Supporting Information

for

Total synthesis of TMG-chitotriomycin based on automated electrochemical assembly of a disaccharide building block

Yuta Isoda¹, Norihiko Sasaki¹, Kei Kitamura¹, Shuji Takahashi¹, Sujit Manmode¹, Naoko Takeda-Okuda², Jun-ichi Tamura^{1,2,3}, Toshiki Nokami^{1,3}* and Toshiyuki Itoh^{1,3}*

Address: ¹Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan, ²Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan and ³Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

Experimental details of electrochemical glycosylation, global deprotection, and NMR spectra of unknown compounds

Contents

1.	General	S2
2.	Synthesis of disaccharide donors	S2–S3
3.	Deprotection of the precursor of TMG-chitotriomycin	S3–S5
4.	References	S 6
5.	¹ H, ¹³ C NMR, H,H-COSY, and HMQC spectra of disaccharides $5a\alpha$ and $5b\alpha$	S7–S10
6.	¹ H, ¹³ C-NMR, H,H-COSY, and HMQC spectra of tetrasaccharides 8 and 9	S11–S14

1. General

¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE II 600 (¹H 600 MHz, ¹³C 150 MHz). Electro-spray ionization mass spectra (ESI–TOF MS) were recorded on Thermo Scientific Exactive spectrometer. Sephadex LH-20 was used for gel filtration chromatography and Kanto silica gel (spherical, neutral, 63–210 μ m) was used for column chromatography. Optical rotation was recorded on JASCO DIP-370 digital polarimeter in chloroform. Merck TLC (silica gel 60 F₂₅₄) was used for TLC analysis. Carbohydrate building blocks **2a**,¹ **2b**,¹ and **4**¹ were prepared according to the reported procedures. NMR spectra of **5b** β have already provided in our previous report. [1] TMG-chitotriomycin (1) thus-obtained was compared with that synthesized in previous reports.^{2,3} Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification.

2. Synthesis of disaccharide donors

The synthesis of disaccharide glycosyl donor 5a was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode (Nippon Carbon JF-20-P7) and a platinum plate cathode (20 mm \times 20 mm). In the anodic chamber was placed thioglycoside 2a (134 mg, 0.25 mmol) in anhydrous dichoromethane (10 mL). In the cathodic chamber was placed TfOH (22 μ L, 0.2 mmol) and in anhydrous dichoromethane (10 mL). The constant current electrolysis (8.0 mA) was carried out at -80 °C with magnetic stirring until 1.0 F/mol of electricity was consumed. After the electrolysis, 4 (165 mg, 0.30 mmol) in anhydrous dicloromethane (1.0 mL) was added and stirred for 1 h at -60 °C. Then Et₃N (0.3 mL) was added to the both chambers and the mixture was stirred at ambient temperature. After removal of solvent the crude product was purified with silica gel chromatography (hexane/EtOAc = 1:1) to afford disaccharide $5a\alpha$ as a major product (204 mg, 59% NMR yield) together with 4. Further purification with preparative GPC gave disaccharide 5a in 50% yield (109 mg, 0.126 mmol, $5a\alpha/5a\beta$ = 98:2). 4-Fluorophenyl 3,4,6-tri-O-acetyl-2-deoxy-2-azido- α -D-glucopyranosyl-(1 \rightarrow 4)-3-O-acetyl-6-O-benzyl-**2-deoxy-2-phthalimido-1-thio-\beta-D-glucopyranoside** (5a α). TLC (Hexane/EtOAc = 1:1): R_f 0.55. [α]_D = +66.0 (*c* = 1.0, CHCl₃ 25 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.88 (d, *J* = 7.2 Hz, 1 H), 7.84 (d, *J* = 6.0 Hz, 1 H), 7.74 (dd, *J* = 5.4, 3.6 Hz, 2 H), 7.41 (dd, J = 9.0, 5.4 Hz, 2 H), 7.39 - 7.30 (m, 5 H), 6.90 (pseudo-t, J = 9.0 Hz, 2 H), 5.79 (dd, J = 9.6, 9.0 Hz, 1 H), 5.68 (d, J = 10.8 Hz, 1 H), 5.32 (dd, J = 10.2, 9.0 Hz, 1 H), 5.22 (d, J = 3.6 Hz, 1 H), 4.97 (pseudo-t, J = 10.2 Hz, 1 H), 4.62 (s, 2 H), 4.17 (pseudo-t, J = 10.2 Hz, 1 H), 4.16 (dd, J = 9.0, 3.6 Hz, 1 H), 4.01 (pseudo-t, J = 9.6 Hz, 1 H), 3.99 (dt, J = 10.8, 1.8 Hz, 1 H), 3.86 (dd, J = 11.4, 4.2 Hz, 1 H), 3.82 (d, J = 10.8 Hz, 1 H), 3.81 (d, J = 12.6 Hz, 1 H), 3.79 (ddd, J = 10.2, 4.2, 1.8 Hz, 1 H), 3.38 (dd, J = 10.8, 3.6 Hz, 1 H), 2.03 (s, 3 H), 2.02 (s, 3 H), 2.01 (s, 3 H), 1.86 (s, 3 H). ¹³C NMR (CDCl₃, 150 MHz) δ 170.3, 169.7, 169.6, 169.5, 167.8, 167.2, 163.1 (d, *J* = 247.8 Hz), 137.8, 136.3 (d, *J* = 8.6 Hz), 134.5, 134.2, 131.6, 131.0, 128.4, 127.8, 125.3 (d, *J* = 3.2 Hz), 123.7, 123.5, 115.9 (d, *J* = 21.8 Hz), 98.2, 82.4, 78.3, 75.1, 74.1, 73.5, 70.2, 68.7, 68.3, 68.0, 61.3, 60.9, 53.9, 20.6, 20.53, 20.50, 20.4. HRMS (ESI) *m*/*z* calcd for C₄₁H₄₁FN₄NaO₁₄S [M+Na]⁺, 887.2216; found, 887.2214.

