Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems

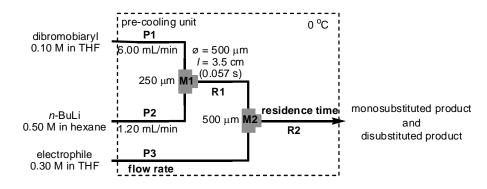
Aiichiro Nagaki, Naofumi Takabayashi, Yutaka Tomida, and Jun-ichi Yoshida*

Address: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan Email: Jun-ichi Yoshida - yoshida@sbchem.kyoto-u.ac.jp

* Corresponding author

Supporting Information

Experimental procedures for compounds 1–52


General

GC analysis was performed on a SHIMADZU GC-2014 gas chromatograph equipped with a flame ionization detector using a fused silica capillary column (column, CBP1; 0.25 mm x 25 m; initial oven temperature, 50 °C; rate of temperature increase, 10 °C /min). ¹H and ¹³C NMR spectra were recorded on Varian MERCURYplus-400 (¹H 400 MHz, ¹³C 100 MHz) spectrometer or JEOLECA-600 (¹³C 150 MHz) spectrometer with Me₄Si or CHCl₃ as a standard in CDCl₃ unless otherwise noted. EI mass spectra were recorded on JMS-SX102A spectrometer. FAB mass spectra were recorded on JMX-HX110A spectrometer. Gel permeation carried Analytical chromatography out with Japan Industry LC-9201. was 2,2'-Dibromobiphenyl, 2-bromobiphenyl, biphenyl, 4,4'-dibromobiphenyl, 4-bromobiphenyl, 2,7-dibromo-9,9-dioctylfluorene, 2-bromo-9,9-dioctylfluorene, 9,9-dioctylfluorene, 2,2'-dibromo-1,1'-binaphthyl, 2-bromo-1,1'-binaphthyl, 1,1'-binaphthyl, bibenzyl, iodomethane, chlorotrimethylsilane, benzaldehyde, benzophenone, and methyl chlorocarbonate were commercially available. Hexane was purchased from Wako, distilled before use, and stored over molecular sieves (4 Å). THF was purchased from Kanto as a dry solvent. Stainless steel (SUS304) T-shaped micromixers having inner diameter of 250, 500 and 800 µm were manufactured by Sanko Seiki Co., Inc. Stainless steel (SUS316) microtube reactors having inner diameter of 500 and 1000 µm were purchased from GL Sciences. The micromixers and microtube reactors were connected with stainless steel fittings (GL Sciences, 1/16 OUW). The microflow system was dipped in a cooling bath to control the temperature. Harvard Model 11, equipped with gastight syringes purchased from SGE was used for introducing the solution to a microflow system.

Typical Procedure for the Br-Li Exchange Reaction of Dibromobiaryls Followed by the Reaction with Methanol in a Macrobatch System.

A solution of dibromobiaryls (0.10 M, 6.0 mL) in THF was stirred in a flask (20 mL round bottom glass flask with a magnetic stirrer). A solution of *n*-BuLi (0.50 M, 1.2 mL) in hexane was added dropwise for 1.0 min. After stirring, methanol (neat, 3.0 mL) was added dropwise for 1.0 min. After stirring for 10 min, a cooling bath was removed. The mixture was analyzed by GC.

Typical Procedure for the Br-Li Exchange Reaction of Dibromobiaryls Followed by the Reaction with Electrophiles in a Microflow System.

A microflow system consisting of two T-shaped micromixers (**M1** and **M2**), two microtube reactors (**R1** and **R2**) and three microtube pre-cooling units [**P1** (inner diameter $\emptyset = 1000 \ \mu\text{m}$, length l = 100 cm), **P2** ($\emptyset = 1000 \ \mu\text{m}$, l = 50 cm) and **P3** ($\emptyset = 1000 \ \mu\text{m}$, l = 100 cm)] was used (0 °C). A solution of a dibromobiaryl (0.10 M) in THF (flow rate = 6.00 mL·min-1) and a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.20 mL·min⁻¹) were introduced to **M1** ($\emptyset =$ 250 µm). The resulting solution was passed through **R1** ($\emptyset = 500 \ \mu\text{m}$, l = 3.5 cm) and was mixed with a solution of an electrophile (0.30 M) in THF in **M2** ($\emptyset = 500 \ \mu\text{m}$). The resulting solution was passed through **R2**. After a steady state was reached, the product solution was collected for 60 s and was treated with H₂O to quench the reaction. 2,2'-Dibromobiphenyl (1), 4,4'-dibromobiphenyl (17), 2,7-dibromo-9,9-dioctylfluorene (28), 2,2'-dibromo-1,1'-binaphthyl (**36**), and 2,2'-dibromobibenzyl (**43**) were used as dibromobiaryls. Methanol, iodomethane, chlorotrimethylsilane, benzaldehyde, and benzophenone were used as electrophiles.

The reactions of dibromobiaryls with iodomethane and chlorotrimethylsilane were carried out under the following conditions.

R2: $\phi = 1000 \,\mu\text{m}$, $l = 200 \,\text{cm}$ (8.4 s), flow rate of a solution of an electrophile: 4.00 mL·min-1

The reactions of dibromobiaryls with methanol, benzaldehyde, and benzophenone were carried out under the following conditions. When methanol was used as a electrohpile, reaction temperature of 24 °C was also examined.

R2: $\phi = 1000 \,\mu\text{m}$, $l = 50 \,\text{cm} (2.3 \,\text{s})$, flow rate of a solution of an electrophile: 3.00 mL·min⁻¹

The Br-Li Exchange Reaction of 2,2'-Dibromobiphenyl (1) Followed by the Reaction with Methanol in a Macrobatch System.

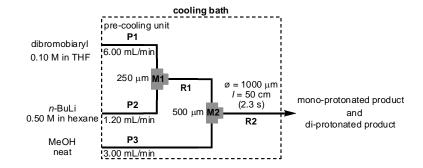
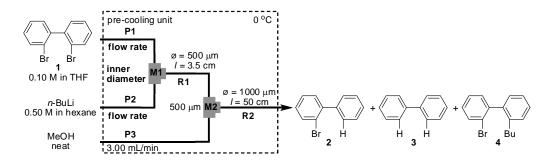

The results are summarized in Table S-1.

Table S-1: The Br-Li exchange reaction of 2,2'-dibromobiphenyl (1) followed by the reaction with methanol in a macrobatch system.

	tion time thiation Br	Li MeOH	Br H		Br Bu
	reaction time				
reaction		1	2	3	4
t_{opp}	of lithiation	aan u (0/)	yield (%)	viold(0/)	v_{i}
temperature (°C)	(min)	conv. (%)	yleid (%)	yield (%)	yield (%)
-78	60	94	76	4	0
-48	10	86	69	4	0
-27	10	81	48	18	0
0	10	75	36	25	2
24	10	66	14	34	3

2-Bromo-2'-butylbiphenyl (4): ¹H NMR (400 MHz, CDCl₃) δ 0.76 (t, *J* = 7.2 Hz, 3H), 1.18 (sext., *J* = 7.4 Hz, 2H), 1.32–1.53 (m, 2H), 2.27–2.52 (m, 2H), 7.10 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.16–7.36 (m, 6H), 7.62–7.68 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃, some signals overlapped) δ 13.8, 22.4, 32.8, 124.0, 125.3, 126.9, 127.9, 128.6, 128.9, 129.6, 131.2, 132.5, 140.6, 140.7, 142.5 ppm; HRMS (EI) *m/z* calcd for C₁₆H₁₇Br: 288.0514, found: 288.0513.

Typical Procedure for Effects of the Residence Time and Temperature in the Br-Li Exchange Reaction of Dibromobiaryls Followed by the Reaction with Methanol in the Microflow System.



