Supporting Information

for

Diastereoselective Mannich reactions of pseudo- C_2 -symmetric glutarimide with activated imines

Tatsuya Ishikawa,¹ Tomoko Kawasaki-Takasuka,¹ Toshio Kubota,² and Takashi Yamazaki^{*1}

Address: ¹Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan and ²Department of Biomolecular Functional Engineering, Ibaraki University,

Nakanarusawa 4-12-1, Hitachi 316-8511, Japan

Email: Takashi Yamazaki - tyamazak@cc.tuat.ac.jp

*Corresponding author

Experimental procedures, characterization data, copies of ¹H and ¹³C NMR spectra for the new compounds, and crystallographic analysis data

Table of Contents

1. General information	. S2
2. Experimental procedures and characterization cata	. S3
General procedure for the reactions of the oxazolidinone-installed imide 1a	
from 3-(trifluoromethyl)-glutaric acid with tosylated imines 2	S 3
1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{phenyl(4-toluene-	
sulfonamido)methyl}-3-(trifluoromethyl)-pentane-1,5-dione (3a)	. S3
3. ¹ H and ¹³ C NMR spectra for new compounds	. S7
4. Crystallographic data for compound 3a	S13
5. References	S15

1. General Information

¹H (300.40 MHz), ¹³C (75.45 Hz), and ¹⁹F (282.65 Hz) NMR spectra were recorded on a JEOL AL 300 spectrometer in CDCl₃ unless otherwise noted. Chemical shifts were recorded in parts per million (ppm) downfield from internal tetramethylsilane (Me₄Si: δ 0.00 ppm for ¹H and ¹³C, respectively) or hexafluorobenzene (C₆F₆: δ –163.00 ppm for ¹⁹F). Data were tabulated in the following order: number of protons, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sex, sextet; m, multiplet; b, broad peak), coupling constants in hertz. Infrared (IR) spectra were obtained on a JASCO A-302 spectrometer and reported in wave numbers (cm⁻¹). Elemental analyses were performed with a Perkin-Elmer Series II CHNS/O analyzer. JEOL JMS-700 was used for obtaining high resolution mass spectrometry data operated in the positive ionization mode.

Most of reactions where an organic solvent was employed were performed under argon atmosphere with magnetic stirring using flame-dried glassware. Anhydrous THF, Et₂O, and CH₂Cl₂ were purchased and used without further purification. Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Analytical thin-layer chromatography (TLC) was routinely used for monitoring reactions by generally using a mixture of hexane (Hex) and ethyl acetate (AcOEt) (v/v). Spherical neutral silica gel (63–210 μ m or 40–50 μ m) was employed for column chromatography and flush chromatography, respectively.

2. Experimental procedures and characterization data

General procedure for the reactions of the oxazolidinone-installed imide 1a from the 3-(trifluoromethyl)glutaric acid with tosylated imines 2.

1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{phenyl(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (3a).

To a 30 mL two-necked flask containing THF (5 mL) and 0.08 mL (0.6 mmol) diisopropylamine under an argon atmosphere was added BuLi (0.36 mL, 0.58 mmol) at 0 °C and the mixture was stirred for 30 min at that temperature. After cooling to -80 °C, 1,5-bis[(4*S*)-4-isopropyl-2-oxo-1,3-oxazolidin-3-yl]-3-(trifluoromethyl)pentane-1,5-di-

one [1] (**1a**, 0.0845 g, 0.200 mmol) was added to the LDA solution and stirred for 30 min at -80 °C where *N*-benzylidene-4-toluenesulfonamide [2](**2ac**, 0.1141 g 0.440 mmol) was added and the whole mixture was stirred for further 6 h at that temperature. Then, aqueous NH₄Cl was added, the mixture extracted three times with AcOEt, and the collected AcOEt layer was dried over anhydrous Na₂SO₄. Filtration and evaporation afforded a crude material which was chromatographed on silica gel using hexane/AcOEt 2:1 as an eluent to give 0.1026 g (0.15 mmol) of the desired 1,5-bis[(4*S*)-4-isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{phenyl(4-toluenesulfonamido)-

methyl}-3-(trifluoromethyl)pentane-1,5-dione (**3a**) as a 73:17:(10) mixture of diastereoisomers in 75% yield. The major stereoisomer was isolated by recrystallization (to the sample, dissolved in a small amount of AcOEt at 60 °C hexane was added until a clear solution was obtained. Cooling to room temperature afforded the desired main products) whose spectral data are given below.