Building blocks **2b** (146 mg, 0.25 mmol) and **4** (165 mg, 0.30 mmol) afforded disaccharide **5b** as a white solid in 79% yield ($\alpha/\beta = 16:84, 0.198$ mmol).¹ Silica gel chromatography (hexane/EtOAc = 4:1 as eluent) was repeated for 4 times to obtain α -isomer **5b** α as a pure product (10 mg). **4-Fluorophenyl 3,4,6-tri-***O***-benzyl-2-deoxy-2-azido-\alpha-D-glucopyranosyl-(1\rightarrow4)-3-***O***-acetyl-6-***O***-benzyl-2-deoxy-2-**

phthalimido-1-thio-β-D-glucopyranoside (5bα). TLC (Hexane/EtOAc 5:2): R_f 0.34. $[\alpha]_{\rm D} = +21.8 \ (c = 1.2, \text{ CHCl}_3, 25 \ ^{\circ}\text{C}).$ ¹H NMR (CDCl}3, 600 MHz) δ 7.89 – 7.85 (m, 2 H), 7.77 – 7.73 (m, 2 H), 7.42 (dd, J = 8.4, 5.4 Hz, 2 H), 7.39 – 7.25 (m, 18 H), 7.14 - 7.13 (m, 2 H), 6.88 (pseudo-t, J = 8.4 Hz, 2 H), 5.79 (pseudo-t, J = 9.0 Hz, 1 H), 5.68 (d, J = 10.2 Hz, 1 H), 5.15 (d, J = 3.6 Hz, 1 H), 4.83 (d, J = 10.8 Hz, 1 H), 4.79 (d, J = 10.8 Hz, 1 H), 4.76 (d, J = 11.4 Hz, 1 H), 4.55 (s, 2 H), 4.53 (d, J = 12.6 Hz, 1 H), 4.47 (d, J = 10.8 Hz, 1 H), 4.36 (d, J = 12.0 Hz, 1 H), 4.18 (pseudo-t, J =10.2 Hz, 1 H), 3.95 (pseudo-t, J = 9.0 Hz, 1 H), 3.84 (d, J = 9.6 Hz, 1 H), 3.83 - 3.79 (m, 2 H), 3.78 - 3.74 (m, 2 H), 3.67 (pseudo-t, J = 9.6 Hz, 1 H), 3.61 (dd, J = 10.8, 3.0 Hz, 1 H), 3.44 (d, J = 10.2 Hz, 1 H), 3.36 (dd, J = 10.2, 3.6 Hz, 1 H), 1.87 (s, 3 H). ¹³C NMR (CDCl₃, 150 MHz) δ 170.1, 168.0, 167.3, 163.1 (d, J = 247.2 Hz), 138.2, 137.8, 137.71, 137.68, 136.2 (d, J = 8.4 Hz), 134.5, 134.2, 131.8, 131.2, 128.47, 128.43, 128.41, 128.40, 128.1, 127.9, 127.85, 127.80, 127.76, 127.65, 127.4, 125.7 (d, J = 3.5 Hz), 123.7, 123.5, 116.0 (d, J = 21.8 Hz), 99.2, 82.4, 80.0, 78.6, 78.0, 75.6, 75.5, 75.0, 74.4, 73.5, 73.4, 71.8, 69.1, 67.9, 63.6, 54.0, 20.5. HRMS (ESI) m/z calcd for C₅₆H₅₃FN₄NaO₁₁S [M+Na]⁺, 1031.3308; found, 1031.3256.

