General methods and synthetic procedures

Supporting Information for

Ring-alkyl connecting group effect on mesogenic properties of \boldsymbol{p}-carborane derivatives and their hydrocarbon analogues

Aleksandra Jankowiak ${ }^{1}$, Piotr Kaszynski ${ }^{*}$, William R. Tilford ${ }^{1}$, Kiminori Ohta ${ }^{2}$, Adam Januszko ${ }^{1}$, Takashi Nagamine ${ }^{2}$ and Yasuyuki Endo ${ }^{2}$

Address: ${ }^{1}$ Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Box 1822 Station B, Nashville, TN 37235, USA and ${ }^{2}$ Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan

Email:	Piotr Kaszynski - piotr.kaszynski@vanderbilt.edu
Phone/Fax:	(615) 322-3458

[^0]
Table of Contents

1. General Methods p 2
2. Synthetic Procedures p 2
3. Thermal Analysis p 10
4. References p 12

1. General methods

${ }^{1} \mathrm{H}$ NMR spectra were obtained at the 270 or 300,400 or 500 MHz field in CDCl_{3} and referenced to TMS unless stated otherwise.

2. Synthetic procedures

1,4-Bis(4-methoxyphenyl)benzene (14D[0]) [1].

A mixture of (4-methoxyphenyl)boronic acid ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$), 1,4-dibromobenzene ($1.18 \mathrm{~g}, 5$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 1 M aq solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL}, 20 \mathrm{mmol})$ and toluene (40 mL) was refluxed for 24 h under Ar atmosphere. The mixture was poured into water and AcOEt was added. Insoluble material was collected to give 1.22 g (84% yield) of terphenyl $\mathbf{1 4 D}[0]$ as a colorless solid. Colorless prisms were obtained by recrystallization from xylene followed by vacuum sublimation: mp $279{ }^{\circ} \mathrm{C}$ (lit. [1] mp 273-274 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz) δ $3.86(\mathrm{~s}, 6 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.61(\mathrm{~s}, 4 \mathrm{H}) ; \mathrm{MS}(\mathrm{EI}), m / z 290$ $\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 82.73; H, 6.25. Found: C, 82.87; H, 6.23.

Diesters 16[n]. General procedure.

To a solution of diphenol $21(0.3 \mathrm{mmol})$ in of dry toluene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added appropriate acid chloride (0.7 mmol), followed by pyridine (1 mL) and a catalytic amount of DMAP at room temperature. After stirring for 12 h , the mixture was poured into 2 N HCl and organic products were extracted with AcOEt. The organic layer was washed with sat. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated. The resulting crude diesters were purified by
column chromatography (silica gel, $\mathrm{AcOEt} /$ hexane, $1 / 10$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $1: 1$) and repeatedly recrystallized typically from $\mathrm{AcOEt} /$ hexane or isooctane/toluene mixture.

1,12-Bis[4-(hexanoyloxy)phenyl]-1,12-dicarba-closo-dodecaborane (16A[5]). Colorless needles (AcOEt $/ n$-hexane and then hexane): ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.30-1.45(\mathrm{~m}, 8 \mathrm{H}) 1.5-4.0(\mathrm{brm}, 10 \mathrm{H}), 1.73$ (quint, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~B}_{10} \mathrm{O}_{4}: \mathrm{C}, 59.52$; H, 7.68. Found: C, 59.22; H, 7.92.

1,12-Bis[4-(heptanoyloxy)phenyl]-1,12-dicarba-closo-dodecaborane (16A[6]). Colorless needles (AcOEt $/ n$-hexane): ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.50$ (m, 12H), 1.5-4.0 (brm, 10H), 1.72 (quint, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.52$ (t, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$; HRMS, calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{4}: 552.4243$. Found: 552.4217. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~B}_{10} \mathrm{O}_{4}$: C, 60.84; H, 8.02. Found: C, $60.88 ; \mathrm{H}, 7.98$.

1,12-Bis[4-(octanoyloxy)phenyl]-1,12-dicarba-closo-dodecaborane (16A[7]). Colorless needles (AcOEt $/ n$-hexane and then pentane): ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.89(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 16 \mathrm{H}), 1.5-4.0(\mathrm{brm}, 10 \mathrm{H}), 1.72$ (quint, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~B}_{10} \mathrm{O}_{4}$: C, 62.04; H, 8.33. Found: C, 61.83; H, 8.52.

1,10-Bis[4-(heptanoyloxy)phenyl]-1,10-dicarba-closo-decaborane (16B[6]).