Mp.: 186.5-187.0 °C, Rf=0.58 (hexane:AcOEt=1:1), $[\alpha]_D^{24}$ +33.0 (*c* 1.0, CHCl₃). ¹H NMR: δ 0.73 (3H, d, *J*=6.9 Hz), 0.87 (3H, d, *J*=7.2 Hz), 0.99 (3H, d, *J*=7.2 Hz), 1.01 (3H, d, *J*=6.6 Hz), 2.26–2.34 (1H, m), 2.30 (3H, s), 2.47–2.53 (1H, m), 2.86–3.00 (1H, m), 3.12 (1H, dd, *J*=18.6, 6.0 Hz), 3.60 (1H, dd, *J*=18.3, 6.0 Hz), 4.19–4.31 (4H, m), 4.34–4.38 (1H, m), 4.40–4.43 (1H, m), 4.77 (1H, t, *J*=9.9 Hz), 5.04 (1H, dd, *J*=9.0, 3.3 Hz), 5.76 (1H, d, *J*=10.2 Hz), 7.00 (2H, d, *J*=8.4 Hz), 7.10-7.14 (5H, m), 7.42 (2H, d, *J*=8.4 Hz). ¹³C NMR: δ 14.5, 14.6, 18.0, 18.1, 21.3, 28.28, 28.33, 31.1, 38.1 (q, *J*=26.6 Hz), 43.7, 58.8, 59.4, 59.7, 63.5, 63.6, 126.9 (q, *J*=279.8 Hz), 126.9, 127.0, 128.1, 128.6, 129.1, 137.0, 137.2, 142.9, 154.0, 154.6, 169.6, 170.8. ¹⁹F NMR: δ -71.96 (d, *J*=9.0 Hz), -70.30 (d, *J*=9.0 Hz; minor diastereomer). IR (KBr): v 548, 559, 668, 705, 817, 1120, 1165, 1207, 1251, 1304, 1375, 1388, 1605, 1707, 1781, 2872, 2955, 3273, 3550, 3623 cm⁻¹. Anal. Calcd for C₃₂H₃₈F₃N₃O₈S: C, 56.38; H, 5.62; N, 6.16.

1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(4-bromophenyl)(4-toluene-sulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (3b)

91% yield as a 62:17:(21) mixture. mp.: 140.0–141.0 °C, Rf=0.58 (hexane: AcOEt=1:1). $[\alpha]_D^{26}$ +20.2 (*c* 0.89, CHCl₃). ¹H NMR: δ 0.72 (3H, d, *J*=6.9 Hz), 0.87 (3H, d, *J*=7.2 Hz), 1.00 (3H, d, *J*=6.9 Hz), 1.01 (3H, d, *J*=6.9 Hz), 2.21–2.32 (1H, m), 2.36 (3H, s), 2.46–2.57 (1H, m), 2.89–2.97 (1H, m), 3.05 (1H, dd, *J*=18.3, 5.4 Hz), 3.60 (1H, dd, *J*=18.3, 7.2 Hz), 4.18–4.29 (4H, m), 4.32–4.36 (1H, m), 4.41–4.46 (1H, m), 4.75 (1H, t, *J*=9.9 Hz), 5.00 (1H, dd, *J*=9.3, 3.3 Hz), 5.83 (1H, d, *J*=10.2 Hz), 7.01 (2H, d, *J*=8.4 Hz), 7.06 (2H, d, *J*=8.4 Hz), 7.24 (2H, d, *J*=8.4 Hz) 7.43 (2H, d, *J*=8.4 Hz). ¹³C NMR: δ 14.5, 14.6, 18.0, 18.1, 21.1, 28.35, 28.44, 31.3, 38.1 (q, *J*=27.3 Hz), 43.5, 58.8, 59.0, 59.7, 63.6, 63.7, 122.3, 126.8 (q, *J*=279.7 Hz), 127.0, 128.9, 129.2, 131.7, 136.2, 137.1, 143.4, 154.0, 154.7, 169.7, 170.6. ¹⁹F NMR: δ –72.03 (d, *J* = 9.0 Hz), –69.73 (d, *J* = 9.0 Hz; second major diastereomer), –70.70 (d, *J* = 9.3 Hz; minor diastereomer). IR (KBr): v 545, 666, 716, 811, 855, 956, 1016, 1111, 1173, 1227, 1311, 1384, 1495, 1611, 1700, 1783, 2878, 2955, 3267, 3567 cm⁻¹. Anal. Calcd for C₃₂H₃₇BrF₃N₃O₈S: C, 50.53; H, 4.90; N, 5.52. Found: C, 50.35; H, 5.12; N, 5.07.

