Supporting Information Available

Part 3.Triethylborane: A Suitable Initiator for Intermolecular Radical Additions of *S*-2-Oxoalkylthionocarbonates (Xanthates) to Olefins

Jean Boivin, $*^a$ and Van Tai Nguyen $*^{a,b}$

a) Institut de Chimie des Substances Naturelles, C.N.R.S.,

Gif-sur-Yvette 91198, France.

b) National Institute of Medicines Materials

3B, Quang Trung, Hanoi, Vietnam

jean.boivin@icsn.cnrs-gif.fr and htqt.imm@hn.vnn.vn

Table of Contents

General Experimental Methods	Page S3
Reagents and Starting Materials	Page S3
Preparation of Starting Substrates	Page S3
General Procedure for the Radical Addition of Xanthate to Olefin Initiated by Et ₃ B/air	Page S4
References	Page S20

General Experimental Methods

Solvents were used as commerciale available. Experiments that required an inert atmosphere were carried out under dry argon in a flame dried glass system. Column chromatography was carried out on silica gel (230-400 mesh) by gradual elution with mixtures of n-heptane and ethyl acetate. TLC was carried out on using F_{254} SiO₂ coated aluminum plates (0,2 µm, analytical). Visualization was accomplished with UV light (254 nm), and by staining (and charring) of the TLC plates with a solution of p-anisaldehyde in sulfuric acid/ethanol. ¹H and ¹³C NMR spectra were recorded in deuteriochloroform on 300 MHz spectrometers. The chemical shifts are reported δ unit, parts per million (ppm) relative to deuterated solvents (¹H, δ 7.269 ppm; ¹³C, δ 77.23 ppm) or Me₄Si. Splitting pattern of an apparent multiplet associated with an averaged coupling constant were designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet), dq (doublet of quartet) and br (broadened). Coupling constants (*J* value) were reported in Hz unit. IR spectra were recorded on a FT-IR as a neat. ESI and high-resolution mass spectra (HRMS) were obtained with a LCT spectrometer. Previously reported reaction products were identified by spectral comparison.

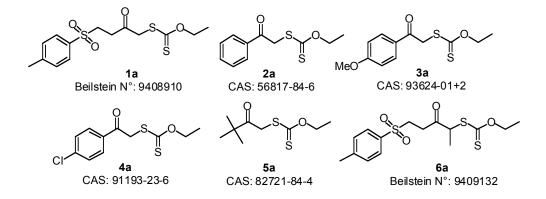
Reagents and Starting Materials:

Triethylborane (1M solution in hexanes) was purchased from Aldrich Chemical Company, used without further purification, and stored under nitrogen atmosphere. All other commercially reagents were used as received.

Preparation of Starting Substrates:

Compound **7a** is a known compound:¹

SCSOEt


Compound **12** is a known compound:²

Compound **9** is a known compound:³

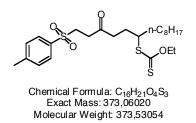
OAc 9

Compounds **1-6a** were prepared according to literature.^{4, 5, 6}

Compound **1b** is a known compound : ⁷

General Procedure for the Radical Addition of Xanthate to Olefin Initiated by Et₃B/air:

Procedure A: reaction at room temperature

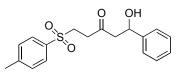

Triethylborane (1M solution in hexanes) was injected with the aid of a syringe pump (rate 0.03 mL/h) into a degassed solution of xanthate (1 mmol) and olefin (2-3 equiv) in the solvent (1 mL or, in the case of less soluble compounds, in the minimum of solvent needed to obtain a clear solution) placed in a round bottom flask equipped with a stopper connected to a rubber balloon filled with argon to equilibrate the pressures. Air was introduced into the solution at the same time (10 mL/h). The reaction was monitored by TLC. Evaporation of the solvent under reduced pressure afforded a residue that was purified by silica gel column chromatography.

Procedure B: reaction at "high" temperature

A solution of xanthate (1 mmol) and olefin (2-3 equiv) in the solvent (1 mL or, in the case of less soluble compounds, in the minimum of solvent needed to obtain a clear solution at reflux) was placed in a two-necked round bottom flask equipped with a condenser open to the air and heated to reflux. Triethylborane (1M solution in hexanes) was injected with the aid of a syringe pump (rate 0.03 mL/h) into the above solution. The reaction was monitored by TLC. Evaporation of the

solvent under reduced pressure afforded a residue that was purified by silica gel column chromatography.

O-Ethyl S-3-oxo-1-tosyltetradecan-6-yl carbonodithioate (1c)

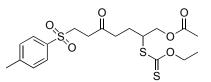

The title compound **1c** was prepared following the general procedure for the radical additions initiator by Et₃B at room temperature, starting from xanthate **1a** (0.189 g, 0.545 mmol) and 1-decene (0.197 g, 1.38 mmol, 2.5 equiv) in dichloromethane (1.5 mL). After 7 h (0.22 mL, 0.22 mmol, 0.4 equiv of Et₃B was used), the reaction was worked-up as usually. Flash chromatography gave compound **1c** as a colourless oil (0.169 g, 64% yield), and starting material **1a** (0.021 g, 11%) without any trace of reduced product **1b**. The spectral characteristics of compound **1c** were in agreement with the previously data.⁷

¹H NMR (300 MHz, CDCl₃): δ=0.85 (t, *J*=7 Hz, 3 H), 1.23 (m, 12 H), 1.40 (t, *J*=7 Hz, 3 H), 1.59 (m, 2 H), 1.75 (m, 1 H), 2.02 (m, 1 H), 2.44 (s, 3 H), 2.56 (t, *J*=7 Hz, 2 H), 2.85 (t, *J*=7.5 Hz, 2 H), 3.34 (t, *J*=7.5 Hz, 2 H), 3.66 (m, 1 H), 4.61 (q, *J*=7 Hz, 2 H), 7. 35 (d, *J*=8 Hz, 2 H), 7.76 (d, *J*=8 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ=214.43, 205.08, 129.86, 127.80, 69.81, 50.81, 50.40, 39.70, 35.11, 34.40, 31.64, 29.17, 28.99, 27.76, 26.58, 22.46, 21.46, 13.88, 13.58.

