

Supporting Information

for

Isolation and structure determination of a new analog of polycavernosides from marine *Okeania* sp. cyanobacterium

Kairi Umeda, Naoaki Kurisawa, Ghulam Jeelani, Tomoyoshi Nozaki, Kiyotake Suenaga and Arihiro Iwasaki

Beilstein J. Org. Chem. 2024, 20, 645–652. doi:10.3762/bjoc.20.57

NMR data for polycavernoside E (1)

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

Comparison of the carbon chemical shifts between 1 and 5 in CDCl ₃ (Table S1)	S2
Comparison of the proton chemical shifts of disaccharide moiety between 1 and 5	
in CDCl ₃ (Table S2)	S3
NMR spectra of polycavernoside E (1) in CDCl ₃	S4
NMR spectra of polycavernoside E (1) in CD ₃ OD	S7

Table S1: Comparison of the carbon chemical shifts between polycavernosides E (1) and D

(5) in CDCl₃.

position1	polycavernoside $E(1)^2$	polycavernoside D $(5)^3$
1	171.9, C	171.5, C
2	35.6, CH ₂	35.5, CH ₂
3	82.0, CH	81.9, CH
4	38.3, C	38.2, C
54	85.3, CH	75.1, CH
6	37.7, CH ₂	37.5, CH ₂
7	83.8, CH	85.1, CH
8	42.1, CH ₂	42.0, CH ₂
9	206.9, C	206.5, C
10	103.0, C	102.6, C
11	39.7, CH	39.5, CH
12	33.6, CH ₂	33.5, CH ₂
13	83.5, CH	83.3, CH
14	39.8, C	39.7, C
15	78.4, CH	78.3, CH
16	127.4, CH	126.9, CH
17	135.4, CH	135.5, CH
18	130.1, CH	129.6, CH
19	133.9, CH	134.2, CH
20	131.2, CH	130.2, CH
21	134.6, CH	136.2, CH
27	13.3, CH ₃	13.7, CH ₃
28	17.8, CH ₃	17.6, CH ₃
29	19.4, CH ₃	19.2, CH ₃
30	22.2, CH ₃	22.0, CH ₃
31	13.9, CH ₃	13.7, CH ₃
1'	106.1, CH	106.0, CH
2'	83.8, CH	83.7, CH
3'	79.9, CH	79.9, CH
4'	78.5, CH	78.4, CH
5'	63.2, CH ₂	63.1, CH ₂
6'	61.1, CH ₃	60.9, CH ₃
7'	58.8, CH ₃	58.6, CH ₃
1"	103.0, CH	102.9, CH
2"	71.7, CH	71.6, CH
3"	71.0, CH	71.0, CH
4"	78.7, CH	78.7, CH
5"	60.1, CH ₂	60.0, CH ₂
6"	58.1, CH ₃	58.0, CH ₃

¹ The data from C-22 to C-26 were not included as they were useless for the discussion the relative configuration.

² Measured at 100 MHz.

³ Measured at 151 MHz. Navarro, G.; Cummings, M. E.; Lee, J.; Moss, N.; Glukhov, E.; Valeriote, F. A.; Gerwick, L.; Gerwick, W. H. *Environ. Sci. Technol. Lett.* **2015**, *2*, 166-170.

 4 The chemical shift difference was big possibly due to the misassignment of the C-5 carbon chemical shift of 5.

 Table S2: Comparison of the proton chemical shifts of disaccharide moiety between 1 and 5

in CDCl₃.

position	polycavernoside E (1)1	polycavernoside D (5) ²
1'	4.27, CH	4.27, CH
2'	3.07, CH ₂	3.08, CH ₂
3'	3.64, CH	3.64, CH
4'	3.27, CH	3.27, CH
5a'	4.03, CH ₂	4.03, CH ₂
5b'	3.12	3.12
6'	3.61, CH ₃	3.61, CH ₃
7'	3.45, CH ₃	3.45, CH ₃
1"	4.87, CH	4.86, CH
2"	3.53, CH	3.52, CH
3"	3.75, CH	3.74, CH
4"	3.34, CH	3.35, CH
5a"	4.23, CH ₂	4.23, CH ₂
5b"	3.46	3.46
6"	3.48, CH ₃	3.48, CH ₃

¹ Measured at 400 MHz.

² Measured at 600 MHz. Navarro, G.; Cummings, M. E.; Lee, J.; Moss, N.; Glukhov, E.; Valeriote, F. A.; Gerwick, L.; Gerwick, W. H. *Environ. Sci. Technol. Lett.* **2015**, *2*, 166-170.

¹H NMR (400 MHz, CDCl₃) spectrum of polycavernoside E (1)

 $^{13}C{^{1}H} NMR (100 MHz, CDCl_3)$ spectrum of polycavernoside E (1)

COSY (400 MHz, CDCl₃) spectrum of polycavernoside E (1)

HMQC (400 MHz, CDCl₃) spectrum of polycavernoside E (1)

HMBC (400 MHz, CDCl₃) spectrum of polycavernoside E (1)

NOESY (400 MHz, CDCl₃) spectrum of polycavernoside E (1)

¹H NMR (400 MHz, CD₃OD) spectrum of polycavernoside E (1)

 $^{13}C{^{1}H} NMR (100 MHz, CD_3OD)$ spectrum of polycavernoside E (1)

COSY (400 MHz, CD₃OD) spectrum of polycavernoside E (1)

HMQC (400 MHz, CD₃OD) spectrum of polycavernoside E (1)

HMBC (400 MHz, CD₃OD) spectrum of polycavernoside E (1)

NOESY (400 MHz, CD₃OD) spectrum of polycavernoside E (1)