The diester was obtained from crude diol 21B prepared from the corresponding dimethoxy derivative [2] $\mathbf{1 4 B} \mathbf{B}[\mathbf{0}]$ as described for the 12-vertex analogue. The diester was purified by chromatography (silica gel, hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$) followed by repeated recrystallization (isooctane): ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.33-1.50(\mathrm{~m}, 12 \mathrm{H}), 1.5-4.0$ (brm, $8 \mathrm{H}), 1.79$ (quint, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.82(\mathrm{~d}, J=$ 8.7 Hz, 4H). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~B}_{8} \mathrm{O}_{4}$: C, 63.56; H, 8.00. Found: C, 63.52; H, 8.03.

1,4-Bis[4-(heptanoyloxy)phenyl]bicyclo[2.2.2]octane (16C[6]).

The diester was obtained from diphenol 21C [2] and purified by chromatography (silica gel, hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$) followed by double recrystallization (isooctane): ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}) \delta$ $0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.30-1.47(\mathrm{~m}, 12 \mathrm{H}), 1.75$ (quint, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.95(\mathrm{~s}, 12 \mathrm{H}), 2.55(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4}: \mathrm{C}$, 78.72; H, 8.94. Found: C, 78.76; H, 8.99.

1,4-Bis[4-(heptanoyloxy)phenyl]benzene (16D[6]).

The diester obtained from diphenol 21D was purified by chromatography (silica gel, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1$) followed by recrystallization $\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give colorless leaflets: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.51(\mathrm{~m}, 12 \mathrm{H}), 1.78$ (quint, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~s}, 4 \mathrm{H}) ; \mathrm{MS}(\mathrm{EI})$, $m / z 486\left(\mathrm{M}^{+}\right), 262(100 \%)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{4}: \mathrm{C}, 78.98 ; \mathrm{H}, 7.87$. Found: C, 79.17; H, 7.93.

Bis(4-pentylphenyl) 1,10-dicarba-closo-decaborane-1,10-dicarboxylate (18B).

A suspension of p-carborane-1,10-dicarboxylic acid [3] 22B ($63 \mathrm{mg}, 0.3 \mathrm{mmol}$) and PCl_{5} (135 $\mathrm{mg}, 0.65 \mathrm{mmol})$ in dry benzene (2 mL) was stirred at $40-50^{\circ} \mathrm{C}$ until all dissolved. After additional 15 min of stirring the solvent and POCl_{3} were removed under reduced pressure. The resulting crude acid chloride was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL), 4-pentylphenol ($105 \mathrm{mg}, 0.64$ mmol) was added followed by dry $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 3 h , concentrated, and passed through a silica gel plug. The plug was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the eluent was evaporated. The residue (165 mg) was recrystallized from isooctane, then MeCN , and finally from isooctane to give 95 mg (75% yield) of diester 18B as colorless prisms: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 0.91(\mathrm{t}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.30-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.5-4.0$ (brm, 8H), 1.65 (quint, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$), $2.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.27$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~B}_{8} \mathrm{O}_{4}$: C, 62.32; H, 7.64. Found: C, 62.42; H, 7.64.

Bis[4-(propoxycarbonyl)phenyl] 1,12-dicarba-closo-dodecaborane-1,12dicarboxylate (19A).

A suspension of p-carborane-1,12-dicarboxylic acid 22A ($40 \mathrm{mg}, 0.18 \mathrm{mmol}$) and $\mathrm{PCl}_{5}(76 \mathrm{mg}$, 0.35 mmol) in $\mathrm{POCl}_{3}(1 \mathrm{~mL})$ was refluxing until all dissolved (1 h). After additional 15 min of stirring POCl_{3} was removed under reduced pressure. The resulting crude acid chloride was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL), propyl 4-hydroxybenzoate ($\mathbf{2 3}, 66 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added followed by dry pyridine (0.03 mL). The mixture was stirred at ambient temperature overnight and washed with $5 \% \mathrm{HCl}$. Organic products were extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and the residue passed through a silica gel plug. The plug was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the eluent was evaporated to give 80 mg (82% yield) of a white solid which was repeatedly recrystallized from $\mathrm{AcOEt} / \mathrm{EtOH}$ and isooctane/toluene mixture: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$
$\delta 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.5-4.0(\mathrm{brm}, 10 \mathrm{H}), 1.78(\mathrm{sex}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.27(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~B}_{10} \mathrm{O}_{8}: \mathrm{C}, 51.79$; H, 5.79. Found: C, 52.00; H, 5.72.

Bis[4-propoxycarbonyl)phenyl] 1,10-dicarba-closo-decaborane-1,10-dicarboxylate (19B).