IR (film): v =1050, 1087, 1112, 1150, 1215, 1317, 1453, 1719, 2855, 2926, 2954 cm⁻¹.

Preparation of 1-Hydroxy-5-[(4-methylphenyl)sulfonyl]-1-phenylpentan-3-one (1d)

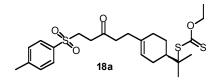


Chemical Formula: C₁₈H₂₀O₄S Exact Mass: 332,1082 Molecular Weight: 332,4140

A solution of Et₃B (1.0 M in hexanes, 0.57 ml, 0.57 mmol, 1.2 equiv) was added to a solution of xanthate **1a** (0.165 g, 0.476 mmol) and benzaldehyde (0.071 g, 0.667 mmol, 1.4 equiv) in CH₂Cl₂ (2 mL) at room temperature under argon atmosphere. The mixture was stirred for 1 h then the rubber stopper was replaced by a drying tube filled with Drierite and CaCl₂. After 1 h, the solvent was concentrated in vacuo and the residue was purified by flash chromatography (heptane/EtOAc = 8/2 then 7/3) to furnish **1d** as a white solid (0.076 g, 48 %, m.p. 111.5-113°C), compound **1b** (0.012 g, 12%) and starting material **1a** (0.010 g, 6%).

¹H NMR (300 MHz, CDCl₃): δ =7.78 (d, *J*=8.3 Hz, 2 H), 7.40-7.25 (m, 7 H), 5.13 (dd, *J*=3.3 Hz, and *J*=9.3 Hz, 1 H), 3.38 (t, *J*=7.1 Hz, and *J*=7.7 Hz, 2 H), 2.93 (t, *J*=7.1 Hz, and *J*=7.7 Hz, 2 H), 2.88 (d, *J*=9.3 Hz, 1 H), 2.76 (dd, *J*=3.3 Hz, and *J*=9.3 Hz, 1 H), 2.47 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =205.9, 145.1, 142.6, 135.9, 130.0, 128.6, 128.0, 127.9, 125.6, 69.9, 51.5, 50.4, 36.1, 21.7; IR (neat): v=3496, 1702, 1308, 1272, 1147, 1086, 1038, 1023, 748, 697, 685, and 647 cm⁻¹. HRMS (ESI): [M+Na]⁺ Calcd. for C₁₈H₂₀O₄SNa: 345.0975. Found: 355.0947.

2-[(Ethoxycarbonothioyl)thio]-7-[(4-methylphenyl)sulfonyl]-5-oxoheptyl acetate (17a)

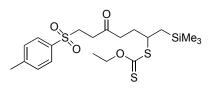


The title compound **17a** was prepared following the general procedure for the radical additions initiator by Et_3B at room temperature, starting from xanthate **1a** (0.185 g, 0.534 mmol) and allyl acetate (0.134 g, 1.34 mmol, 2.5 equiv) in dichloromethane (1.5 mL). After 9 h (0.27 mL, 0.27 mmol, 0.5 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by chromatography gave compound **17a** as a colourless syrup (0.121 g, 51% yield), and starting material **1a** (0.038 g, 21%) without any trace of reduced product **17b**.

This compound was also prepared following the general procedure for the radical additions initiator by Et_3B at high temperature [(CH₂Cl)₂ reflux], starting from xanthate **1a** (0.346. g, 1.0 mmol) and allyl acetate (0.20 g, 2.0 mmol, 2 equiv) in 1,2-dichloroethane (1 mL). After 3.5 h (0.11 mL, 0.11 mmol, 0.11 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by chromatography gave compound **17a** (0.347 g, 78% yield) without reduced product **17b**.

¹H NMR (300 MHz, CDCl₃): δ =7.76 (d, ³*J*=8.3 Hz, 2H), 7.36 (d, ³*J*=8.5 Hz, 2H), 4.63 (q, ³*J*=7.1 Hz, 2H), 4.27 (dd, ³*J*=5 Hz and ³*J*'=11.4 Hz, 1H), 4.19 (dd, ³*J*=6.1 Hz and ³*J*=11.4 Hz, 1H), 3.92 (m, 1H), 3.35 (t, ³*J*=7.5 Hz, 2H), 2.86 (t, ³*J*=7.5 Hz, 2H), 2.63 (t, ³*J*=7.5 Hz, 2H), 2.45 (s, 3H), 2.10 (m, 1H), 2.05 (s, 3H), 1.81 (m, 1H), 1.41 (t, ³*J*=7.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =212.90, 204.78, 170.66, 145.04, 135.88, 130.05, 128.00, 70.54, 65.62, 50.56, 48.90, 39.71, 35.25, 24.39, 21.67, 20.80, 13.75; IR (film): v =1737, 1715, 1379, 1362, 1313, 1216, 1144, 1109, 1085, 1040, 813, 762, 722 cm⁻¹; HRMS (ESI): [M+Na]⁺ Calcd. for C₁₉H₂₆O₆S₃Na 469.0789. Found 469.0789.