3. Deprotection of the precursor of TMG-chitotriomycin

Tetrasaccharide **7** (194 mg, 0.105 mmol) was dissolved in ethanol (5 mL). Then ethylenediamine (15.6 mmol, 1.0 mL) was added to the reaction mixture and stirred at room temperature for 10 min and reflux for

12 h. The solvent was removed under reduced pressure and dried under vacuum. To the pyridine (5 mL) solution of thus-obtained product and *N*,*N*-dimethylaminopyridine (0.26 mmol, 30.5 mg) acetic anhydride (18.1 mmol, 1.71 mL) was added and stirred at room temperature for 12 h. The reaction was quenched by addition of CH₂Cl₂ (10 mL) and the organic layer was washed with 1 M aqueous HCl solution and saturated aqueous NaHCO₃ solution, respectively. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. Thus-obtained crude product was purified with silica gel chromatography (CH₂Cl₂/MeOH 60:1 to 20:1) to obtain tetrasaccharide 8 (145 mg, 0.91 mmol) as a white solid in 87% yield (2 steps). 4-Fluorophenyl 3,4,6-tri-*O*-benzyl-2-deoxy-2-azido-β-D-glucopyranosyl-(1→4)-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-acetamide-β-D-glucopyranosyl-(1→4)-3-*O*-acetyl-6-*O*-benzyl-2-

deoxy-2-acetamide-1-thio-β-D-glucopyranoside (8). TLC (EtOAc): $R_f 0.25$. $[α]_D = -51.6$ (c = 1.0, CHCl₃, 25 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.53 – 7.48 (m, 4 H), 7.45 – 7.37 (m, 4 H), 7.36 – 7.24 (m, 24 H), 7.15 – 7.12 (m, 2 H), 6.96 (pseudo-t, J = 9.0 Hz, 2 H), 6.05 – 5.99 (bs, 1 H), 5.18 (d, J = 9.0 Hz, 1 H), 4.96 (pseudo-t, J = 9.0 Hz, 1 H), 4.81 (d, J = 10.8 Hz, 1 H), 4.76 (d, J = 12.0 Hz, 2 H), 4.75 (d, J = 11.4 Hz, 2 H), 4.71 – 4.68 (m, 2 H), 4.65 (pseudo-t, J = 9.6 Hz, 1 H), 4.52 (pseudo-t, J = 12.0 Hz, 3 H), 4.47 – 4.45 (m, 3 H), 4.44 – 4.37 (m, 4 H), 4.23 (d, J = 12.0 Hz, 1 H), 4.20 (d, J = 8.4 Hz, 1 H), 4.16 (d, J = 9.6 Hz, 1 H), 4.13 (d, J = 7.8 Hz, 1 H), 4.08 (d, J = 8.4 Hz, 1 H), 3.93 (d, J = 9.6 Hz, 1 H), 3.91 – 3.74 (m, 5 H), 3.67 – 3.46 (m, 8 H), 3.31 – 3.26 (m, 1 H), 3.27 (dd, J = 9.6, 8.4 Hz, 1 H), 3.19 (dt, J = 9.0, 2.4 Hz, 1 H), 3.16 (pseudo-t, J = 9.6 Hz, 1 H), 3.03 (dt, J = 4.8, 1.8 Hz, 1 H), 2.05 (s, 3 H), 2.00 (s, 3 H), 1.93 (s, 3 H), 1.92 (s, 3 H), 1.68 (s, 3 H), 1.67 (s, 3 H). ¹³C NMR (CDCl₃, 150 MHz) δ 171.3, 171.2, 170.0, 169.8, 169.5, 162.6 (d, J = 246.3 Hz), 138.0, 137.9, 137.6, 137.5, 137.4, 137.0, 134.7 (d, J = 8.0 Hz), 129.33, 129.29, 129.1, 128.8, 128.6, 128.5, 128.4, 127.9, 127.8, 127.77, 127.71, 127.69, 127.6, 115.8 (d, J = 21.6 Hz), 101.0, 100.6, 86.8, 83.0, 78.6, 75.2, 74.7, 74.4, 74.2, 74.0, 73.9, 73.7, 73.5, 73.1, 72.9, 68.3, 67.9, 66.9, 66.3, 53.7, 52.3, 23.2, 23.1, 23.0, 20.7, 20.51, 20.46. HRMS (ESI) m/z calcd for $C_{84}H_{95}FKN_6O_{22}S$ $[M+K]^+$, 1629.5836; found, 1629.5841.