It was prepared in 90% yield from 22B and $\mathbf{2 3}$ according to the procedure described for ester 19A. The white solid ester was repeatedly recrystallized from isooctane/toluene mixture and then MeCN: ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.5-4.0(\mathrm{brm}, 8 \mathrm{H}), 1.82(\mathrm{sex}, J=7.1 \mathrm{~Hz}$, $4 \mathrm{H}), 4.32(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~B}_{8} \mathrm{O}_{8}$: C, 54.08; H, 5.67. Found: C, 53.93; H, 5.68.

Bis[4-(propoxycarbonyl)phenyl] bicyclo[2.2.2]octane-1,4-dicarboxylate (19C).

To the suspension of bicyclo[2.2.2]octane-1,4-dicarboxylic acid (22C, $60 \mathrm{mg}, 0.3 \mathrm{mmol}$), propyl 4-hydroxybenzoate (23, $111 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mg})$ in dry THF (2 ml), dimethyl azodicarboxylate (DMAD, $90 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added. The mixture was stirred at ambient temperature overnight, solvent was evaporated and the residue was passed through a silica gel plug $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 50 mg (33% yield) of a white solid which was repeatedly recrystallized from EtOH and isooctane/toluene mixture: ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}) \delta 1.03(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 6 \mathrm{H}), 1.79$ (sex, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 12 \mathrm{H}), 4.28(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{8}$: C, 68.95 ; H, 6.56. Found: C, $68.94 ; \mathrm{H}$, 6.56.

Bis[4-(butanoyloxyphenyl] 1,12-dicarba-closo-dodecaborane-1,12-dicarboxylate (20A).

It was prepared in 62% yield from 22A and $\mathbf{2 4}$ according to the procedure described for ester
19A. The white solid ester was repeatedly recrystallized from EtOH and then from isooctane: ${ }^{1} \mathrm{H}$
NMR (300 MHz) $\delta 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.5-4.0(\mathrm{brm}, 10 \mathrm{H}), 1.76(\mathrm{sex}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.52$
$(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~B}_{10} \mathrm{O}_{8}: \mathrm{C}, 51.79 ; \mathrm{H}, 5.79$. Found: C, 51.89; H, 5.78.

Bis[4-(butanoyloxy)phenyl] 1,10-dicarba-closo-decaborane-1,10-dicarboxylate (20B).

It was prepared in 65% yield from 22B and $\mathbf{2 4}$ according to the procedure described for ester 19C. The colorless ester was repeatedly recrystallized from hexane and then EtOH: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.5-4.0(\mathrm{brm}, 8 \mathrm{H}), 1.80(\mathrm{sex}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.57(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~B}_{8} \mathrm{O}_{8}: \mathrm{C}$, 54.08; H, 5.67. Found: C, 54.34; H, 5.55.

Bis[4-(butanoyloxy)phenyl] bicyclo[2.2.2]octane-1,4-dicarboxylate (20C). It was prepared in 62% yield from 22C and $\mathbf{2 4}$ according to the procedure described for ester 19C. The white solid ester was repeatedly recrystallized from EtOH and then isooctane: ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.78(\mathrm{sex}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 12 \mathrm{H}), 2.53(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{8}: \mathrm{C}$,
68.95; H, 6.56. Found: C, 68.73; H, 6.50.

Bis[4-(butanoyloxy)phenyl] terephthalate (20D).
A suspension of terephthalic acid (22D, $200 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $\mathrm{PCl}_{5}(500 \mathrm{mg}, 2.50 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(2 \mathrm{~mL})$ was refluxing until all dissolved (1 h) and all POCl_{3} was removed under reduced pressure. The resulting crude terephthaloyl chloride was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, 4butanoyloxyphenol ($\mathbf{2 4}, 410 \mathrm{mg}, 2.5 \mathrm{mmol}$) was added followed by dry pyridine (0.21 mL). The mixture was stirred at ambient temperature for 5 h and washed with $5 \% \mathrm{HCl}$. Organic products were extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated and the residue passed through a silica gel plug. The plug was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the eluent was evaporated to give 236 mg (40% yield) of a white solid which was repeatedly recrystallized from AcOEt/EtOH and isooctane/toluene mixtures: ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}) \delta 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.80(\mathrm{sex}, J=$ $7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.33(\mathrm{~s}$, 4H). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8}$: C, 68.56; H, 5.34. Found: C, 68.54; H, 5.35.