O-Ethyl *S*-[1-methyl-1-((1*R*)-4-{5-[(4-methylphenyl)sulfonyl]-3-oxopentyl}cyclohex-3-en-1yl)ethyl] dithiocarbonate (18a)

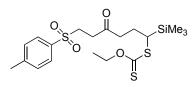

Chemical Formula: C₂₄H₃₄O₄S₃ Exact Mass: 482,16192 Molecular Weight: 482,71936

The title compound **18a** was prepared following the general procedure for the radical additions initiator by Et₃B at room temperature, starting from xanthate **1a** (0.186 g, 0.537 mmol) and β -pinene (0.183 g, 1.34 mmol, 2.5 equiv) in dichloromethane (1.5 mL). After 9 h (0.27 mL, 0.27 mmol, 0.5 equiv of Et₃B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **18a** as a yellow oil (0.114 g, 44%), the starting material **1a** (0.037 g, 20%), and product **18b** (0.023 g, 12%).

This compound was also prepared following the general procedure for the radical additions initiator by Et_3B at high temperature [(CH₂Cl)₂ reflux], starting from xanthate **1a** (0.405. g, 1.17 mmol) and β -pinene (0.318 g, 2.34 mmol, 2 equiv) in 1,2-dichloroethane (1.5 mL). After 6.5 h (0.2 mL, 0.2 mmol, 0.17 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **18a** (0.446 g, 79% yield), without any reduced product.

¹H NMR (300 MHz, CDCl₃): δ =7.75 (d, ³*J*=8.2 Hz, 2H), 7.34 (d, ³*J*=8.2 Hz, 2H), 5.30 (d, ³*J*=4.0 Hz, 1H), 4.64 (q, ³*J*=7.2 Hz, 2H), 3.33 (t, ³*J*=7.5 Hz, 2H), 2.86 (t, ³*J*=7.5 Hz, 2H), 2.50 (t, ³*J*=7.5 Hz, 2H), 2.43 (s, 3H), 2.16 (t, ³*J*=7.5 Hz, 2H), 2.10-1.76 (m, 7H), 1.44 (s, 6H), 1.41 (t, ³*J*=7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =214.17, 205.74, 144.89, 135.89, 135.71, 129.93, 127.88, 120.79, 69.28, 58.94, 50,52, 42.60, 41.00, 34.92, 30.79, 29.44, 26.92, 25.06, 24.71, 24.41, 21.58, 13.69; IR (neat): v =1714, 1364, 1314, 1301, 1287, 1224, 1144, 1109, 1084, 1034, 813 cm⁻¹; HRMS (ESI): [M+Na]⁺ Calcd. for C₂₄H₃₄O₄S₃Na: 505.1517. Found: 505.1509.

O-Ethyl *S*-{6-[(4-methylphenyl)sulfonyl]-4-oxo-1-[(trimethylsilyl)methyl]hexyl} dithiocarbonate (19a)


Chemical Formula: C₂₀H₃₂O₄S₃Si Exact Mass: 460,1232 Molecular Weight: 460,7462

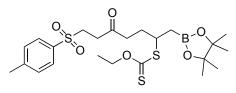
The title compound **19a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at room temperature, see Experimental Section in the Note.

The title compound **19a** was also prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature (refluxing CH_2Cl_2), starting from xanthate **1a** (0.172 g, 0.496 mmol) and allyltrimethylsilane **9** (0.142 g, 1.24 mmol, 2.5 equiv) in CH_2Cl_2 (1 mL). After 4 h (0.15 mL, 0.15 mmol 0.3 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **19a** as a colourless oil (0.176 g, 77% yield) without any traces of reduced product.

¹H NMR (300 MHz, CDCl₃): δ =7.76 (dd, J=1.9 Hz, J=8.2 Hz, 2H), 7.35 (d, J=7.0 Hz, 2H), 4.60 (q, J=7.1 Hz, 2H), 3.81 (m, 1H), 3.35 (t, J=7.7 Hz, 2H), 2.84 (t, J=7.1 Hz, 2H), 2.56 (q, J=8.0 Hz, 2H), 2.43 (s, 3H), 2.07 (m, 1H), 1.76 (m, 1H), 1.40 (dt, J=2.2 Hz, J=7.1 Hz, 3H), 1.02 (2dd, J=2.0 Hz, J=7.0 Hz, 2H), 0.06 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ =214.3, 205.1, 144.8, 135.8, 129.9, 127.9, 69.7, 50.5, 48.1, 39.7, 35.2; 30.5, 23.5, 21.6, 13.7, -0.9. IR (neat): v=1716, 1315, 1245, 1209, 1145, 1110, 1086, 1045, 838, 814. HRMS (ESI) [M+Na]⁺ Calcd. for C₂₀H₃₂O₄S₃SiNa: 483.1130. Found: 483.1085.

O-Ethyl *S*-[6-[(4-methylphenyl)sulfonyl]-4-oxo-1-(trimethylsilyl)hexyl] dithiocarbonate (20a)

Chemical Formula: C₁₉H₃₀O₄S₃Si Exact Mass: 446,1075 Molecular Weight: 446,7196


The title compound **20a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at room temperature, starting from xanthate **1a** (0.172 g, 0.496 mmol) and vinyltrimethylsilane **10** (0.124 g, 1.24 mmol, 2.5 equiv) in CH_2Cl_2 (1.3 mL). After 8 h (0.25 mL, 0.5 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **20a** as a colourless oil (0.127 g, 57% yield) without any traces of reduced product.