A microflow system consisting of two T-shaped micromixers (**M1** and **M2**), two microtube reactors (**R1** and **R2**) and three microtube pre-cooling units [**P1** (inner diameter $\emptyset = 1000 \ \mu\text{m}$, length l = 100 cm), **P2** ($\emptyset = 1000 \ \mu\text{m}$, l = 50 cm) and **P3** ($\emptyset = 1000 \ \mu\text{m}$, l = 100 cm)] was used. A solution of dibromobiaryl (0.10 M) in THF (flow rate = 6.00 mL·min⁻¹) and a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.20 mL·min⁻¹) were introduced to **M1** ($\emptyset = 250 \ \mu\text{m}$). The resulting solution was passed through **R1** and was mixed with methanol (neat, flow rate = 3.00 mL·min⁻¹) in **M2** ($\emptyset = 500 \ \mu\text{m}$). The resulting solution was passed through **R2** ($\emptyset = 1000 \ \mu\text{m}$, l = 50 cm). After a steady state was reached, the product solution was collected for 60 s. The mixture was analyzed by GC. The results obtained with varying the residence time in **R1**, and bath temperature in the cooling bath is summarized in Table S-2. The residence time was controlled by changing the inner diameter (\emptyset) and the length (l) of **R1** with the fixed flow rate. 2,2'-Dibromobiphenyl (**1**), and 4,4'-dibromobiphenyl (**17**) were used as dibromobiaryls.

residence time	inner diameter	length	bath temperature	1	2	3
of R1 (s)	of R1 (µm)	of R1 (cm)	(°C)	conv. (%)	yield (%)	yield (%)
0.057	500	3.5	-78	23	19	0
			-48	69	60	4
			0	97	88	3
			24	96	85	4
0.23	1000	3.5	-78	40	36	0
			-48	95	88	1
			0	97	88	4
			24	96	85	5
0.82		12.5	-78	92	86	1
			-48	96	88	2
			0	96	86	4
			24	94	83	5
13		200	-78	89	82	1
			-48	95	87	2
			0	95	83	5
			24	88	68	12

Table S-2. Effects on the residence time and bath temperature in the Br-Li exchange reaction of 2,2'-dibromobiphenyl followed by the reaction with methanol in the microflow system.

Effects of the Flow Rate and the Inner Diameter of M1 in the Br-Li Exchange Reaction of 2,2'-Dibromobiphenyl (1) Followed by the Reaction with Methanol in the Microflow System.

A microflow system consisting of two T-shaped micromixers (**M1** and **M2**), two microtube reactors (**R1** and **R2**) and three microtube pre-cooling units [**P1** (inner diameter $\emptyset = 1000 \ \mu\text{m}$, length l = 100 cm), **P2** ($\emptyset = 1000 \ \mu\text{m}$, l = 50 cm) and **P3** ($\emptyset = 1000 \ \mu\text{m}$, l = 100 cm)] was used (0 °C). A solution of 2,2'-dibromobiphenyl (**1**) (0.10 M) in THF and a solution of *n*-BuLi (0.50 M) in hexane were introduced to **M1**. The resulting solution was passed through **R1** and was mixed with methanol (neat, flow rate = 3.00 mL·min⁻¹) in **M2** ($\emptyset = 500 \ \mu\text{m}$). The resulting solution was passed through **R2** ($\emptyset = 1000 \ \mu\text{m}$, l = 50 cm). After a steady state was reached, the product solution was collected for 60 s. The mixture was analyzed by GC. The results obtained with varying the inner diameter in **M1**, the flow rate of a solution of 2,2'-dibromobiphenyl (**1**), and the flow rate of *n*-BuLi in hexane are summarized in Table S-3.

Table S-3. Effects of the flow rate and the inner diameter of **M1** in the Br-Li exchange reaction of 2,2'-dibromobiphenyl (1) followed by the reaction with methanol at 0 $^{\circ}$ C in the microflow system.

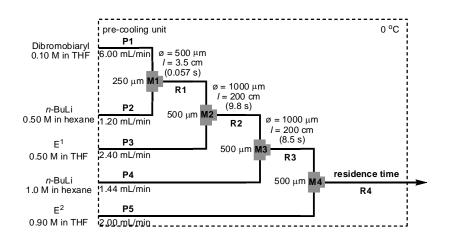
flow rate of a	flow rate of	inner			
solution of 1	<i>n</i> -BuLi/hexane	diameter	1	2	3
(mL/min)	(mL/min)	of $M1$ (µm)	conv. (%)	yield (%)	yleid (%)
6.00	1.20	250	97	88	3
3.00	0.600	250	90	80	7
1.50	0.300	250	76	57	15
0.600	0.120	250	69	41	19
6.00	1.20	500	93	77	7
6.00	1.20	800	79	62	9

The Br-Li Exchange Reaction of 2,2'-Dibromobiphenyl (1) Followed by the Reaction with Iodomethane in the Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-2'-methylbiphenyl (**5**) (GC t_R 19.9 min) was produced in 89% yield, and 2,2'-dimethylbiphenyl (**6**) (GC t_R 17.6 min) was produced in a trace amount (95% conv.). **2-Bromo-2'-methylbiphenyl (5**): ¹H NMR (400 MHz, CDCl₃) δ 2.09 (s, 3H), 7.08 (d, J = 7.6 Hz, 1H), 7.12–7.32 (m, 6H), 7.59–7.64 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.0, 123.6, 125.3, 127.0, 127.7, 128.5, 129.0, 129.6, 130.7, 132.3, 135.7, 140.9, 142.4 ppm; HRMS (EI) *m/z* calcd for C₁₃H₁₁Br: 246.0044, found: 246.0040. The spectral data of 2,2'-dimethylbiphenyl (**6**) were identical to those reported in the literature.[1]

The Br-Li Exchange Reaction of 2,2'-Dibromobiphenyl (1) Followed by the Reaction with Chlorotrimethylsilane in the Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-2'-trimethylsilylbiphenyl (7) (GC t_R 22.3 min) was produced in 80% yield and 9,9-dimethyl-9-silafluorene (8) (GC t_R 20.4 3% yield (97%) min) was produced in conv.). The spectral data of 2-bromo-2'-trimethylsilylbiphenyl (7) and 9,9-dimethyl-9-silafluorene (8) were identical to those reported in the literature.[2]


The Br-Li Exchange Reaction of 2,2'-Dibromobiphenyl (1) Followed by the Reaction with Benzaldehyde in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-2'-[hydroxyl(phenyl)methyl]biphenyl (9) (GC t_R 29.0 min) was produced in 90% yield as a mixture of two diastereomers (diastereomer ratio = 52/48 determined by NMR), and 2-[hydroxyl(phenyl)methyl]biphenyl (10) (GC t_R 26.9 min) was produced in a trace amount (98% conv.). 2-Bromo-2'-[hydroxyl(phenyl)methyl]biphenyl (9): ¹H NMR (400 MHz, CDCl₃) δ 2.05–2.18 (m) and 2.30–2.42 (m) (total 1H, two diastereomers), 5.64 (s) and 5.67 (s) (total 1H, two diastereomers), 6.92–7.71 ppm (m, 13H); ¹³C NMR (100 MHz, CDCl₃, a mixture of two diasteromers, some signals overlapped) & 72.7, 72.8, 123.5, 124.2, 126.46, 126.54, 126.6, 126.99, 127.02, 127.1, 127.18, 127.21, 127.23, 127.4, 128.1, 128.4, 128.6, 129.1, 129.3, 130.1, 131.2, 131.7, 132.3, 132.7, 139.5, 140.3, 141.1, 141.2, 141.4, 141.8, 142.7, 143.2 ppm; HRMS (EI) m/zcalcd for $C_{19}H_{15}BrO$: 338.0306, found: 338.0303. **2-[hydroxyl(phenyl)methyl]biphenyl (10**): ¹H NMR (400 MHz, CDCl₃) δ 2.13-2.24 (m, 1H), 5.90 (s, 1H), 7.10–7.56 ppm (m, 14H); ¹³C NMR (100 MHz, CDCl₃, some signals overlapped) δ 72.3, 126.6, 127.15, 127.16, 127.4, 127.8, 128.1, 128.2, 129.3, 130.0, 140.8, 141.0, 141.3, 143.8 ppm; HRMS (EI) m/z calcd for C₁₉H₁₆O: 260.1201, found: 260.1199.