Scheme S4.

Tetrasaccharide **8** (145 mg, 0.091 mmol) was dissolved in a mix-solvent of pyridine and water (5.0 mL/1.3 mL). Then Et₃N (0.4 mL) and 1,3-propanedithiol (7.5 mmol, 0.75 mL) were successively added to the reaction mixture and stirred at room temperature for 12 h. The completion of the reaction was confirmed by ESIMS analysis and the solvent was removed under reduced pressure. The crude product was purified by silica gel chromatography (CH₂Cl₂/MeOH/Et₃N = 80:2:1 as eluent) and dried under vacuum. To the THF (7.4 mL) solution of thus-obtained product *N*,*N*-diisopropylamine (4.3 mmol, 0.75 mL) and methyl iodide (80.5 mmol, 5.0 mL) were added and stirred at room temperature for 12 h. The reaction was quenched by addition of EtOAc (20 mL) and evaporated to remove

solvent. The crude product was purified with silica gel chromatography (CH₂Cl₂/MeOH 8:1) to obtain tetrasaccharide 9 (138 mg, 0.86 mmol) in 94% yield (2 steps) 4-Fluorophenyl 3,4,6-tri-O-benzyl-2-deoxy-2-trimethylammonium- β -D-glucopyranosyl-(1 \rightarrow 4)-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-acetamide- β -D $glucopyranosyl-(1 \rightarrow 4)-3-O-acetyl-6-O-benzyl-2-deoxy-2-acetamide-\beta-D-glucopyranosyl-(1 \rightarrow 4)-3-O-acetyl-6-O-benzyl-2-deoxy-2-acetamide-benzyl-2-deoxy-2-acetamide-benzyl-2-deoxy-2-acetamide-benzyl-2-deoxy-2-acetamide-benzyl-2-deoxy-2-acetawide-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-6-O-benzyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-deoxy-2-acetyl-2-dooxy-2-acetyl-$ **O-benzyl-2-deoxy-2-acetamide-1-thio-\beta-D-glucopyranoside (9).** TLC (MeOH/EtOAc 1:1): R_f 0.50. [α]_D = -34.4 $(c = 1.0, CHCl_3, 25^{\circ}C)$. ¹H NMR (CDCl_3, 600 MHz) δ 7.52 (dd, J = 5.4, 3.6 Hz, 2 H), 7.43 – 7.34 (m, 8 H), 7.34 – 7.22 (m, 16 H), 7.22 - 7.16 (m, 4 H), 7.04 (d, J = 6.6 Hz, 2 H), 6.93 (pseudo-t, J = 8.4 Hz, 2 H), 6.46 (bs, 1 H), 5.43 (bs, 1H), 5.20 (bs, 1 H), 5.13 (d, J = 6.6 Hz, 1 H), 5.06 (pseudo-t, J = 9.0 Hz, 1 H), 4.87 (pseudo-t, J = 9.6 Hz, 1 H), 4.80 (pseudo-t, J = 9.0 Hz, 1 H), 4.69 (d, J = 12.0 Hz, 1 H), 4.65 (d, J = 11.4 Hz, 1 H), 4.50 (d, J = 11.4 Hz, 1 H), 4.49 (d, J = 12.0 Hz, 1 H), 4.47 (d, J = 11.4 Hz, 1 H), 4.45 (d, J = 11.4 Hz, 1 H), 4.43 (d, J = 12.0 Hz, 1 H), 4.41 (d, J = 8.4 Hz, 1 H), 4.41 - 4.39 (m, 3 H), 4.36 (d, J = 12.0 Hz, 1 H), 4.32 (d, J = 8.4 Hz, 1 H), 4.14 (pseudo-t, J = 12.0 Hz, 1 H), 4.32 (d, J = 12.0 Hz, 1 H), 4.14 (pseudo-t, J = 12.0 Hz, 1 H), 4.32 (d, J = 12.0 Hz, 1 H), 4.14 (pseudo-t, J = 12.0 Hz, 1 H), 4.32 (d, J = 12.0 Hz, 1 H), 4.34 Hz, 1 H), 4.34 (pseudo-t, J = 12.0 Hz, 1 H), 4.34 Hz, 1 Hz,9.6 Hz, 2 H), 4.10 (pseudo-t, J = 9.6 Hz, 1 H), 3.97 (pseudo-t, J = 3.0 Hz, 1 H), 3.94 – 3.90 (m, 1 H), 3.87 (pseudo-t, J = 9.0 Hz, 1 H), 3.83 (pseudo-t, J = 9.0 Hz, 1 H), 3.79 (pseudo-t, J = 9.0 Hz, 1 H), 3.65 – 3.49 (m, 8 H), 3.42 (d, J = 9.6 Hz, 1 H), 3.37 (pseudo-t, J = 9.0 Hz, 1 H), 3.30 (d, J = 9.0 Hz, 1 H), 3.24 (d, J = 11.4 Hz, 1 H), 3.19 (s, 9 H), 3.09 (d, J = 5.4 Hz, 1 H), 1.99 (s, 3 H), 1.97 (s, 3 H), 1.88 (s, 3 H), 1.83 (s, 3 H), 1.74 (s, 3 H), 1.67 (s, 3 H), 1.67 (s, 3 H), 1.88 (s, 3 H), H). 13 C NMR (CDCl₃, 150 MHz) δ 170.9, 170.8, 170.7, 170.1, 170.0, 169.9, 162.7 (J = 246.5 Hz), 137.7, 137.6, 137.5, 137.0, 136.4, 136.2, 135.2 (J = 7.8 Hz), 128.8, 128.7, 128.6, 128.58, 128.53, 128.48, 128.45, 128.3, 128.1, 128.0, 127.8, 127.7, 127.3 115.8 (*J* = 21.8 Hz), 100.5, 99.9, 93.4, 86.5, 80.3, 78.4, 77.1, 74.6, 74.1, 74.0, 73.7, 73.3, 73.2, 73.0, 72.9, 72.3, 71.7, 71.6, 69.3, 69.2, 68.0, 67.9, 54.2, 54.0, 53.9, 52.5, 29.6, 23.3, 23.2, 23.0, 20.8, 20.7, 20.6. HRMS (ESI) m/z calcd for C₈₇H₁₀₄FN₄O₂₂S [M]⁺, 1607.6841; found, 1607.6813.