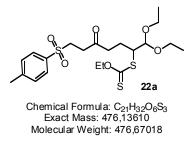
The title compound **20a** was also prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature (refluxing CH₂Cl₂), starting from xanthate **1a** (0.172 g, 0.496 mmol) and vinyltrimethylsilane **10** (0.124 g, 1.24 mmol, 2.5 equiv) in CH₂Cl₂ (1 mL). After 1.5 h another portion of vinyltrimethylsilane **10** (0.124 g, 1.24 mmol, 2.5 equiv) was added. After 4 h (0.15 mL, 0.15 mmol, 0.3 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **20a** as a colourless oil (0.162 g, 73% yield) without any traces of reduced product.

¹H NMR (300 MHz, CDCl₃): δ=7.77 (d, J=8.2 Hz, 2H), δ=7.36 (d, J=8.4 Hz, 2H), 4.63 (q, J=7.1 Hz, 2H), 3.35 (dt, J=2.0 Hz, J=7.4 Hz, 2H), 3.09 (dd, J=3.4 Hz, J=11.2 Hz, 2H), 2.83 (dt, J=2.8

Hz, J=7.3 Hz, 2H), 2.59 (m, 2H), 2.45 (s, 3H), 2.14 (m, 1H), 1.61 (m, 1H), 1.42 (t, J=7.1 Hz, 3H), 0.09 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ =216.9, 205.6, 144.8, 135.9, 129.9, 127.9, 70.6, 50.5, 40.8, 36.3, 35.3, 24.3, 21.6, 13.8, -2.8. IR (neat): v=1715, 1210, 1145, 1109, 1085, 1042, 837. HRMS (ESI) [M+Na]⁺ Calcd. for C₁₉H₃₀O₄S₃SiNa: 469.0973. Found: 469.0993.

O-Ethyl *S*-{6-[(4-methylphenyl)sulfonyl]-4-oxo-1-[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl]hexyl} dithiocarbonate (21a)

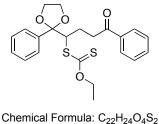
Chemical Formula: C₂₃H₃₅BO₆S₃ Exact Mass: 514,1689 Molecular Weight: 514,5264


The title compound **21a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at room temperature, starting from xanthate **1a** (0.172 g, 0.496 mmol) and allylboronic acid pinacol cyclic ester **11** (0.209 g, 1.24 mmol, 2.5 equiv) in CH₂Cl₂ (1.3 mL). After 8 h (0.25 mL, 0.5 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **21a** as a colourless oil (0.105 g, 41% yield) without any traces of reduced compound.

The title compound **21a** was also prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature (refluxing CH_2Cl_2), starting from xanthate **1a** (0.172 g, 0.496 mmol) and allylboronic acid pinacol cyclic ester **11** (0.209 g, 1.24 mmol, 2.5 equiv) in CH_2Cl_2 (1 mL). After 4 h (0.15 mL, 0.15 mmol, 0.3 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **21a** as a colourless oil (0.138 g, 54% yield) without any traces of reduced product.

¹H NMR (300 MHz, CDCl₃): δ=7.76 (d, J=8.0 Hz, 2H), δ=7.36 (d, J=8.0 Hz, 2H), 4.62 (q, J=7.1 Hz, 2H), 3.88 (m, 1H), 3.35 (t, J=7.5 Hz, 2H), 2.56 (t, J=7.5 Hz, 2H), 2.44 (s, 3H), 2.03 (m, 1H), 1.90 (m, 1H), 1.40 (t, J=7.1 Hz, 3H), 1.22 (s, 12H). ¹³C NMR (75 MHz, CDCl₃): δ=214.1, 205.1, 144.9, 135.9, 130.0, 127.9, 83.5, 69.7, 50.6, 47.1, 40.0, 35.2, 29.8, 24.72, 24.69, 21.6, 13.7. IR

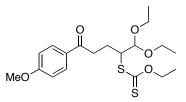
(neat): v=1716, 1365, 1315, 1212, 1140, 1109, 1086, 1045, 845, 814. HRMS (ESI) $[M+Na]^+$ Calcd. for C₂₃H₃₅BO₆S₃Na: 537, 1587. Found: 537,1572.


S-{1-(Diethoxymethyl)-6-[(4-methylphenyl)sulfonyl]-4-oxohexyl} *O*-ethyl dithiocarbonate (22a)

The title compound **22a** was prepared following the general procedure for the radical additions initiator by Et₃B at high temperature (CH₂Cl₂ reflux), starting from xanthate **1a** (0.257 g, 0.742 mmol) and acrolein diethylacetal (0.34 mL, 0. 290 g, 2.23 mmol, 3.0 equiv) in dichloromethane (1.5 mL). After 9 h (0.27 mL, 0.27 mmol, 0.5 equiv of Et₃B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **22a** as a pale yellow oil (0.263 g, 74%) and some starting material **1a** (0.015 g, 6%). The spectral characteristics of compound **22a** were in agreement with the previously reported data.⁶

¹H NMR (300 MHz, CDCl3): δ=7.69 (d, ${}^{3}J$ =8.1 Hz, 2H,), 7.30 (d, ${}^{3}J$ =8.1 Hz, 2H), 4.56 (q, ${}^{3}J$ =7.2 Hz, 2H), 4.46 (d, ${}^{3}J$ =2.9 Hz, 1H), 3.96 (m, 1H), 3.58 (m, 4H), 3.32 (dt, ${}^{3}J$ =1.3 Hz, ${}^{3}J$ =7.6 Hz, 2H), 2.82 (dt, ${}^{3}J$ =1.5 Hz, ${}^{3}J$ =7.6 Hz, 2H), 2.60 (dt, ${}^{3}J$ =1.8 Hz, ${}^{3}J$ =7.3 Hz, 2H), 2.43 (s, 3H), 2.19 (m, 1H), 1.81 (m, 1H), 1.39 (t, ${}^{3}J$ =7.2 Hz, 3H); 1.17 (m, 6H); ¹³C NMR (65 MHz, CDCl₃): δ=214.0, 204.7, 144.3, 135.5, 129.5, 127.5, 103.4, 69.8, 64.0, 63.3, 52.8, 50.1, 39.3, 34.8, 21.7, 21.1, 14.7, 13.3; IR (film): v =2977, 2929, 2896, 1718, 1597, 1444, 1406, 1316, 1219, 1148, 1111, 1053, 815 cm⁻¹.

