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1. General information

The prepared compounds were identified based on NMR spectra recorded on a Gemini 300 NMR
(300 MHz), a JEOL JNM-AL400 (400 MHz), and a JEOL JNM ECP500 (500 MHz) instrument, using
tetramethylsilane as the internal standard. Mass spectra were recorded on a JEOL DX-303 mass
spectrometer. FTIR spectra were recorded on a Shimadzu IRAffinity-1. UV absorption spectra were
measured using a Shimadzu UV-2450 spectrophotometer. Fluorescence properties were
determined by recording their fluorescence spectra on a Shimadzu RF-5300 pc spectrofluorometer.
Melting points were measured using a Yanaco MP-500D melting point apparatus. All chemicals
were of reagent grade and were used as received without further purification unless otherwise

specified.

2. Synthesis of 3a,b, and 4a—e

2.1. 10-lImino-2-methylpyrido[1,2-a]pyrrolo[3,4-d]pyrimidine-1,3(2H,10H)-dione (3a)

A solution of 0.287 g (3.0 mmol) of 1-methyl-4-(methylsulfanyl)-2,5-dioxo-2,5-dihydro-1H-pyrrole-
3-carbonitrile (1) [1,2] and 0.541 g (3.0 mmol) of 2-aminopyridine (2a) in 30 mL of ethanol was
refluxed for 2 h. After cooling, the precipitate that appeared was collected by filtration to give 0.664 g
(2.91 mmol) orange needles, mp 193-194 °C, in 97% yield. "H NMR (300 MHz, DMSO-ds) &: 2.96
(3H, s, NMe), 7.25 (1H, dd, J = 2.4, 4.9 Hz, 8-H), 7.54 (1H, d, J = 8.2 Hz, 5-H), 7.88 (1H, dd, J =
1.1,1.8,8.2 Hz, 6-H), 8.41 (1H, ddd, J=1.1, 4,9, 6.0 Hz, 7-H), 11.36 (1H, s, NH). "*C NMR (75 MHz,
CDCIs) &: 59.0, 113.7, 147.8, 150.5, 152.0, 176.0, 177.5, 182.0, 183.9. IR (KBr, cm™): 3286 (HN=),
1699 (CO), 1664 (CO). Ms: m/z 229 (M*+1, 14), 228 (M*, 100), 136 (17), 143 (96), 78 (86). Anal.
Calcd for C11HsN402=228.0647: C, 57.89; H, 3.53; N, 24.55. Found: C, 57.88; H, 3.32; N, 24.92.

2.2. 10-Imino-2,7-dimethylpyrido[1,2-a]pyrrolo[3,4-d]pyrimidine-1,3(2H,10H)-dione (3b)

This compound was prepared in 86% yield from 0.18 g (1.0 mmol) of 1 and 0.11 g (1.0 mmol) of 5-
methylpyridin-2-amine (2b) in a manner similar to that described for synthesis of 3a. An analytical
sample was recrystallized from methanol to give orange needles, mp 180-181 °C. "H NMR (300
MHz, DMSO-ds) &: 2.31 (3H, s, 7-Me), 2.95 (3H, s, NMe), 7.44 (1H, d, J = 6.0 Hz, 8-H), 7.71 (1H,
dd, J=2.3, 6.0 Hz, 6-H), 7.99 (1H, d, J = 2.3 Hz, 5-H), 11.23 (1H, s, NH). "*C NMR (75 MHz, CDCl3)
5: 51.9, 58.9, 112.1, 148.0, 149.8, 164.9, 173.9, 177.7, 181.4, 182.7. IR (KBr, cm™): 3277 (HN=),
1701 (CO), 1685 (CO). Ms: m/z 242 (M*). HRMS (EI): 242.0804 (Calcd. 242.0804 for C12H10N4O2).
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2.3. 4-((5-Bromopyridin-2-yl)amino)-1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrole-3-carbo-
nitrile (4a)