The Br-Li Exchange Reaction of 2,2'-Dibromobiphenyl (1) Followed by the Reaction with Benzophenone in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-2'-[hydroxyl(diphenyl)methyl]biphenyl (11) (GC t_R 33.6 min) was produced in 93% yield and 2-[hydroxyl(diphenyl)methyl]biphenyl (12) (GC t_R 31.0 min) was produced in 2% yield (95% conv.). 2-Bromo-2'-[hydroxyl(diphenyl)methyl]biphenyl (11): ¹H NMR (400 MHz, CDCl₃) δ 2.69 (d, J = 4.0 Hz, 1H), 6.32–6.38 (m, 1H), 6.82–6.90 (m, 2H), 6.98–7.32 (m, 14H), 7.56 ppm (dd, J = 8.4, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 83.1, 124.4, 126.0, 126.7, 126.8, 126.9, 127.0, 127.5, 127.56, 127.59, 128.0, 128.3, 130.2, 130.7, 132.1, 132.2, 139.8, 142.9, 144.2, 146.7, 147.1 ppm; HRMS (EI) *m/z* calcd for C₂₅H₁₉BrO: 414.0619, found: 414.0604. **2-[hydroxyl(diphenyl)methyl]biphenyl (12)**: ¹H NMR (400 MHz, CDCl₃) δ 2.95 (s, 1H), 6.72–6.83 (m, 3H), 7.08–7.30 ppm (m, 16H); ¹³C NMR (100 MHz, CDCl₃) δ 83.5, 126.2, 126.7, 127.0, 127.2, 127.6, 127.8, 127.9, 129.3, 129.9, 132.2, 140.7, 141.7, 144.9, 147.3 ppm; HRMS (EI) m/z calcd for C₂₅H₂₀O: 336.1514, found: 336.1516.

Typical Procedure for Sequential Introduction of Two Electrophiles to Dibromobiaryls.

A microflow system consisting of four T-shaped micromixers (M1, M2, M3 and M4), four microtube reactors (R1, R2, R3 and R4) and five microtube pre-cooling units [P1 (inner diameter $\phi = 1000 \ \mu\text{m}$, length $l = 100 \ \text{cm}$), **P2** ($\phi = 1000 \ \mu\text{m}$, $l = 50 \ \text{cm}$), **P3** ($\phi = 1000 \ \mu\text{m}$, $l = 1000 \ \mu\text{m}$ 100 cm), **P4** ($\emptyset = 1000 \ \mu m$, $l = 50 \ cm$) and **P5** ($\emptyset = 1000 \ \mu m$, $l = 100 \ cm$)] was used. The whole microflow system was dipped in a cooling bath (0 °C). A solution of a dibromobiaryl (0.10 M) in THF (flow rate = 6.00 mL·min⁻¹) and a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.20 mL·min⁻¹) were introduced to M1 ($\varphi = 250 \mu$ m). The resulting solution was passed through **R1** ($\emptyset = 500 \text{ }\mu\text{m}$, l = 3.5 cm) and was mixed with a solution of a first electrophile (E¹: Electrophile-1) (0.50 M) in THF (flow rate = 2.40 mL·min⁻¹) in M2 (\emptyset = 500 µm). The resulting solution was passed through R2 ($\emptyset = 1000 \ \mu m$, $l = 200 \ cm$) and was introduced to M3 $(\emptyset = 500 \,\mu\text{m})$ where the solution was mixed with a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.44 mL·min⁻¹). The resulting solution was passed through **R3** (\emptyset = 1000 µm, l = 200 cm) and was introduced to M4 ($\phi = 500 \ \mu m$) where the solution was mixed with a solution of a second electrophile (E²: Electrophile-2) (0.90 M) in THF (flow rate = $2.00 \text{ mL} \cdot \text{min}^{-1}$). The resulting solution was passed through R4. After a steady state was reached, the product solution was collected for 60 s and was treated with H₂O to quench the reaction. 2,2'-Dibromobiphenyl (1),4,4'-dibromobiphenyl (17), 2,7-dibromo-9,9-dioctylfluorene (28),2,2'-dibromo-1,1'-binaphthyl dibromobiaryls. (36)used as Iodomethane, were chlorotrimethylsilane, benzaldehyde, benzophenone, and methyl chlorocarbonate were used as electrophiles.

When iodomethane was used for a first electrophile and benzaldehyde, benzophenone and methyl chlorocarbonate were used for a second electrophile, reactions were carried out under the following conditions.

R4: $\phi = 1000 \ \mu m$, L = 50 cm (1.8 s).

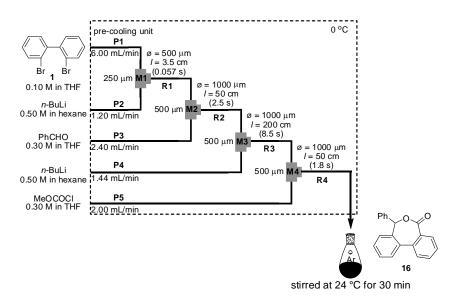
When iodomethane was used for a first electrophile and chlorotrimethylsilane were used for

a second electrophile, reactions were carried out under the following conditions.

R4: $\phi = 1000 \ \mu m$, L = 200 cm (7.2 s).

Sequential Introduction of Iodomethane (E^1) and Benzaldehyde (E^2) to 2,2'-Dibromobiphenyl (1).

The reaction mixture was washed with H₂O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na₂SO₄, and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 20:1) to obtain 2-methyl-2'-[hydroxyl(phenyl)methyl]biphenyl (**13**) [115.8 mg, 70%, diastereomer ratio = 55/45(NMR)]. **2-Methyl-2'-[hydroxyl(phenyl)methyl]biphenyl (13**) [115.8 mg, 70%, diastereomer ratio = 55/45(NMR)]. **2-Methyl-2'-[hydroxyl(phenyl)methyl]biphenyl (13**): ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s) and 2.15 (s) (total 3H, two diastereomers), 1.96–2.05 (m, 1H), 5.57–5.61 (m) and 5.70–5.74 (m) (total 1H, two diastereomers), 6.80–7.47 (m, 12H), 7.61–7.73 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃, a mixture of two diasteromers, some signals overlapped) δ 19.6, 20.1, 72.9, 73.0, 125.35, 125.37, 126.1, 126.4, 126.5, 126.8, 127.0, 127.16, 127.23, 127.3, 127.46, 127.52, 127.6, 127.8, 128.0, 128.1, 129.3, 129.5, 129.73, 129.74, 130.1, 135.8, 136.6, 140.0, 140.16, 140.19, 140.23, 141.3, 142.9, 143.8 ppm; HRMS (EI) *m/z* calcd for C₂₀H₁₈O: 274.1358, found: 274.1353.


Sequential Introduction of Iodomethane (E^1) and Chlorotrimethylsilane (E^2) to 2,2'-Dibromobiphenyl (1).

GC analysis of the reaction mixture indicated that 2-methyl-2'-trimethylsilylbiphenyl (14) (GC t_R 21.1 min) was produced in 82% yield. **2-Methyl-2'-trimethylsilylbiphenyl** (14): ¹H NMR (400 MHz, CDCl₃) δ –0.05 (s, 9H), 2.05 (s, 3H), 7.09–7.40 (m, 7H), 7.61–7.65 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 0.0, 20.4, 124.8, 126.1, 127.4, 128.4, 129.4, 130.2, 134.7, 136.1, 138.4, 143.4, 148.1 ppm; HRMS (EI) *m/z* calcd for C₁₆H₂₀Si: 240.1334, found: 240.1338.

Sequential Introduction of Iodomethane (E^1) and Methyl Chlorocarbonate (E^2) to 2,2'-Dibromobiphenyl (1).

