyzed by HPLC to determine the conversion. The jar was subjected to further grinding in the mixer mill operated at 25 Hz until next aliquot was withdrawn. This operation was repeated until completion of the reaction.

Table of conversion

Time (min)	0.0	5.0	10.0	20.0	30.0	40.0	60.0
Effective milling time (min)	0.0	3.0	6.0	14.0	22.0	30.0	50.0
Conversion in ball-mill (\%)	0.0	72.4	87.2	100.0	100.0	100.0	100.0

To the reaction mixture was added EtOAc (30 mL) and deionized water (25 mL). The aqueous phase was extracted with $\operatorname{EtOAc}(2 \times 10 \mathrm{~mL})$ and the combined organic phase was washed with 1 N aqueous HCl solution $(2 \times 10 \mathrm{~mL}), 1 \mathrm{~N}$ aqueous NaOH solution $(2 \times 10 \mathrm{~mL})$ and saturated aqueous NaCl solution $(2 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, concentrated under vacuum to furnish the desired product as a white solid ($57.4 \mathrm{mg}, 78 \%$ yield, 88% HPLC purity).

Characterization

${ }^{1} H$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(5 \mathrm{H}), 6.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.36-4.15(3 \mathrm{H})$, 3.78 (br t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.84(2 \mathrm{H}), 1.74-1.61(1 \mathrm{H}), 1.47-1.32(10 \mathrm{H}), 1.28(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.69(18 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 172.2,171.3,170.7,170.6,155.5,136.0,128.4,128.1$, $128.0,127.8,78.0,65.9,60.1,57.4,56.3,47.7,36.7,30.7,30.1,28.2,24.2,19.3,19.2,18.3$, 18.1, 16.8, 15.0, 10.9.

MS (ESI): m/z $591.3[\mathrm{M}+\mathrm{H}]^{+}$

TFA•H-Val-Val-Ile-Ala-OH

Solid-phase peptide synthesis

The peptide chains were elongated by means of a Liberty Blue peptide synthesizer (CEM) employing standard Fmoc chemistry. The syntheses were conducted on a 0.1 mmol scale starting with Fmoc-Ala-Wang resin ($0.8 \mathrm{mmol} / \mathrm{g}$) with a 5 -fold excess of Fmoc-protected Lamino acids (0.2 M in DMF, $2.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 5.0$ equiv), 0.5 M DIC in DMF ($1 \mathrm{~mL}, 0.5$ $\mathrm{mmol}, 5.0$ equiv) as coupling reagent, 1 M Oxyma in DMF ($0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 5.0$ equiv) for 7 min at $70^{\circ} \mathrm{C}$. The deprotection steps were carried out with piperidine/DMF $1: 4(\mathrm{v} / \mathrm{v})(14$ $\mathrm{mL}, 28.3 \mathrm{mmol}, 283.5$ equiv) over 3 min at $70^{\circ} \mathrm{C}$. The second coupling and deprotection of Fmoc-Ile-Ala-OHMP was performed during 90 min at room temperature. After the assembly was complete, the peptide-resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and cleavage was performed with TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}$ 94:3:3 (10 mL) for 2 h at room temperature. The peptide was precipitated by adding cold $\mathrm{Et}_{2} \mathrm{O}$, the solution was decanted, and the solid was triturated with cold $\mathrm{Et}_{2} \mathrm{O}$, which was again decanted and filtrated. After lyophilization, the peptide was obtained as a fluffy white solid ($28.0 \mathrm{mg}, 54 \%$ yield, 96% purity, MS (ESI): m/z 401.3 $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

, |, , \|l|

References

(1) Fustero, S.; Sancho, A. G.; Chiva, G.; Sanz-Cervera, J. F.; del Pozo, C.; Aceña, J. L. J. Org. Chem. 2006, 71, 3299-3302.
(2) Sho-kichi, O.-u.; Jin-Shik, L.; Mitsuaki, N. Bull. Chem. Soc. Jpn. 1996, 69, 1303-1307.