This compound was prepared in 72% yield from 0.18 g (1.0 mmol) of 1 and 0.17 g (1.0 mmol) of 2-
amino-5-bromopyridine (2¢) in a manner similar to that described for synthesis of 3a. An analytical
sample was recrystallized from methanol to give yellow needles, mp 252-253 °C. '"H NMR (400
MHz, DMSO-ds) &: 2.96 (3H, s, NMe), 7.51 (1H, d, J = 8.7 Hz, 3-H), 8.12 (1H, d, J = 8.7 Hz, 4-H),
8.48 (1H, s, 6-H), 11.46 (1H, s, NH). 'C NMR (100 MHz, DMSO-ds) &: 24.3, 79.0, 113.2, 115.9,
117.2,141.4,142.8, 147.3, 149.2, 165.3, 169.0. IR (KBr, cm™"): 3221 (HN=), 2222 (CN), 1708 (CO),
1654 (CO). Ms: m/z 306 (M*+1). HRMS (El): 305.9753 (Calcd. 305.9752 for C11H7BrN4O2).

2.4. 4-((5-Fluoropyridin-2-yl)amino)-1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrole-3-
carbonitrile (4b)

This compound was prepared in 68% yield from 0.18 g (1.0 mmol) of 1 and 0.11 g (1.0 mmol) of 2-
amino-5-fluoropyridine (2d) in a manner similar to that described for synthesis of 3a. An analytical
sample was recrystallized from methanol to give yellow needles, mp 220-221 °C. '"H NMR (400
MHz, DMSO-ds) 8: 2.95 (3H, s, NMe), 7.59 (1H, d, J = 5.8 Hz, 3-H), 7.87 (1H, d, J = 5.8 Hz, 4-H),
8.38 (1H, s, 6-H), 11.63 (1H, s, NH). 3C NMR (100 MHz, DMSO-ds) d: 24.3, 77.7, 113.3, 117.3,
126.4,134.2,134.5, 143.3, 146.6, 165.3, 169.2. IR (KBr, cm™): 3226 (HN=), 2218 (CN), 1718 (CO),
1654 (CO). Ms: m/z 246 (M*). HRMS (EI): 246.0553 (Calcd. 246.0553 for C11H7FN4O2).

2.5. 6-((4-Cyano-1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)amino)nicotinonitrile (4c)
This compound was prepared in 32% yield from 0.18 g (1.0 mmol) of 1 and 0.12 g (1.0 mmol) of 2-
amino-5-cyanopyridine (2e) in a manner similar to that described for synthesis of 3a. An analytical
sample was recrystallized from methanol to give yellow needles, mp 208-209 °C. '"H NMR (500
MHz, DMSO-ds) 0: 2.92 (3H, s, NMe), 7.67 (1H, d, J = 11.0 Hz, 3-H), 8.31 (1H, d, J = 11.0 Hz, 4-
H), 8.82 (1H, s, 6-H), 11.64 (1H, s, NH). "*C NMR (125 MHz, DMSO-ds) &: 24.3, 81.6, 104.6, 112.9,
115.0, 116.8, 142.0, 142.1, 150.7, 152.8, 165.3, 168.6. IR (KBr, cm™"): 3213 (HN=), 2225 (CN), 2218
(CN), 1718 (CO), 1685 (CO). Ms: m/z 253 (M*). HRMS (El): 253.0599 (Calcd. 253.0600 for
C12H7Ns0y).

2.6. Methyl 6-((4-cyano-1-methyl-2,5-diox0-2,5-dihydro-1H-pyrrol-3-yl)amino)nicotinate (4d)
This compound was prepared in 43% yield from 0.18 g (1.0 mmol) of 1 and 0.15 g (1.0 mmol) of
methyl-6-aminonicotinate (2f) in a manner similar to that described for synthesis of 3a. An analytical
sample was recrystallized from methanol to give orange needles, mp 245-246 °C. "H NMR (400
MHz, DMSO-ds) &: 2.95 (3H, s, NMe), 3.87 (3H, s, OMe), 7.62 (1H, d, J = 8.8 Hz, 3-H), 8.31(1H, d,
J=7.3Hz, 4-H), 8.84 (1H, s, 6-H), 11.64 (1H, s, NH). "*C NMR (100 MHz, DMSO-ds) &: 24.4, 52.4,
112.8, 114.7, 114.8, 121.8, 139.5, 147.9, 153.4, 164.6, 165.5, 169.0. IR (KBr, cm™'): 3221 (HN=),
2225 (CN), 1715 (CO), 1685 (CO). Ms: m/z 286 (M*). HRMS (El): 286.0701 (Calcd. 286.0702 for
Ci13H10N404).
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2.7. Methyl 1-methyl-2,5-dioxo-4-((5-(trifluoromethyl)pyridin-2-yl)amino)-2,5-dihydro-1H-
pyrrole-3-carbonitrile (4e)