O-Ethyl S-[4-oxo-4-phenyl-1-(2-phenyl-1,3-dioxolan-2-yl)butyl] dithiocarbonate (23a)



Exact Mass: 416,1116 Molecular Weight: 416,5536

The title compound **23a** was prepared following the general procedure for the radical additions initiated by Et₃B at "high" temperature (CH₂Cl₂ reflux), starting from xanthate **2a** (0.182 g, 0.76 mmol) and phenyl vinyl dioxolane (0.267 g, 1.52 mmol, 2 equiv) in dichloromethane (1 mL). After 8 h (0.3 equiv of Et₃B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **23a** as a colourless oil (0.161 g, 51% yield) and reduced product **2b** (0.011 g, 12%).

Compound 23a: ¹H NMR (300 MHz, CDCl₃): δ =7.9 (d, J=7.2 Hz, 2 H), 7.54 (m, 3 H), 7.46-7.31 (m, 5 H), 4.56 (m, 3 H), 4.12 (m, 2 H), 3.93-376 (m, 2 H), 3.12 (m, 2 H), 2.28 (m, 1 H), 1.91 (m, 1 H), 1.37 (t, J=7.1 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =214.5, 199.3, 140.1, 136.8, 132.9, 128.5, 128.4, 128.1, 128.0, 126.4, 110.4, 70.2, 65.6, 65.2, 58.9, 35.8, 24.5, 13.7; IR (neat): v=1682, 1447, 1209, 1042, 745, 689 cm⁻¹; MS (ESI): m/z = 439.0 [M+Na]⁺. HRMS (ESI) [M+Na]⁺ Calcd. for C₂₂H₂₄O₄S₂Na: 439.1014. Found: 439.0975.

S-[1-(Diethoxymethyl)-4-(4-methoxyphenyl)-4-oxobutyl] O-ethyl dithiocarbonate (24a)

Chemical Formula: C₁₉H₂₈O₅S₂ Exact Mass: 400,1378 Molecular Weight: 400,5526

The title compound **24a** was prepared following the general procedure for the radical additions initiated by Et_3B at high temperature (refluxing CH_2Cl_2), starting from xanthate **3a** (0201. g, 0.743 mmol) and acrolein diethylacetal (0.290 g, 2.23 mmol, 3 equiv) in dichloromethane (1.5 mL). After 11 h (0.37 mL, 0.5 equiv of Et_3B was used), the reaction was worked-up as usually.

Purification by flash chromatography gave compound **24a** as a yellow oil (0.141 g, 47% yield) and compound **3b** (0.029 g, 26%).

This compound was also prepared following the general procedure for the radical additions initiator by Et_3B at high temperature [refluxing (CH₂Cl)₂], starting from xanthate **3a** (0270. g, 1.0 mmol) and acrolein diethyl acetal **13** (0.260 g, 2.0 mmol, 2 equiv) in 1,2-dichloroethane (1 mL). After 4 h (0.14 mL, 0.14 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **24a** as a yellow oil (0.239 g, 60% yield) without reduced product **3b**.

¹H NMR (300 MHz, CDCl₃): δ =7.94 (ddd, J=9 Hz, J=2.9 Hz, J=2.1 Hz, 2 H), 6.92 (ddd, J=9 Hz, J=2.9 Hz, J= 2.1 Hz, 2 H), 4.60 (m, 3 H), 4.15 (m, 1 H), 3.86 (s, 3 H), 3.82-3.50 (m, 4 H), 3.14 (m, 2 H), 2.42 (m, 1 H), 2.02 (m, 1 H), 1.38 (t, J=7.1 Hz, 3 H), 1.22 (dt, J=3.4 Hz, J=7.0 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ =214.8, 198.1, 163.3, 130.3, 130.0, 113.6, 104.0, 70.1, 64.4, 63.7, 55.4, 53.5, 35.4, 23.2, 15.2, 15.2, 13.7; IR (neat): v=1673, 1597, 1256, 1214, 1168, 1110, 1045, 985, 828 cm⁻¹; MS (ESI): m/z = 423.1 [M+Na]⁺. HRMS (ESI) [M+Na]⁺ Calcd. for C₁₉H₂₈O₅S₂Na: 423.1276. Found: 423.1292.

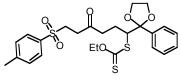
10-[(Ethoxycarbonothioyl)thio]-15-[(4-methylphenyl)sulfonyl]-13-oxopentadecyl acetate (25a)

AcO

Chemical Formula: C₂₇H₄₂O₆S₃ Exact Mass: 558,2144 Molecular Weight: 558,8138

15-[(4-Methylphenyl)sulfonyl]-13-oxopentadecyl acetate (25b)

AcO

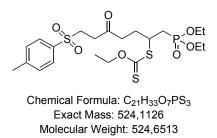

Chemical Formula: C₂₄H₃₈O₅S Exact Mass: 438,2440 Molecular Weight: 438,6205

The title compound **25a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature (refluxing CH_2Cl_2), starting from xanthate **1a** (0.176 g, 0.51 mmol) and olefin **14** (0.216 g, 1.02 mmol, 2 equiv) in dichloromethane (1 mL). After 8 h (0.254 mL, 0.5 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **25a** as a yellow oil (0.177 g, 62% yield) and compound **25b** (0.044 g, 20%).