1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(4-nitrophenyl)(4-toluene-sulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (3c)

92% yield as a 62:13:(22) mixture. mp.: 140.5–143.0 °C, Rf=0.58 (hexane: AcOEt=1:1), $[\alpha]_D^{25}$ +0.72 (*c* 1.8, CHCl₃). ¹H NMR: δ 0.61 (3H, d, *J*=6.6 Hz), 0.84 (3H, d, *J*=6.9 Hz), 1.02 (3H, d, *J*=6.9 Hz), 1.02 (3H, d, *J*=6.9 Hz), 2.14–2.24 (1H, m), 2.32 (3H, s), 2.50–2.61 (1H, m), 2.92–3.00 (2H, m), 3.62 (1H, dd, *J*=18.3, 7.5 Hz), 4.17–4.33 (5H, m), 4.43–4.48 (1H, m), 4.91 (1H, t, *J*=9.0 Hz), 5.09 (1H, dd, *J*=8.7, 3.3 Hz), 6.01 (1H, d, *J*=9.6 Hz), 7.08 (2H, d, *J*=8.4 Hz), 7.41 (2H, d, *J*=8.7 Hz), 7.50 (2H, d, *J*=7.8 Hz) 8.01 (2H, d, *J*=8.7 Hz). ¹³C NMR: δ 14.4, 14.6, 18.0, 18.1, 21.4, 28.3, 28.4, 31.5 (q, *J*=1.9 Hz), 38.1 (q, *J*=26.6 Hz), 43.4, 58.5, 59.1, 59.7, 63.6, 63.8, 123.7, 126.7 (q, *J*=279.8 Hz), 127.1, 128.4, 129.4, 143.7, 144.7, 147.5, 154.1, 154.5, 169.7, 170.3. ¹⁹F NMR: δ –72.09 (d, *J*=9.3 Hz), -70.71 (d, *J*=9.3 Hz; second major diastereomer), -69.58 (d, *J*=9.3 Hz; third major diastereomer), -68.71 (d, *J*=9.3 Hz; minor diastereomer). IR (KBr): v 537, 549, 561, 671, 703, 817, 1111, 1165, 1208, 1305, 1348, 1377, 1389, 1524, 1611, 1703, 1776, 2978, 3261, 3633 cm⁻¹. Anal. Calcd for C₃₂H₃₇F₄N₃O₈S: C, 54.93; H, 5.33; N, 6.01. Found: C, 53.10; H, 5.52; N, 7.72.

1,5-bis[(4*S*)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(3-fluorophenyl)(4-toluene-sulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (3d)