This compound was prepared in 46% yield from 0.18 g (1.0 mmol) of 1 and 0.16 g (1.0 mmol) of 2-
amino-5-(trifluoromethyl)-pyridine (2g) in a manner similar to that described for synthesis of 3a. An
analytical sample was recrystallized from methanol to give yellow needles, mp 216-217 °C. '"H NMR
(400 MHz, DMSO-ds) &: 2.95 (3H, s, NMe), 7.70 (1H, d, J = 8.3 Hz, 3-H), 8.26 (1H, d, J = 6.3 Hz,
4-H), 8.67 (1H, s, 6-H), 11.65 (1H, s, NH). '*C NMR (100 MHz, DMSO-ds) &: 24.4, 81.0, 113.1,
115.2, 121.1, 124.8, 131.5, 142.4, 143.8, 153.4, 165.4, 168.9. IR (KBr, cm™'): 3170 (HN=), 2222
(CN), 1718 (CO), 1647 (CO). Ms: m/z 296 (M*). HRMS (El): 296.00521 (Calcd. 296.0521 for
C12H7F3N402).

3. Experimental procedure of fuorescence measurements

Each compound was dissolved in dimethyl sulfoxide (DMSO) to prepare stock solutions
(1072 mol/L). The concentration of each sample was adjusted using a molar absorption coefficient
of 0.05. The excitation wavelength was determined by scanning the emission wavelength. In a
similar manner, the emission wavelength was obtained by scanning the excitation wavelength.
Fluorescence quantum yields were determined using the Absolute PL Quantum Yield Measurement
System (C9920-01) of Hamamastu Photonics (Shizuoka, Japan).

4. Theoretical computation methods

Density functional theory (DFT)-based calculations were performed on compounds 3a and 4e using
the Gaussian 16 program [3]. To geometrically optimize the monomer structure of each compound
in the ground state, we used Becke's three-parameter hybrid exchange functional with the Lee-
Yang-Parr gradient-corrected correlation (B3LYP) functional suitable for small organic molecules
and the 6-31G(d,p) basis set. To evaluate the excitation energies, single-point energy calculations
using time-dependent (TD) DFT were performed on ground-state optimized structures at the TD-
B3LYP/6-311+G(d,p) level of theory. Both optimization and TDDFT calculations were performed in
different solvent environments (dichloromethane, ethanol, and water) using the polarizable

continuum model (PCM) based on the linear response approach.
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5. NMR spectra (Figures S1-S14)
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Figure S1. "H NMR spectrum of 3a
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Figure S2. '3C NMR spectrum of 3a
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Figure S3. 'H NMR spectrum of 3b
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Figure S4. *C NMR spectrum of 3b
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6. UV-vis absorption spectra (Figures S15-S17)
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Figure S15. UV-vis absorption spectra of 3a, 3b, and 4a-e (10 uM) in EtOH.
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Figure S16. UV-vis absorption spectra of 3a, 3b, and 4a—e (10 uM) in DCM.

S11



15 -

Absorbance
—
1
B
(2]

05 | — e

e ——

T T T T T 1
300 350 400 450 500 550 600
Wavelength (nm)

Figure S17. UV/Vis absorption spectra of 3a, 3b and 4a—e (10 yM) in H20.

7. Fluorescence spectra (Figures S18-S20)
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Figure S18. Fluorescence spectra of 3a, 3b, and 4a—e (10 uM) in EtOH.
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Figure S19. Fluorescence spectra of 3a, 3b, and 4a-e (10 uM) in DCM.
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Figure S20. Fluorescence spectra of 3a, 3b, and 4a-e (10 uM) in H20.
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