Compound 25a: ¹H NMR (300 MHz, CDCl₃): δ =7.70 (d, J=8.2 Hz, 2 H), 7.29 (d, J=8.5 Hz, 2 H), 4.56 (d, J=7.1 Hz, 2 H), 3.97 (t, J=6.8 Hz, 2 H), 3.62 (m, 1 H), 3.29 (t, J=7.4 Hz, 2 H), 2.79 (t, J=7.9 Hz, 2 H), 2.52 (brddd, 2 H), 2.38 (s, 3 H), 1.97 (s and m, 4 H), 1.77-1.49 (m, 5 H), 1.35 (t, J=7.1 Hz, 3 H), 1.20 (brs, 12 H); ¹³C NMR (75 MHz, CDCl₃): δ =214.6, 205.2, 171.2, 144.9, 136.0, 130.0, 128.0, 70.0, 64.6, 51.0, 50.6, 39.9, 35.3, 34.6, 29.3, 29.2, 28.6, 28.0, 26.8, 25.9, 21.6, 21.0, 13.8; IR (neat): v=2925, 1731, 1211, 1145, 1044 cm⁻¹; MS (ESI): *m/z*=281.2 [M+Na]⁺. HRMS (ESI) [M+Na]+ Calcd. for C₂₇H₄₂O₆S₃Na: 581.2041 Found: 581.2060.

Compound 25b: ¹H NMR (300 MHz, CDCl₃): δ =7.71 (d, J=8.3 Hz, 2 H), 7.29 (d,J=8.3 Hz, 2 H), 3.98 (t, J=6.8 Hz, 2 H), 3.28 (t, J=7.5 Hz, 2 H), 2.81 (t, J=7.5 Hz, 2 H), 2.38 (s, 3 H), 2.34 (t, J=7.4 Hz, 2 H), 1.97 (s, 3 H), 1.5 (m, 4 H), 1.18 (s, 16 H); ¹³C NMR (75 MHz, CDCl₃): δ =206.3, 171.2, 144.9, 136.1, 130.0, 128.0, 64.6, 50.6, 42.9, 35.0, 29.3, 29.2, 19.1, 28.6, 25.9, 23.7, 21.6, 21.0; IR (neat): v=2913, 2847, 1723, 1706, 1253, 1241, 1142, 1084, 714, 767, 720, 686, and 639 cm⁻¹; MS (ESI): m/z = 461.2 [M+Na]⁺. HRMS (ESI) [M+Na]⁺ Calcd. for C₂₄H₃₈O₅SNa: 461.2338. Found: 461.2313.

O-Ethyl *S*-[6-[(4-methylphenyl)sulfonyl]-4-oxo-1-(2-phenyl-1,3-dioxolan-2-yl)hexyl] dithiocarbonate (26a)

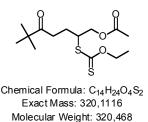

Chemical Formula: C₂₅H₃₀O₆S₃ Exact Mass: 522,1205 Molecular Weight: 522,6971

The title compound **26a** was prepared following the general procedure for the radical additions initiator by Et_3B at high temperature (CH₂Cl₂ reflux), starting from xanthate **1a** (0.260 g, 0.750 mmol) and phenyl vinyl dioxolane (0.264 g, 1.5 mmol, 2 equiv) in dichloromethane (1.5 mL).

After 12.5 h (0.37 mL, 0.37 mmol, 0.5 equiv Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **26a** as a white solid (0.259 g, 66% yield). The spectral characteristics of **26a** prepared by this method were in agreement with the previously reported data.⁶

m.p. 100.6 – 101.6°C; ¹H NMR (300 MHz, CDCl₃): δ =7.75 (d, ³*J*=8.2 Hz, 2H), 7.48 (d, ³*J*=7.8 Hz, 2H), 7.35 (m, 5H), 4.59 (dq, ³*J*=1.0 Hz, ³*J*=7.1 Hz, 2H), 4.38 (dd, ³*J*=3.7 Hz, ³*J*=10.3, 1H), 4.15-3.97 (m, 2H), 3.88-3.71 (m, 2H) 3.29 (t, ³*J*=7.2 Hz, 2H), 2.79 (m, 2H), 2.55 (m, 2H), 2.45 (s, 3H), 2.05 (m, 1H), 1.69 (m, 1H), 1.40 (t, ³*J*=7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =205.14, 144.92, 139.95, 135.94, 130.00, 128.50, 128.15, 128.00, 126.32, 110.27, 70.45, 65.55, 65.22, 58.85, 50.59, 39.88, 35.20, 23.76, 21.65, 13.78; IR (Nujol): v =1048; 1111; 1144; 1223; 1298; 1376; 1461; 1721; 2854; 2924; 2954 cm⁻¹; MS (ESI): *m/z* (%): 545.1 (100) [M+Na]⁺, 561.1 (20) [M+K]⁺.

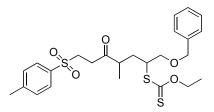
Diethyl {2-[(ethoxycarbonothioyl)thio]-7-[(4-methylphenyl)sulfonyl]-5-oxoheptyl} phosphonate (27a)



The title compound **27a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature (refluxing CH_2Cl_2), starting from xanthate **1a** (0.17 g, 0.491 mmol) and diethyl allylphosphonate **15** (0.219 g, 1.23 mmol, 2.5 equiv) in CH_2Cl_2 (1 mL). After 4 h (0.15 mL, 0.15 mmol 0.3 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **27a** as a colourless oil (0.152 g, 59% yield) without any traces of reduced product.