GC analysis of the reaction mixture indicated that 2-methyl-2'-methoxycarbonylbiphenyl (15) (GC t_R 21.5 min) was produced in 76% yield. 2-Methyl-2'-methoxycarbonylbiphenyl (15): ¹H NMR (400 MHz, CDCl₃) δ 2,07 (s, 3H), 3.60 (s, 3H), 7.07–7.10 (m, 1H), 7.16–7.28 (m, 4H), 7.41 (td, J = 7.6, 1.6 Hz, 1H), 7.52 (td, J = 7.6, 1.6 Hz, 1H), 7.93–7.98 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 51.8, 125.2, 127.1, 127.2, 128.4, 129.4, 129.9, 130.3, 130.9, 131.5, 135.2, 141.4, 142.8, 167.8 ppm; HRMS (EI) m/z calcd for C₁₅H₁₄O₂: 226.0994, found: 226.0993.

Sequential Introduction of Benzaldehyde (E^1) and Methyl Chlorocarbonate (E^2) to 2,2'-Dibromobiphenyl (1).

A microflow system consisting of four T-shaped micromixers (**M1**, **M2**, **M3** and **M4**), four microtube reactors (**R1**, **R2**, **R3** and **R4**) and five microtube pre-cooling units [**P1** (inner

diameter $\phi = 1000 \ \mu\text{m}$, length $l = 100 \ \text{cm}$), **P2** ($\phi = 1000 \ \mu\text{m}$, $l = 50 \ \text{cm}$), **P3** ($\phi = 1000 \ \mu\text{m}$, $l = 1000 \ \mu\text{m}$ 100 cm), **P4** ($\emptyset = 1000 \ \mu m$, $l = 50 \ cm$) and **P5** ($\emptyset = 1000 \ \mu m$, $l = 100 \ cm$)] was used. The whole microflow system was dipped in a cooling bath (0 °C). A solution of 2,2'-dibromobiphenyl (0.10 M) in THF (flow rate = $6.00 \text{ mL} \cdot \text{min}^{-1}$) and a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.20 mL·min⁻¹) were introduced to M1 (\emptyset = 250 µm). The resulting solution was passed through **R1** ($\emptyset = 500 \text{ }\mu\text{m}$, l = 3.5 cm) and was mixed with a solution of benzaldehyde (0.30 M) in THF (flow rate = 2.40 mL·min⁻¹) in M2 (ϕ = 500 µm). The resulting solution was passed through **R2** ($\emptyset = 1000 \text{ }\mu\text{m}$, l = 50 cm) and was introduced to **M3** ($\emptyset = 500 \text{ }\mu\text{m}$) where the solution was mixed with a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.44 mL·min⁻¹). The resulting solution was passed through R3 ($\emptyset = 1000 \ \mu m$, $l = 200 \ cm$) and was introduced to M4 ($\varphi = 500 \mu m$) where the solution was mixed with a solution of methyl chlorocarbonate (0.30 M) in THF (flow rate = 2.00 mL·min⁻¹). The resulting solution was passed through **R4** $(\emptyset = 1000 \text{ }\mu\text{m}, l = 50 \text{ }\text{cm})$. After a steady state was reached, the product solution was collected for 60 s and was stirred for 30 min. The reaction mixture was treated with H₂O to quench the reaction and was analyzed by GC. GC analysis of the reaction mixture indicated that 7-phenyl-5,7-dihydrodibenz[c,e]oxepin-5-one (16) (GC t_R 31.2 min) was produced in 75% vield. 7-Phenyl-5,7-dihydrodibenz[c,e]oxepin-5-one (16): ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 6.79 (d, J = 8.0 Hz, 1H), 7.22–7.78 (m, 11H), 8.02 ppm (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 79.0, 127.0, 127.4, 128.40, 128.45, 128.51, 128.54, 128.8, 128.9, 129.5, 130.7, 131.4, 132.7, 135.7, 137.3, 138.45, 138.55, 169.4 ppm; HRMS (EI) *m/z* calcd for C₂₀H₁₄O₂: 286.0994, found: 286.0990.

The Br-Li Exchange Reaction of 4,4'-Dibromobiphenyl (17) Followed by the Reaction with Methanol in a Macrobatch System.

The results are summarized in Table S-4.

Table S-4. The Br-Li exchange reaction of 4,4'-dibromobiphenyl (**17**) followed by the reaction with methanol in a macrobatch system.

BrBrBr reaction 17 of lith	> Br – <	eOH) min Br	н + н-√	H + Br	- Bu 19
reaction	reaction time	17	18	3	19
temperature (°C)	of lithiation (min)	conv. (%)	yield (%)	yield (%)	yield (%)
-78	60	95	87	5	0
-48	10	90	49	5	0
-27	10	81	56	5	2
0	10	86	47	6	13
24	10	87	25	2	26

4-Bromo-4'-butylbiphenyl (19): ¹H NMR (400 MHz, CDCl₃) δ 0.94 (td, *J* = 7.4, 2.4 Hz, 3H), 1.38 (sext., *J* = 7.4 Hz, 2H), 1.63 (quin., *J* = 7.6 Hz, 2H), 2.64 (t., *J* = 7.6 Hz, 2H), 7.21–7.28 (m, 2H), 7.40–7.49 (m, 4H), 7.50–7.56 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.4, 33.6, 35.3, 121.1, 126.7, 128.5, 129.0, 131.8, 137.3, 140.1, 142.5 ppm; HRMS (EI) *m/z* calcd for C₁₆H₁₇Br: 288.0514, found: 288.0513.

Effects of the Residence Time and Temperature in the Br-Li Exchange Reaction of 4,4'-Dibromobiphenyl (17) Followed by the Reaction with Methanol in the Microflow System.

The results are summarized in Table S-5.

inner diameter	length	bath temperature	17	18	3
of R1 (µm)	of R1 (cm)	(°C)	conv. (%)	yield (%)	yield (%)
500	3.5	-78	30	29	1
		-48	66	63	0
		0	96	88	4
		24	94	85	4
1000	3.5	-78	50	48	2
		-48	98	90	4
		0	98	88	6
		24	96	88	5
	12.5	-78	93	89	2
		-48	100	91	5
		0	98	87	6
		24	97	88	6
	200	-78	92	81	7
		-48	100	88	6
		0	97	87	5
		24	95	85	3
	of R1 (μm) 500	of R1 (μm) of R1 (cm)	of R1 (µm)of R1 (cm)(°C) 500 3.5 -78 -48 0 24 24 1000 3.5 -78 -48 0 24 24 12.5 -78 -48 0 24 200 -48 0 -48 0 -48 0 -48 0 -48 0 24 200 -78 -48 0 -48 <	of R1 (μm)of R1 (cm)(°C)conv. (%)5003.5-7830-48660962494249410003.5-7850-48980982496249612.5-7893-4810009824972497200-7892-48100097200-7892	of R1 (µm)of R1 (cm)(°C)conv. (%)yield (%)500 3.5 -78 30 29 -48 66 63 0 96 88 24 94 85 1000 3.5 -78 50 48 -48 98 90 0 98 88 24 96 88 24 96 88 12.5 -78 93 89 -48 100 91 0 98 87 24 97 88 200 -78 92 81 -48 100 88 0 97 87

Table S-5. Effects on the residence time and bath temperature in the Br-Li exchange reaction of 4,4'-dibromobiphenyl (17) followed by the reaction with methanol in the microflow system.

The Br-Li Exchange Reaction of 4,4'-Dibromobiphenyl (17) Followed by the Reaction with Iodomethane in a Microflow System.

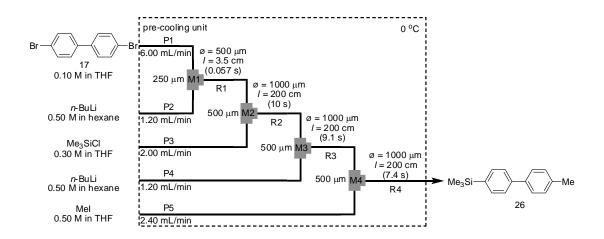
GC analysis of the reaction mixture indicated that 4-bromo-4'-methylbiphenyl (**20**) (GC t_R 22.3 min) was produced in 85% yield and 4,4'-dimethylbiphenyl (**21**) (GC t_R 20.0 min) was

produced in 4% yield (93% conv.). The spectral data of 4-bromo-4'-methylbiphenyl (**20**) and 4,4'-dimethylbiphenyl (**21**) were identical to those reported in the literature.[1,3]

The Br-Li Exchange Reaction of 4,4'-Dibromobiphenyl (17) Followed by the Reaction with Benzaldehyde in a Microflow System.