Tetrasaccharide **9** (138 mg, 0.086 mmol) was dissolved in a mix-solvent of methanol and CH₂Cl₂ (12 mL/6.0 mL). Then K₂CO₃ (117 mg, 0.86 mmol) was added to the reaction mixture and stirred for 2 h at room temperature. The reaction was quenched by addition of Dowex-50WX4-200 (cation exchange resin) and the resin was removed by filtration. Thus-obtained reaction mixture was evaporated to remove the solvent and the crude product was purified with silica gel chromatography (CH₂Cl₂/MeOH 8:1 as eluent). The product was dissolved in a mix-solvent of water/THF (12.4 mL/3.1 mL) and a few drops of conc. HCl (37%) were added. Then the reaction mixture was cooled by liquid N₂ and degassed under vacuum for 3 times. A catalyst Pd(OH)₂/C (20%) (614 mg) was added to the cooled reaction mixture and filled with hydrogen gas. The sealed container was stirred at room temperature for 12 h. The reaction was quenched with Amberlite[®] IRN78 (HO⁻ form) and then Amberlite[®] IRA402 (Cl⁻ form) and solvent was removed under reduced pressure to obtain TMG-chiotriomycin (1)² (44.5 mg, 0.0535 mmol) in 62%

yield (2 steps). Thus-obtained product was checked by ¹H-NMR (600 MHz, CD₃OD) and ESI-MS analyses. HRMS (ESI) m/z calcd for C₃₃H₅₉N₄O₂₀ [M-Cl]⁺, 831.3717; found, 831.3723.

4. References

- (1) Nokami, T.; Isoda, Y.; Sasaki, N.; Takaiso, A.; Hayase, S.; Itoh, T.; Hayashi, R.; Shimizu, A.; Yoshida, J. Org. Lett. 2015, 17, 1525.
- (2) Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2009, 131, 12076.
- (3) Despras, G.; Alix, A.; Urban, D.; Vauzeilles, B.; Beau, J.-M. Angew. Chem. Int. Ed. 2014, 53, 11912.

S7

6. ¹H, ¹³C-NMR, H,H-COSY, and HMQC spectra of tetrasaccharides 8 and 9