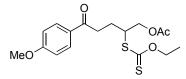
¹H NMR (300 MHz, CDCl₃): δ=7.74 (d, J=8.3 Hz, 2H), 7.34 (d, J=8.0 Hz, 2H), 4.61 (t, J=7.1 Hz, 2H), 4.09 (m, 4H), 3.95 (m, 1H), 3.30 (t, 2H), 2.83 (dt, J=1.8 Hz, J=7.5 Hz, 2H), 2.59 (dt, J=1.8 Hz, J=7.5 Hz, 2H), 2.43 (s, 3H), 2.31 (m, 2H), 2.08 (m, 1H), 1.89 (m, 1H), 1.40 (t, J=7.1 Hz, 3H),

1.31 (t, J=7.1 Hz, 3H), 1.30 (t, J=7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ =212.6, 204.5, 144.9, 135.8, 129.9, 127.9, 70.1, 62.0, 61.9, 61.8, 50.5, 45.0, 39.7, 35.2, 32.5, 30.7, 27.4, 27.3, 21.6, 16.37, 16.31, 13.7. IR (neat): v=1715, 1216, 1144, 1111, 1086, 1040, 1018, 959, 812 cm⁻¹. HRMS (ESI) [M+Na]⁺ Calcd. for C₂₁H₃₃O₇PS₃Na: 547.1024. Found: 547.1058.


2-[(Ethoxycarbonothioyl)thio]-6,6-dimethyl-5-oxoheptyl acetate (28a)

The title compound **28a** was prepared following the general procedure for the radical additions initiator by Et_3B at high temperature (DCE reflux), starting from xanthate **5a** (0.206 g, 0.935 mmol, 1 equiv) and allyl acetate **7** (0.187 g, 1.87 mmol, 2 equiv) in 1,2-dichloroethane (1 mL). After 3.5 h (0.11 mL, 0.11 mmol, 0.11 equiv Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **28a** as a yellow oil (0.23 g, 77% yield) without any reduced products. The spectral characteristics of **28a** prepared by this method were in agreement with the previously reported data.⁸

¹H NMR (300 MHz, CDCl₃): δ =7.52 (dd, ³*J*=1.5 Hz and ³*J*'=7.8 Hz, 2H), 7.35 (3H, m), 4.59 (2H, m), 4.43 (dd, ³*J*=3.7 Hz and ³*J*'=10.4 Hz, 1H), 4.09 (m, 2H), 3.82 (m, 2H), 2.60 (m, 2H), 2.07 (m, 1H), 1.67 (m, 1H), 1.41 (t, ³*J*=7.0 Hz, 3H), 1.07 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =215.00, 214.64, 140.16, 128.37, 128.05, 126.40, 110.40, 70.114, 65.54, 65.21, 58.76, 44.00, 33.77, 26.48, 24.00, 13.75; IR (neat): v =2964, 1702, 1476, 1446, 1364, 1208, 1109, 1043, 774, 698, 640 cm⁻¹; HRMS (ESI): [M+Na]⁺ Calcd. for C₂₀H₂₈O₄S₂Na: 419.1327. Found: 419.1332.

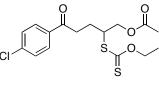

S-1-(Benzyloxy)-4-methyl-5-oxo-7-tosylheptan-2-yl O-ethyl carbonodithioate (29a)

The title compound **29a** was prepared following the general procedure for the radical additions initiated by Et_3B at high temperature (DCE reflux), starting from xanthate **6a** (0.36 g, 1.0 mmol, 1 equiv) and allyl benzyl ether **16** (0.296 g, 2.0 mmol, 2 equiv) in 1,2-dichloroethane (1 mL). After 14 h (0.4 mL, 0.4 mmol, 0.4 equiv Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **29a** as a colourless syrup (0.272 g, 54% yield) without any traces of reduced compound.

¹H NMR (300 MHz, CDCl₃): δ=7.78 (2d, 2H), 7.33 (m, 7H), 4.64 and 4.61 (2q, ${}^{3}J$ =7.1 Hz, 2H), 4.53 and 4.52 (2s, 2H), 3.94 and 3.88 (m, 1H), 3.68 and 3.56 (2m, 2H), 3.35 (m, 2H), 3.08-2.69 (m, 2H), 2.45 (s, 3H), 2.32 (m, 1H), 2.02 and 1.86 (2m, 1H), 1.60 (m, 1H), 1.42 and 1.40 (2t, ${}^{3}J$ =7.1 Hz, 3H), 1.12 and 1.11 (2d, ${}^{3}J$ =7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 214.18, δ=208.97, 136.03, 130.00, 128.42, 127.98, 127.78, 127.75, 127.69, 127.65, 73.10, 73.01, 72.12, 72.04, 70.33, 50.65, 49.33, 48.67, 44.01, 43.77, 33.97, 33.92, 33.52, 33.42, 21.64, 17.63, 16.70, 13.77; IR (neat): ν =1712, 1596, 1453, 1313, 1212, 1146, 1109, 1086, 1040, 999, 813, 734, 696 cm⁻¹; HRMS (ESI): [M+Na]⁺ Calcd. for C₂₅H₃₂O₅S₃Na: 531.1310. Found: 531.1319.

2-[(Ethoxycarbonothioyl)thio]-5-(4-methoxyphenyl)-5-oxopentyl acetate (30a)

Chemical Formula: C₁₇H₂₂O₅S₂ Exact Mass: 370,0909 Molecular Weight: 370,4836


The title compound **30a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature (refluxing CH_2Cl_2), starting from xanthate **3a** (0.205 g, 0.758 mmol) and allyl acetate **7** (0.190 g, 0.19 mmol, 2.5 equiv) in dichloromethane (1 mL).