The reaction mixture was washed with H₂O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na₂SO₄, and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 5:1 to 3:1) to obtain 4-bromo-4'-[hydroxyl(phenyl)methyl]biphenyl (22) (169.1 mg, 83%) and 4,4'-di[hydroxyl(phenyl)methyl]biphenyl (23)(12.1)mg, 6%). **4-Bromo-4'-[hydroxyl(phenyl)methyl]biphenyl** (22): ¹H NMR (400 MHz, CDCl₃) δ 2.24 (dd, J = 3.2, 0.4 Hz, 1H), 5.88 (d, J = 3.2 Hz, 1H), 7.23–7.55 ppm (m, 13H); ¹³C NMR (100 MHz, CDCl₃) & 75.9, 121.4, 126.4, 126.85, 126.91, 127.6, 128.4, 128.5, 131.7, 139.0, 139.5, 143.0, 143.5 ppm; HRMS (EI) m/z calcd for C₁₉H₁₅BrO: 338.0306, found: 338.0305. 4,4'-Di[hydroxyl(phenyl)methyl]biphenyl (23): ¹H NMR (400 MHz, CDCl₃) δ 2.21 (d, J =3.6 Hz, 2H), 5.88 (d, J = 3.6 Hz, 2H), 7.20–7.45 (m, 14H), 7.50–7.55 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 76.0, 126.4, 126.8, 127.1, 127.5, 128.4, 139.9, 142.7, 143.5 ppm; HRMS (EI) m/z calcd for C₂₆H₂₂O₂: 366.1620, found: 366.1622.

The Br-Li Exchange Reaction of 4,4'-Dibromobiphenyl (17) Followed by the Reaction with Benzophenone in a Microflow System.


The reaction mixture was washed with H_2O , and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na_2SO_4 , and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 20:1

to 10:1 to 5:1) to obtain 4-bromo-4'-[hydroxyl(diphenyl)methyl]biphenyl (24) (209.3 mg, 84%) and 4,4'-bis[hydroxyl(diphenyl)methyl]biphenyl (25)(16.1)mg, 5%). **4-Bromo-4'-[hydroxyl(diphenyl)methyl]biphenyl (24**): ¹H NMR (400 MHz, CDCl₃) δ 2.80 (s, 1H), 7.23-7.38 (m, 12H), 7.41–7.56 ppm (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 81.8, 121.5, 126.2, 127.2, 127.7, 127.8, 128.3, 128.5, 131.7, 138.5, 139.3, 146.1, 146.5 ppm; HRMS (EI) m/zcalcd for $C_{25}H_{19}OBr$: 414.0619, found: 414.0621. **4,4'-Bis[hydroxyl(diphenyl)methyl]biphenyl (25**): ¹H NMR (400 MHz, CDCl₃) δ 2.80–2.84 (m, 2H), 7.23–7.34 (m, 24H), 7.47–7.54 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 81.9, 126.4, 127.2, 127.76, 127.83, 128.2, 139.3, 145.8, 146.6 ppm; HRMS (EI) m/z calcd for C₃₈H₃₀O₂: 518.2246, found: 518.2242.

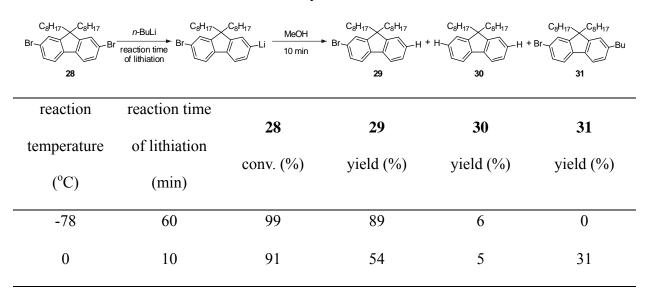
Sequential Introduction of Iodomethane (E^1) and Chlorotrimethylsilane (E^2) to 4,4'-Dibromobiphenyl (17).

GC analysis of the reaction mixture indicated that 4-methyl-4'-trimethylsilylbiphenyl (**26**) (GC t_R 23.8 min) was produced in 71% yield. **4-Methyl-4'-trimethylsilylbiphenyl (26**): ¹H NMR (400 MHz, CDCl₃) δ 0.33 (s, 9H), 2.42 (s, 3H), 7.25–7.31 (m, 2H), 7.50–7.66 ppm (m, 6H);¹³C NMR (100 MHz, CDCl₃) δ –1.1, 21.1, 126.3, 127.0, 129.5, 133.8, 137.1, 138.3, 138.8, 141.5 ppm; HRMS (EI) *m/z* calcd for C₁₆H₂₀Si: 240.1334, found: 240.1334.

Sequential Introduction of Chlorotrimethylsilane (E^1) and Iodomethane (E^2) to 4,4'-Dibromobiphenyl (17).

A microflow system consisting of four T-shaped micromixers (**M1**, **M2**, **M3** and **M4**), four microtube reactors (**R1**, **R2**, **R3** and **R4**) and five microtube pre-cooling units [**P1** (inner diameter $\phi = 1000 \ \mu\text{m}$, length $l = 100 \ \text{cm}$), **P2** ($\phi = 1000 \ \mu\text{m}$, $l = 50 \ \text{cm}$), **P3** ($\phi = 1000 \ \mu\text{m}$, $l = 100 \ \text{cm}$), **P4** ($\phi = 1000 \ \mu\text{m}$, $l = 50 \ \text{cm}$) and **P5** ($\phi = 1000 \ \mu\text{m}$, $l = 100 \ \text{cm}$)] was used. The whole microflow system was dipped in a cooling bath (0 °C). A solution of a dibromobiaryl (0.10 M) in THF (flow rate = 6.00 mL·min⁻¹) and a solution of *n*-BuLi (0.50 M) in hexane (flow rate = 1.20 mL·min⁻¹) were introduced to **M1** ($\phi = 250 \ \mu\text{m}$). The resulting solution was passed through **R1** ($\phi = 500 \ \mu\text{m}$, $l = 3.5 \ \text{cm}$) and was mixed with a solution of chlorotrimethylsilane (0.30 M) in THF (flow rate = 2.00 mL·min⁻¹) in **M2** ($\phi = 500 \ \mu\text{m}$). The resulting solution was passed through **R2** ($\phi = 1000 \ \mu\text{m}$, $l = 200 \ \text{cm}$) and was introduced to **M3** ($\phi = 500 \ \mu\text{m}$) where the solution was mixed with a solution of indomethane (flow rate = 1.20 mL·min⁻¹). The resulting solution was passed through **R3** ($\phi = 500 \ \mu\text{m}$) where the solution was mixed with a solution of indomethane (0.50 M) in THF (flow rate = 2.40 mL·min⁻¹). The resulting solution of indomethane (0.50 M) in THF (flow rate = 2.40 mL·min⁻¹). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu\text{m}$, $l = 200 \ \text{cm}$) and was mixed with a solution of indomethane (0.50 M) in THF (flow rate = 2.40 mL·min⁻¹). The resulting solution was passed through **R4** ($\phi = 500 \ \mu\text{m}$) where the solution was mixed with a solution of indomethane (0.50 M) in THF (flow rate = 2.40 mL·min⁻¹). The resulting solution was passed through **R4** ($\phi = 1000 \ \mu\text{m}$, $l = 200 \ \text{cm}$). After a steady state was reached, the product solution was collected

for 60 s and was treated with H₂O to quench the reaction. GC analysis of the reaction mixture indicated that 4-methyl-4'-trimethylsilylbiphenyl (**26**) (GC t_R 23.8 min) was produced in 75% yield.