78% yield, a 81:6:(13) mixture. mp.: 160.8-161.5 °C, Rf=0.58 (hexane:AcOEt= 1:1), [α]_D²⁴ +42.5 (c 5.7, CHCl₃). ¹H NMR: δ 0.72 (3H, d, J=6.9 Hz), 0.87 (3H, d, J=6.9 Hz), 0.99 (3H, d, J=6.9 Hz), 1.01 (3H, d, J=6.9 Hz), 2.27–2.32 (1H, m), 2.32 (3H, s), 2.50-2.53 (1H, m), 2.91-2.96 (1H, m), 3.05 (1H, dd, J=18.3, 5.4 Hz), 3.61 (1H, dd, J=18.6, 6.6 Hz), 4.19–4.29 (4H, m), 4.32–4.36 (1H, m), 4.41–4.45 (1H, m), 4.76 (1H, t, J=9.9 Hz), 5.03 (1H, dd, J=9.3, 3.3 Hz), 5.85 (1H, d, J=9.9 Hz), 6.74–6.77 (1H, m), 6.84 (1H, dt, J=8.4, 1.8 Hz), 6.97 (1H, d, J=8.1 Hz), 7.06 (2H, d, J=8.1 Hz), 7.14 (1H, dt, J=8.1, 6.0 Hz), 7.46 (2H, d, J=8.1 Hz). ¹³C NMR: δ 14.3, 14.5, 17.75, 17.78, 17.83, 17.86, 21.08, 21.11, 28.1, 31.0, 37.9 (q, J=26.7 Hz), 43.4, 58.8, 59.5, 63.5, 114.3 (d, J=22.3 Hz), 114.8 (d, J = 21.1 Hz), 122.4, 126.7 (q, J=279.8 Hz), 126.9, 129.0, 130.2 (d, J=8.1 Hz), 136.9, 139.6 (d, J=6.9 Hz), 143.0 (d, J=1.2 Hz), 154.0, 154.3, 162.4 (d, J=246.9 Hz), 169.4, 170.5. ¹⁹F NMR: δ –113.72 (1F, m), –114.00 (1F, m; second major diastereomer), -112.57 (1F, m; third major diastereomer and the peak for the minor diastereomer was not found out possibly due to overlap), -71.95 (3F, d, J=9.0 Hz), -67.73 (3F, d, J=9.0 Hz; second major diastereomer), -69.58 (3F, d, J=9.0 Hz; third major diastereomer), -70.57 (3F, d, J=9.4 Hz; minor diastereomer). IR (KBr): v 553, 666, 671, 703, 812, 1093, 1120, 1164, 1205, 1245, 1304, 1342, 1389, 1488, 1707, 1781, 2361, 2967, 3277, 3639 cm⁻¹. Anal. Calcd for $C_{32}H_{37}F_4N_3O_8S$: C, 54.93; H, 5.33; N, 6.01. Found: C, 54.58; H, 5.45; N, 5.97.

1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{2-furyl(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)-pentane-1,5-dione (inseparable diastereomer mixture) (3e)

55% yield, a mixture of 51:22:(27). Rf=0.58 (hexane:AcOEt=1:1). ¹H NMR: δ 0.91 (3H, d, *J*=6.6 Hz), 0.92 (3H, d, *J*=6.9 Hz), 0.98 (3H, d, *J*=8.1 Hz), 1.00 (3H, d, *J*=7.9 Hz), 2.34 (3H, s), 2.40–2.51 (1H, m), 2.86–2.95 (1H, m), 3.17 (1H, dd, *J*=18.3, 6.3 Hz), 3.56 (1H, dd, *J*=18.6, 6.3 Hz), 4.24–4.33 (5H, m), 4.41–4.45 (2H, m), 4.41–4.45 (1H, m), 4.87 (1H, t, *J*=10.2 Hz), 5.09 (1H, dd, *J*=10.2, 2.4 Hz), 5.59 (1H, d, *J*=10.5 Hz), 6.00–6.05 (2H, m), 7.10–7.14 (2H, m), 7.34 (1H, t, *J*=9.0 Hz), 7.49 (2H, d, *J*=8.4 Hz). ¹³C NMR: δ 14.5, 14.7, 17.99, 18.02, 21.4, 28.2, 31.10, 31.12, 38.2 (q, *J*=26.6 Hz), 41.7, 53.5, 58.7, 59.6, 63.47, 63.55, 109.8, 110.0, 126.7 (q, *J*=279.7 Hz), 126.9, 129.2, 137.0, 142.8, 143.0, 148.7, 153.9, 154.3, 169.8, 170.3. ¹⁹F NMR: δ –71.85 (d, *J*=9.0 Hz), -70.59 (d, *J*=9.3 Hz; second major diastereomer), -69.88 (d, *J*=9.0 Hz; third major diastereomer), -67.43 (d, *J*=9.0 Hz; minor diastereomer). IR (KBr): v 495, 555, 666,

700, 744, 811, 933, 1066, 1117, 1167, 1217, 1306, 1394, 1589, 1716, 1778, 2883, 2961, 3267, 3545 cm⁻¹. HRMS-FAB (m/z) : [M+H]⁺ calcd. for C₃₀H₃₆F₃N₃O₉S, 672.2203; found, 672.2197.