After 8 h (0.38 mL, 0.5 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **30a** as a yellow oil (0.137 g, 49% yield), and the compound **3b** (0.033 g, 29%). The spectral characteristics of **30a** prepared by this method were in agreement with the previously reported data.

This compound was also prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature [refluxing (CH₂Cl)₂], starting from xanthate **4a** (0271. g, 1.0 mmol) and allyl acetate **8** (0.201 g, 2.0 mmol, 2 equiv) in 1,2-dichloroethane (1 mL). After 4 h (0.11 mL, 0.11 mmol, 0.11 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **22a** as a yellow oil (0.263 g, 71% yield) without any traces of compound **4b**.⁹

Compound 30a: ¹H NMR (300 MHz, CDCl₃): δ =7.95 (ddd, J=9.0 Hz, J=2.8 Hz, J=2/1 Hz, 2 H), 6.94 (ddd, J=9.0 Hz, J=2.8 Hz, J=2.1 Hz, 2 H), 4.63 (m, 2 H), 4.33 (m, 3 H), 4.01 (m, 1 H), 3.88 (s, 3 H), 3.13 (m, 2 H), 2.3 (m, 1 H), 2.08 (s, 3 H), 2.01 (m, 1 H), 1.40 (t, J=7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 212.8, 197.1, 170.5, 163.5, 130.2, 129.7, 113.7, 70.2, 65.6, 55.4, 49.0, 35.1, 25.1, 20.7, 13.6; IR (neat): v=1738, 1673, 1598, 1212, 1168, 1110, 1041, 983, and 837 cm⁻¹; MS (ESI): *m/z* = 393.1 [M+Na]⁺.

5-(4-Chlorophenyl)-2-[(ethoxycarbonothioyl)thio]-5-oxopentyl acetate (31a)

Chemical Formula: C₁₆H₁₉ClO₄S₂ Exact Mass: 374,0413 Molecular Weight: 374,9027

The title compound **31a** was prepared following the general procedure for the radical additions initiated by Et_3B/O_2 at high temperature [refluxing (CH₂Cl)₂], starting from xanthate **4a** (0.275 g, 1.0 mmol) and allyl acetate **7** (0.200 g, 2.0 mmol, 2 equiv) in 1,2-dichloroethane (1 mL). After 4 h (0.11mL, 0.11 mmol 0.11 equiv of Et_3B was used), the reaction was worked-up as usually. Purification by flash chromatography gave compound **31a** as a yellow oil (0.275 g, 73% yield) without any reduced products.

¹H NMR (300 MHz, CDCl₃): δ =7.88 (ddd, J=8.8 Hz, J=2.4 Hz, J=2.0 Hz, 2 H), 7.42 (ddd, J=8.8 Hz, J=2.4 Hz, J=2.0 Hz, 2 H), 4.62 (dq, J=1.4 Hz, J=7.1 Hz, 2 H), 4.36 (dd, J=11.4 Hz, J=4.9 Hz, 1 H), 4.27 (dd, J=11.4 Hz, J=6.2 Hz, 1 H), 4.06 (m, 1 H), 3.14 (dt, J=1.6 Hz, J=7.6 Hz, 2H), 2.31 (m, 1 H), 2.07 (s, 3 H), 2.01 (m, 1 H), 1.4 (t, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =212.7, 197.4, 170.5, 139.6, 134.9, 129.4, 128.9, 70.3, 65.6, 48.9, 35.5, 24.9, 20.7, 13.6; IR (neat): v=1738, 1682, 1588, 1211, 1090, 1041, 1012, 983 cm⁻¹; MS (ESI): *m/z* (%) = 397.0 [C₁₆H₁₉Cl³⁵O₄S₂Na]⁺ (100), 399.0 [C₁₆H₁₉Cl³⁷O₄S₂Na]⁺ (25). HRMS (ESI) [M+Na]⁺ Calcd. for C₁₆H₁₉Cl³⁵O₄S₂Na: 397.0311. Found: 397.0301.

References

¹Brown, M. D.; Gillon, D. W.; Meakins, G.; Whitham, G. H. *J.Chem. Soc. Perkin Trans. I* **1985**, 1623-1626.

- ² Gutzmann, J.; Messinger, P. Arch. Pharm. (Weinheim Ger.) 1995, 328, 6, 523-526
- ³ Wang, P.; Blank, D. H.; Spencer, T. A. J. Org. Chem. 2004, 69, 2693-2702.
- ⁴ Whitham, G. H.; Bridges, A. J. J. Chem. Soc. Perkin. Trans. 1 1975, 1603-1606.
- ⁵Batanero, B.; Picazo, O.; Barba, F. J. Org. Chem. 2001, 66, 320-322. (b) Boivin, J.; Pothier, J.;
- Zard, S. Z., Tetrahedron Lett. 1999, 40, 3701-3704.
- ⁶ Boivin J.; Jrad, R.; Juge, S.; Nguyen, V. T. Org. Lett. 2003, 5, 1645-1648.
- ⁷ Pinnick, H.W.; Reynolds, M.A. J. Org. Chem. 1979, 44, 160-161.
- ⁸ Part 1 Boivin, J.; Nguyen, V. T. J. Org. Chem. 2007, submitted.
- ⁹ Liard, A.; Quiclet-Sire, B.; Saicic, R. N.; Zard, S. Z. Tetrahedron Lett. **1997**, 38, 1759-1762.