Sequential Introduction of Iodomethane (E^1) and Methyl Chlorocarbonate (E^2) to 4,4'-Dibromobiphenyl (17).

GC analysis of the reaction mixture indicated that 4-methyl-4'-methoxycarbonylbiphenyl (GC t_R 25.0 min) was produced in 56% yield. The spectral data of 4-methyl-4'-methoxycarbonylbiphenyl (**27**) were identical to those reported in the literature.[6]

The Br-Li Exchange Reaction of 2,7-Dibromo-9,9-dioctylfluorene (28) Followed by the Reaction with Methanol in a Macrobatch System.

The results are summarized in Table S-6.

Table S-6. The Br-Li exchange reaction of 2,7-dibromo-9,9-dioctylfluorene (**28**) followed by the reaction with methanol in a macrobatch system.

2-Bromo-7-butyl-9,9-dioctylfluorene (31): ¹H NMR (400 MHz, CDCl₃) δ 0.52–0.69 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 6H), 0.93 (t, *J* = 7.4 Hz, 3H), 0.98–1.26 (m, 20H), 1.36 (sext., *J* = 7.4 Hz, 2H), 1.63 (quin., *J* = 7.6 Hz, 2H), 1.83–1.98 (m, 4H), 7.08–7.15 (m, 2H), 7.38–7.45 (m, 2H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 14.1, 22.3, 22.6, 23.6, 29.1, 29.2, 29.9, 31.8, 33.9, 36.0, 40.2, 55.2, 119.4, 120.3, 120.6, 122.9, 126.0, 127.1, 129.7, 137.6, 140.3, 142.5, 150.4, 152.9 ppm; HRMS (EI) *m/z* calcd for C₁₆H₁₇Br: 288.0514, found: 288.0513.

The Br-Li Exchange Reaction of 2,7-Dibromo-9,9-dioctylfluorene (28) Followed by the Reaction with Methanol in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-9,9-dioctylfluorene (**29**) (GC t_R 35.1 min) and 9,9-dioctylfluorene (**30**) (GC t_R 32.2 min) was produced. The results are summarized in Table S-7.

Table S-7. The Br-Li exchange reaction of 2,7-dibromo-9,9-dioctylfluorene (**28**) followed by the reaction with methanol in the microflow system.

reaction	28	29	30
temperature (°C)	conv. (%)	yield (%)	yield (%)
0	99	95	4
24	98	92	5

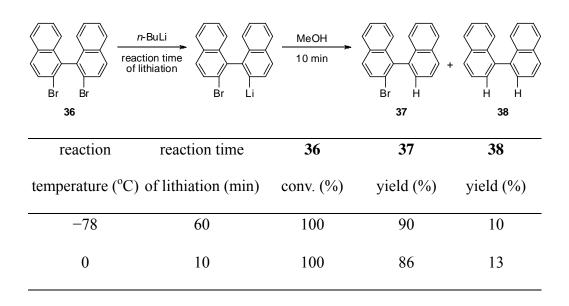
The Br-Li Exchange Reaction of 2,7-Dibromo-9,9-dioctylfluorene (28) Followed by the Reaction with Iodomethane in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-7-methyl-9,9-dioctylfluorene

(32) (GC t_R 35.6 min) was produced in 93% yield and that 2,7-dimethyl-9,9-dioctylfluorene (33)(GC t_R 32.6 min) was produced in 3% vield (99%) conv.). **2-Bromo-7-methyl-9,9-dioctylfluorene (32)**: ¹H NMR (400 MHz, CDCl₃) δ 0.48–0.65 (m, 4H), 0.82 (t, J = 7.2 Hz, 6H), 0.92–1.28 (m, 20H), 1.81–2.00 (m, 4H), 2.42 (s, 3H), 7.09–7.15 (m, 2H), 7.38–7.58 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.9, 22.6, 23.6, 29.16, 29.20, 29.9, 31.8, 40.3, 55.2, 119.4, 120.3, 120.6, 123.5, 126.0, 127.8, 129.7, 137.3, 137.4, 140.2, 150.5, 152.8 ppm; HRMS (EI) *m/z* calcd for C₃₀H₄₃Br: 482.2548, found: 482.2549. **2,7-dimethyl-9,9-dioctylfluorene (33)**: ¹H NMR (400 MHz, CDCl₃) δ 0.56–0.72 (m, 4H), 0.82 (t, J = 7.0 Hz, 6H), 0.96-1.32 (m, 20H), 1.82-2.00 (m, 4H), 2.41 (s, 6H), 7.06-7.15 (m, 4H), 7.06-7.15 (m,7.48–7.59 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.8, 22.6, 23.7, 29.2, 29.3, 30.1, 31.8, 40.4, 54.6, 118.9, 123.5, 127.4, 136.1, 138.6, 150.8 ppm; HRMS (EI) m/z calcd for C₃₁H₄₆: 418.3600, found: 418.3602.

The Br-Li Exchange Reaction of 2,7-Dibromo-9,9-dioctylfluorene (28) Followed by the Reaction with Benzaldehyde in a Microflow System.

The reaction mixture was washed with H₂O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na₂SO₄, and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 50:1 to 20:1 {2-bromo-7-[hydroxyl(phenyl)methyl]-9,9-dioctylfluorene (34)} and 15:1 to 8:1 {2,7-di[hydroxyl(phenyl)methyl]-9,9-dioctylfluorene (35)}) to obtain 2-bromo-7-[(hydroxyl)phenylmethyl]-9,9-dioctylfluorene (34) (311.5 mg, 90%) and 2,7-di[(hydroxyl)phenylmethyl]-9,9-dioctylfluorene (35)(8.9)2%). mg, 2-Bromo-7-((hydroxyl)phenylmethyl)-9,9-dioctylfluorene (34): ¹H NMR (400 MHz, CDCl₃) δ 0.56–0.68 (m, 4H), 0.82 (t, J = 7.2 Hz, 3H), 0.83 (t, J = 7.2 Hz, 3H), 0.95-1.38 (m, 20H), 1.78-2.02 (m, 4H), 2.33 (s, 1H), 5.90 (s, 1H), 7.20-7.47 (m, 9H), 7.50 (d, J = 8.0 Hz, 1H),


S23

7.59 ppm (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, some signals overlapped) δ 14.1, 22.6, 23.68 and 23.71, 29.14, 29.15, 29.85 and 29.88, 31.73 and 31.74, 40.1, 55.4, 76.4, 119.7, 120.95, 120.99, 125.5, 126.1, 126.6, 127.5, 128.4, 129.9, 139.5, 139.7, 143.2, 144.0, 150.6, 153.1 ppm; HRMS (EI) *m/z* calcd for C₃₆H₄₇BrO: 574.2810, found: 574.2786. **2,7-Di((hydroxyl)phenylmethyl)-9,9-dioctylfluorene (35)**: ¹H NMR (400 MHz, CDCl₃) δ 0.45–0.58 (m, 4H), 0.758 (t, J = 7.0 Hz, 3H), 0.761 (t, J = 7.0 Hz, 3H), 0.82-1.30 (m, 20H), 1.78–1.96 (m, 4H), 2.21–2.30 (m, 2H), 5.92 (s, 2H), 7.18-7.42 (m, 14H), 7.58–7.67 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 23.8, 29.19, 29.21, 29.9, 31.8, 40.1, 55.1, 76.5, 119.6, 121.0, 125.4, 126.6, 127.5, 128.4, 140.3, 142.6, 144.1, 151.3 ppm; HRMS (EI) *m/z* calcd for C₄₃H₅₄O₂: 602.4124, found: 602.4128.

The Br-Li Exchange Reaction of 2,2'-Dibromo-1,1'-binaphthyl (36) followed by the Reaction with Methanol in a Macrobatch System.

The results are summarized in Table S-8.

Table S-8. The Br-Li exchange reaction of 2,2'-dibromo-1,1'-binaphthyl (**36**) followed by the reaction with methanol in a macrobatch system.