1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(4-methylphenyl)(4-toluene-sulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (3f)

66% yield, a 51:16:(33) mixture. mp.: 129.0-131.0 °C, Rf=0.50 (hexane: AcOEt=1:1), [α]_D²¹ +67.7 (*c* 0.56, CHCl₃). ¹H NMR: δ 0.74 (3H, d, *J*=6.9 Hz), 0.88 (3H, d, *J*=6.9 Hz), 0.98 (3H, d, *J*=6.9 Hz), 1.00 (3H, d, *J*=6.6 Hz), 2.24 (3H, s), 2.29–2.34 (1H, m), 2.31 (3H, s), 2.43–2.54 (1H, m), 2.88–3.02 (1H, m), 3.14 (1H, dd, *J*=18.6, 6.6 Hz), 3.59 (1H, dd, *J*=18.3, 6.0 Hz), 4.19–4.31 (4H, m), 4.35–4.37 (1H, m), 4.39–4.43 (1H, m), 4.72 (1H, t, *J*=9.9 Hz), 5.00 (1H, dd, *J*=9.9, 3.3 Hz), 5.71 (1H, d, *J*=10.2 Hz), 6.89–7.02 (6H, m), 7.41 (2H, d, *J*=8.1 Hz). ¹³C NMR: δ 14.5, 14.7, 18.0, 18.1, 21.0, 21.3, 28.3, 28.4, 31.0, 38.2 (q, *J*=26.7 Hz), 43.7, 58.9, 59.2, 59.7, 63.5, 63.6, 126.8, 126.9 (q, *J*=280.4 Hz), 127.1, 129.0, 129.2, 134.0, 137.3, 138.0, 142.8, 153.9, 154.7, 169.7, 170.9. ¹⁹F NMR: δ –71.95 (d, *J* = 9.0 Hz), –69.60 (d, *J* = 9.0 Hz; second major diastereomer), -70.56 (d, *J* = 9.3 Hz; third major diastereomer), –73.14 (d, *J* = 9.0 Hz; minor diastereomer). IR (KBr): v 539, 569, 665, 1094, 1162, 1208, 1256, 1305, 1332, 1366, 1393, 1405, 1611, 1686, 1697, 1760, 1797, 2972, 3100, 3577 cm⁻¹. HRMS-FAB (*m*/*z*) : [M+2H]⁺ calcd. for C₃₃H₄₂F₃N₃O₈S, 697.2645; found, 697.2675.

3. ¹H and ¹³C NMR spectra

1,5-bis[(4*S*)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{phenyl(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (**3a**)

1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(4-bromophenyl)(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (**3b**)

1,5-bis[(4*S*)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(4-nitrophenyl)(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (**3c**)

1,5-bis[(4*S*)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(3-fluorophenyl)(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)pentane-1,5-dione (**3d**)

1,5-bis[(4*S*)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{2-furyl(4-toluenesulfonamido)methyl}-3-(trifluoromethyl)-pentane-1,5-dione (inseparable diastereomer mixture) (**3e**) (Stereochemistry was assumed on the basis of the one of **3a**)

 $1,5-bis[(4S)-4-Isopropyl-2-oxo-1,3-oxazolidin-3-yl]-2-{(4-methylphenyl)(4-toluenesulfonamido)-methyl}-3-(trifluoromethyl)pentane-1,5-dione ($ **3f**)

4. Crystallographic data of the major isomer of compound 3a

Deposition number	CCDC 1575731		
Empirical formula	C32 H38 F3 N3 O8 S		
Formula weight	681.71		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 11.5242(5) Å	$\alpha = 90^{\circ}$	
	b = 15.0568(6) Å	$\beta = 90^{\circ}$	
	c = 19.4473(8) Å	$\gamma=90^\circ$	
Volume	3374.4(2) Å ³		
Z	4		
Density (calculated)	1.342 Mg/m^3		
Absorption coefficient	0.166 mm^{-1}		
F(000)	1432		
Crystal size	0.230 x 0.210 x 0.170 m	m ³	
Theta range for data collection	1.710 to 25.495°		
Index ranges	-13<=h<=13, -18<=k<=	=18, -23<=l<=23	
Reflections collected	30358		
Independent reflections	6261 [R(int) = 0.0325]		
Completeness to theta = 25.242°	99.7%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.87379		
Refinement method	Full-matrix least-squares	s on F^2	
Data / restraints / parameters	6261 / 1 / 429		
Goodness-of-fit on F ²	1.041		
Final R indices [I>2sigma(I)]	R1 = 0.0415, wR2 = 0.1	011	
R indices (all data)	R1 = 0.0531, wR2 = 0.1	104	
Absolute structure parameter	-0.01(2)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.231 and -0.234 e.Å ⁻³		

	Х	у	Z	U(eq)
O(1)	5347(2)	3420(2)	3319(1)	54(1)
O(2)	5690(4)	6178(2)	3589(2)	90(1)
O(3)	5873(4)	5743(2)	4677(1)	98(1)
O(4)	1558(2)	4058(2)	1842(2)	73(1)
O(5)	2792(3)	1691(2)	2663(2)	80(1)
O(6)	1369(3)	1130(2)	2026(2)	87(1)
O(7)	8449(2)	4849(2)	1629(2)	79(1)
O(8)	7004(3)	3754(2)	1214(1)	85(1)
C(1)	4747(3)	5034(2)	1481(2)	45(1)
C(2)	4756(3)	5949(2)	1439(2)	56(1)
C(3)	4235(4)	6377(3)	890(2)	70(1)
C(4)	3709(4)	5897(3)	380(2)	78(1)
C(5)	3705(5)	4999(3)	410(2)	83(1)
C(6)	4218(4)	4557(3)	960(2)	66(1)
C(7)	5298(3)	4549(2)	2081(2)	41(1)
C(8)	4669(3)	4739(2)	2765(2)	41(1)
C(9)	5273(3)	4223(2)	3336(1)	42(1)
C(10)	5732(4)	5595(3)	4003(2)	71(1)
C(11)	5754(6)	4937(3)	5058(2)	98(2)
C(12)	5998(4)	4199(3)	4539(2)	63(1)
C(13)	7220(4)	3846(3)	4530(2)	75(1)
C(14)	8155(5)	4556(4)	4447(3)	104(2)
C(15)	7434(6)	3290(4)	5187(3)	111(2)
N(1)	6531(2)	4777(2)	2172(1)	46(1)
C(16)	3358(3)	4502(2)	2727(2)	46(1)
C(17)	2734(3)	4814(3)	3364(2)	67(1)
C(18)	3066(3)	3527(2)	2582(2)	51(1)
C(19)	2045(3)	3436(2)	2097(2)	52(1)
C(20)	2034(4)	1797(2)	2249(2)	61(1)

Table S1. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters (Å²x10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(21)	448(4)	1464(3)	1607(3)	86(1)	
C(22)	730(3)	2418(3)	1443(2)	65(1)	
C(26)	8057(3)	3443(2)	2355(2)	51(1)	
C(28)	7965(5)	2009(3)	2865(3)	91(2)	
C(29)	8925(4)	2178(3)	3265(3)	79(1)	
C(30)	9438(4)	2997(3)	3197(2)	82(1)	
C(31)	9015(3)	3639(3)	2747(2)	65(1)	
C(32)	9394(6)	1476(4)	3751(4)	131(2)	
S (1)	7528(1)	4231(1)	1764(1)	56(1)	
F(1)	3076(2)	4384(2)	3936(1)	93(1)	
F(2)	1584(2)	4689(2)	3323(2)	94(1)	
F(3)	2895(3)	5675(2)	3496(2)	96(1)	
N(2)	5682(3)	4681(2)	3901(1)	51(1)	
N(3)	1679(2)	2574(2)	1939(2)	54(1)	
C(33)	1043(6)	2563(6)	711(3)	143(3)	
C(34)	2064(7)	2527(10)	442(3)	226(6)	
C(35)	-9(7)	2338(6)	251(4)	157(3)	
C(36)	7530(4)	2625(3)	2409(2)	73(1)	

5. References

- 1. Watanabe, Y.; Yamazaki, T.; Kubota, T. Org. Lett. 2010, 12, 268–271.
- 2. Novacek, J.; Roiser, L.; Zielke, K.; Robiette, R.; Waser, M. *Chem. Eur. J.* **2016**, *22*, 11422–11428.