The Br-Li Exchange Reaction of 2,2'-Dibromo-1,1'-binaphthyl (36) Followed by the Reaction with Methanol in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-1,1'-binaphthyl (**37**) (GC t_R 30.4 min) and that 1,1'-binaphthyl (**38**) (GC t_R 28.5 min) was produced. The results are summarized in Table S-9.

Table S-9. The Br-Li exchange reaction of 2,2'-dibromo-1,1'-binaphthyl (**36**) followed by the reaction with methanol in the microflow system.

reaction	36	37	38
temperature (°C)	conv. (%)	yield (%)	yield (%)
0	94	93	1
24	94	92	2

The Br-Li Exchange Reaction of 2,2'-Dibromo-1,1'-binaphthyl (36) Followed by the Reaction with Iodomethane in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-2'-methyl-1,1'-binaphthyl (**39**) (GC t_R 30.3 min) was produced in 85% yield and that 2,2'-dimethyl-1,1'-binaphthyl (**40**) (GC t_R 28.6 min) was produced in a trace amount (95% conv.). **2-Bromo-2'-methyl-1,1'-binaphthyl** (**39**): ¹H NMR (400 MHz, CDCl₃) δ 2.08 (s, 3H), 7.02 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.20–7.30 (m, 2H), 7.37–7.54 (m, 3H), 7.78–7.95 ppm (m, 5H); ¹³C NMR (100 MHz, CDCl₃, some signals overlapped) δ 20.0, 122.8, 125.0, 125.3, 126.1, 126.2, 126.3, 127.1, 128.0, 128.1, 128.6, 129.1, 130.0, 132.0, 132.2, 132.4, 133.7, 134.4, 135.0, 137.3 ppm; HRMS (EI) m/z calcd for C₂₁H₁₅Br: 346.0357, found: 346.0360. The spectral data of 2,2'-dimethyl-1,1'-binaphthyl (**40**) were identical to those reported in the literature.[4]

The Br-Li Exchange Reaction of 2,2'-Dibromo-1,1'-binaphthyl (36) Followed by the Reaction with Benzaldehyde in a Microflow System.

The reaction mixture washed with H₂O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na₂SO₄, and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 20:1) to obtain 2-bromo-2'-[hydroxyl(phenyl)methyl]-1,1'-binaphthyl (41) as two diastereomers [216.2 82%. diastereomer 60/40 mg, ratio (NMR)], and 2-[hydroxyl(phenyl)methyl]-1,1'-binaphthyl (42) was produced in a trace amount as a mixture of two diastereomers [diastereomer ratio 58/42 (NMR)] (95%) conv.). 2-Bromo-2'-[hydroxyl(phenyl)methyl]-1,1'-binaphthyl (41): The major diastereomer (128.2 mg, 49%): ¹H NMR (400 MHz, CDCl₃) δ 1.83–1.92 (m, 1H), 5.43–5.47 (m, 1H), 7.12–7.39 (m, 9H), 7.44–7.57 (m, 2H), 7.66–7.72 (m, 1H), 7.75–7.82 (m, 1H), 7.84–8.03 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃) & 73.1, 124.0, 124.9, 125.8, 126.0, 126.2, 126.5, 126.6, 126.7, 127.2,

127.7, 128.10, 128.13, 128.4, 129.2, 129.7, 130.1, 131.7, 132.4, 133.1, 134.3, 134.9, 135.8, 139.5, 142.5 ppm; HRMS (EI) *m/z* calcd for C₂₇H₁₉BrO: 438.0619, found: 438.0618. The minor diastereomer (88.0 mg, 33%): ¹H NMR (400 MHz, CDCl₃) δ 2.50 (d, J = 2.0 Hz, 1H), 5.55 (s, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.94–7.08 (m, 6H), 7.10 (dd, J = 7.8, 7.8 Hz, 1H), 7.15-7.25 (m, 1H), 7.36-7.45 (m, 2H), 7.75 (d, J = 8.8 Hz, 1H), 7.71-7.90 (m, 4H), 7.96 (d, J = 8.8 Hz, 1H)8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, some signals overlapped) δ 73.0, 122.7, 125.0, 126.0, 126.17, 126.18, 126.4, 126.6, 126.7, 126.9, 127.0, 127.9, 128.0, 129.3, 129.79, 129.83, 131.8, 132.3, 133.0, 134.3, 134.7, 136.1, 139.8, 142.4 ppm; HRMS (EI) *m/z* calcd for C₂₇H₁₉BrO: 438.0619, found: 438.0618. 2-[Hydroxyl(phenyl)methyl]-1,1'-binaphthyl (42): ¹H NMR (400 MHz, CDCl₃) & 1.98-2.16 (m, 1H), 5.51-5.55 (m) and 5.63-5.68 (m) (total 1H, two diastereomers), 6.93-8.02 ppm (m, 18H); ¹³C NMR (100 MHz, CDCl₃, a mixture of two diasteromers, some signals overlapped) & 72.92, 72.94, 124.5, 124.6, 125.3, 125.5, 125.7, 125.9, 126.0, 126.1, 126.2, 126.48, 126.50, 126.6, 126.8, 126.9, 127.07, 127.15, 127.76, 127.79, 127.85, 127.9, 128.09, 128.13, 128.2, 128.4, 128.6, 128.7, 129.0, 132.7, 132.89, 132.94, 133.04, 133.06, 133.10, 133.5, 133.7, 135.4, 135.7, 136.0, 136.2, 139.68, 139.71, 143.0, 143.6 ppm; HRMS (EI) *m/z* calcd for C₂₇H₂₀O: 360.1514, found: 360.1514.

The Br-Li Exchange Reaction of 2,2'-Dibromobibenzyl (43) Followed by the Reaction with Methanol in a Macrobatch System.

The results are summarized in Table S-10.

Table S-10. The Br-Li exchange reaction of 2,2'-dibromobibenzyl (**43**) followed by the reaction with methanol in a macrobatch system.

Br	Br n-BuLi reaction ti of lithiation		MeOH 10 min	H Br	+ H	H
	43			44	45	
	reaction	reaction time	43	44	45	
	temperature (°C)	of lithiation (min)	conv. (%)	yield (%)	yield (%)	
	-78	60	90	85	5	
	0	10	75	27	15	

The Br-Li Exchange Reaction of 2,2'-Dibromobibenzyl (43) followed by the Reaction with Methanol in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromobibenzyl (44) (GC t_R 22.8 min) and that bibenzyl (45) (GC t_R 19.5 min) was produced. The results are summarized in Table S-11.

Table S-11. The Br-Li exchange reaction of 2,2'-dibromobibenzyl (**43**) followed by the reaction with methanol in the microflow system.

reaction	43	44	45
temperature (°C)	conv. (%)	yield (%)	yield (%)
0	92	80	10
24	90	77	11

The Br-Li Exchange Reaction of 2,2'-Dibromobibenzyl (43) Followed by the Reaction with Iodomethane in a Microflow System.

GC analysis of the reaction mixture indicated that 2-bromo-2'-methylbibenzyl (**46**) (GC t_R 24.0 min) was produced in 81% yield and that 2,2'-dimethylbibenzyl (**47**) (GC t_R 22.1 min) was produced in 4% yield (85% conv.). **2-Bromo-2'-methylbibenzyl (46**): ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 2.81–3.04 (m, 4H), 7.02–7.30 (m, 7H), 7.52–7.60 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.6, 34.0, 37.5, 124.7, 126.3, 126.5, 127.8, 128.0, 129.3, 130.5, 130.8, 133.1, 136.4, 139.9, 141.4 ppm; HRMS (FAB) *m/z* calcd for C₁₅H₁₅Br: 274.0357, found: 274.0355. The spectrum data of 2,2'-dimethylbibenzyl (**47**) were identical to those reported in the literature.[5]

The Br-Li Exchange Reaction of 2,2'-Dibromobibenzyl (43) Followed by the Reaction with Benzaldehyde in a Microflow System.

The reaction mixture was washed with H₂O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na₂SO₄, and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 10:1 to 5:1) to obtain 2-bromo-2'-[hydroxyl(phenyl)methyl]bibenzyl (48) (144.7 mg, 66%) and 2,2'-di[hydroxyl(phenyl)methyl]bibenzyl (49) (17.2)mg, 7%). **2-Bromo-2'-[hydroxyl(phenyl)methyl]bibenzyl (48**): ¹H NMR (400 MHz, CDCl₃) δ 2.15 (d, J = 3.6 Hz, 1H), 2.79–3.03 (m, 4H), 6.04 (d, J = 3.6 Hz, 1H), 6.92–7.06 (m, 2H), 7.11–7.33 (m, 9H), 7.38–7.45 (m, 1H), 7.47–7.54 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃, some of the ¹³C NMR signals were the same places) δ 32.5, 38.2, 72.7, 124.3, 126.5, 126.9, 127.0, 127.36, 127.44, 127.8, 128.4, 129.8, 130.6, 132.8, 138.8, 140.7, 141.1, 143.4 ppm; HRMS (EI) m/z calcd for C₂₁H₁₉OBr: 366.0619, found: 366.0616. **2,2'-Di[hydroxyl(phenyl)methyl]bibenzyl** (**49**): ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 4H), 2.78–2.99 (m, 8H), 5.81 (s, 2H), 5.92 (s, 2H), 7.00–7.38 ppm (m, 36H); ¹³C NMR (100 MHz, CDCl₃) δ 34.1, 34.2, 72.6, 72.7, 126.5, 126.61, 126.62, 126.8, 127.3, 127.4, 127.46, 127.54, 127.8, 127.9, 128.35, 128.39, 129.9, 130.0, 139.1, 139.2, 141.2, 141.5, 143.23, 143.25 ppm; HRMS (EI) *m/z* calcd for C₂₈H₂₆O₂ -H: 393.1855, found: 393.1843.

Sequential Introduction of Iodomethane (E^1) and Methyl Chlorocarbonate (E^2) to 2,7-Dibromo-9,9-dioctylfluorene (28).

GC analysis of reaction mixture indicated that the 2-methyl-7-methoxycarbonyl-9,9-dioctylfluorene (50) (GC t_R 37.7 min) was produced in 51% vield. **2-Methyl-7-methoxycarbonyl-9,9-dioctylfluorene (50)**: ¹H NMR (400 MHz, CDCl₃) δ $0.51-0.68 \text{ (m, 4H)}, 0.81 \text{ (t, } J = 7.2 \text{ Hz, 6H)}, 0.94-1.25 \text{ (m, 20H)}, 1.89-2.06 \text{ (m, 4H)}, 2.43 \text{ (s, } 1.89-2.06 \text{ (m, 4H)}, 2.43 \text{ (m, 4H$ 3H), 3.93 (s, 3H), 7.10–7.18 (m, 2H), 7.61 (s, 1H), 7.67 (s, 1H), 7.98–8.03 (m, 1H), 8.03 ppm (dd, J = 7.8, 1.4 Hz,1H); ¹³C NMR (100 MHz, CDCl₃, some signals overlapped) δ 14.0, 21.9, 22.5, 23.6, 29.1, 29.9, 31.7, 40.2, 51.9, 55.0, 118.9, 120.3, 123.6, 123.9, 127.8, 128.0, 128.8, 137.3, 138.2, 146.0, 150.6, 152.0, 167.6 ppm; HRMS (EI) *m/z* calcd for C₃₂H₄₆O₂: 462.3498, found: 462.3498.

Sequential Introduction of Iodomethane (E^1) and Benzaldehyde (E^2) to 2,2'-Dibromo-1,1'-binaphthyl (36).

The reaction mixture was washed with H_2O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na_2SO_4 , and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 12:1) to obtain 2-methyl-2'-[hydroxyl(phenyl)methyl]-1,1'-binaphthyl (**51**) as a mixture of two diastereomers [160.0 mg, 71%, diastereomer ratio = 56/44 (NMR)].

2-Methyl-2'-[hydroxyl(phenyl)methyl]-1,1'-binaphthyl (51): The major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 2.01–2.04 (m, 1H), 2.19 (s, 3H), 5.51 (d, *J* = 3.6 Hz, 1H), 6.76–6.81 (m, 1H), 6.91–7.12 (m, 7H), 7.17–7.49 (m, 3H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.84–8.03 ppm (m, 5H); ¹³C NMR (150 MHz, CDCl₃, some signals overlapped) δ 20.5, 73.4, 124.6, 124.9, 125.9, 126.0, 126.2, 126.3, 126.39, 126.42, 127.0, 127.7, 128.0, 128.1, 128.5, 128.6, 132.0, 132.4, 133.1, 133.3, 133.7, 134.7, 135.1, 139.3, 143.1 ppm; HRMS (EI) *m*/*z* calcd for C₂₈H₂₂O: 374.1671, found: 374.1670. The minor diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 1.61 (s, 3H), 1.96–2.01 (m, 1H), 5.40 (d, *J* = 2.8 Hz, 1H), 6.99–7.32 (m, 9H), 7.39 (d, *J* = 8.0 Hz, 1H) 7.41–7.48 (m, 2H), 7.88–7.99 (m, 5H), 8.02 ppm (d, *J* = 8.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, some signals overlapped) δ 20.0, 73.4, 124.3, 125.1, 125.2, 126.0, 126.4, 126.7, 126.9, 127.3, 128.0, 128.07, 128.12, 128.2, 128.4, 128.7, 132.2, 132.3, 133.0, 133.1, 133.3, 134.6, 135.9, 139.5, 142.8 ppm; HRMS (EI) *m*/*z* calcd for C₂₈H₂₂O: 374.1671, found: 374.1668.

Sequential Introduction of Two Electrophiles to 2,2'-Dibromo-1,1'-binaphthyl (36). The use of Iodomethane and Benzophenone.

The reaction mixture was washed with H₂O and was extracted with diethyl ether (3 x 20 mL). The combined organic extract was dried over Na₂SO₄, and the solvent was removed. The crude product was purified with silica gel column chromatography (hexane/ethylacetate 30:1) to obtain 2-methyl-2'-[hydroxyl(diphenyl)methyl]-1,1'-binaphthyl (**52**) (212.0 mg, 78%). **2-Methyl-2'-[hydroxyl(diphenyl)methyl]-1,1'-binaphthyl (52**): ¹H NMR (400 MHz, CDCl₃) δ 1.80 (s, 3H), 2.80–2.86 (m, 1H), 6.80–7.52 (m, 18H), 7.74–7.90 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 84.3, 125.1, 125.7, 125.9, 126.1, 126.50, 126.54, 126.6, 126.9, 127.2, 127.5, 127.6, 127.7, 127.78, 127.81, 128.2, 128.4, 128.5, 129.3, 131.8, 132.4,

133.0, 133.4, 134.0, 134.2, 135.8, 142.2, 146.6, 146.7 ppm; HRMS (EI) *m/z* calcd for C₃₄H₂₆O: 450.1984, found: 450.1982.

References

- Miyake, Y.; Wu, M.; Rahman, M. J.; Kuwatani, Y.; Iyoda, M. J. Org. Chem. 2006, 71, 6110. doi:<u>10.1021/jo0608063</u>
- van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek, A. L. *Organometallics* 2002, *21*, 2119. doi:<u>10.1021/om011083a</u>
- Murphy, S.; Yang, X.; Schuster, G. B. J. Org. Chem. 1995, 60, 2411. doi:<u>10.1021/jo00113a022</u>
- Foubelo, F.; Moreno, B.; Soler, T.; Yus, M. *Tetrahedron* 2005, *61*, 9082. doi:<u>10.1016/j.tet.2005.07.042</u>
- Aitken, R. A.; Hodgson, P. K. G.; Morrison, J. J.; Oyewale, A. O. J. Chem. Soc. 2002, Perkin Trans. 1, 402.
- Kobayashi, Y.; William, A. D.; Mizojiri, R. J. Organomet. Chem. 2002, 653, 91. doi:10.1016/S0022-328X(02)01174-9