1,12-Bis(4-hydroxyphenyl)-1,12-dicarba-closo-dodecaborane (21A) [4].
A 1M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 5 \mathrm{mmol})$ was added dropwise to a solution of 1,12-$\operatorname{bis}(4$-methoxyphenyl)-p-carborane [4] (14A[0], $356 \mathrm{mg}, 1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. After stirring for 2 h at room temperature, the mixture was poured into ice and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and then concentrated. The residue was purified by column chromatography on silica gel with AcOEt / n-hexane (gradient from 1:10 to 1:1) to give 317 mg (97% yield) of diol 21A as a pale yellow powder: ${ }^{1} \mathrm{H}$ NMR (270 MHz), $\delta 1.50-3.70(\mathrm{brm}, 10 \mathrm{H}) 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}) . \mathrm{HRMS}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~B}_{10} \mathrm{O}_{2}: 328.2460$. Found: 328.2446.

1,4-Bis(4-hydroxyphenyl)benzene (21D) [1].

To a suspension of 1,4-bis(4-methoxyphenyl)benzene (14D[0], $580 \mathrm{mg}, 2 \mathrm{mmol}$) in dry dichloroethane (10 mL) was added dropwise 1 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}, 6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 8 h at room temperature, the mixture was poured into ice and insoluble solid was collected and washed with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The colorless solid was dissolved in THF, and purified by column chromatography on silica gel with $1: 1 \mathrm{AcOEt}: n$-hexane to give 509 mg (97% yield) of diol 21D as a colorless solid. Colorless prisms were obtained from AcOEt: $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$ (lit. [1] mp $375{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (270 MHz, DMSO) $\delta 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.50$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~s}, 4 \mathrm{H}), 9.52(\mathrm{~s}, 2 \mathrm{H})$; MS (EI) $m / z 262\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 82.42; H, 5.38; Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \bullet 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 81.03$; H, 5.48. Found: C, 81.05; H, 5.49.

4-(Butanoyloxy)phenol (24) [5].

To the solution of p-(benzyloxy)phenol ($6.0 \mathrm{~g}, 30 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) butyryl chloride ($3.2 \mathrm{~g}, 30 \mathrm{mmol}$) was added followed by dry pyridine ($2.5 \mathrm{~g}, 31 \mathrm{mmol}$). The mixture was stirred for 4 h at ambient temperature, washed with 5% of HCl , extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified on silica gel plug $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, $\left.1: 2\right)$ to give 6.2 g (75% yield) of p (benzyloxy)phenyl butyrate as a white solid: lit [5] $\mathrm{mp} 79-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 1.04(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{sex}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.96$ and 6.99 (pseudo AB, $J=9.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.31-7.44(\mathrm{~m}, 5 \mathrm{H})$.

Without further purification, the product was dissolved in THF (20 ml), Pd/C ($240 \mathrm{mg}, 0.23$ $\mathrm{mmol}, 10 \%$) was added, and the mixture was kept under an atmosphere of hydrogen overnight.

The solvent was evaporated and the residue was purified on a silica gel funnel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $3.3 \mathrm{~g}\left(80 \%\right.$ yield) of white solid: $\mathrm{mp} 50-52{ }^{\circ} \mathrm{C}$ (lit. [5] mp $53-55^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz) δ $1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{sex}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

3. Thermal Analysis

Table 1: Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ and enthalpies ($\mathrm{kJ} / \mathrm{mol}$) for selected liquid crystals. ${ }^{a}$

	*	A	B	C	D
	X				
14[6]	$-\mathrm{CH}_{2} \mathrm{O}-(\mathrm{Ph})$	Cr 96 N $98 \mathrm{I}^{\text {b }}$	Cr 73 N $105 \mathrm{I}^{\text {b }}$	Cr 98 SmB 161 SmA $179 \mathrm{I}^{\text {b }}$	$\mathrm{Cr}_{1} 108 \mathrm{Cr}_{2} 182 \mathrm{SmF} 218$ SmI $219 \mathrm{SmC} 232 \mathrm{SmA} 235 \mathrm{I}^{\text {b }}$
15[6]	-OOC-(Ph)	Cr 112 (N31) $\mathrm{I}^{\text {b }}$	Cr 65 (N 11) $\mathrm{I}^{\text {b }}$	$\mathrm{Cr}_{1} 100 \mathrm{Cr}_{2} 114 \mathrm{SmA} 148 \mathrm{I}^{\text {b }}$	Cr 134 SmC 143 SmA183 I ${ }^{\text {b }}$
16[6]	- $\mathrm{COO}-(\mathrm{Ph}$)	$\begin{gathered} \text { Cr } 108 \text { N } 132 \text { I } \\ (34.3) \quad(2.4) \end{gathered}$	$\begin{array}{cr} \mathrm{Cr}_{1} 73 \mathrm{Cr}_{2} 102 \mathrm{~N} 136 \mathrm{I} \\ (14.9) \quad(25.4) \quad(2.0) \end{array}$	$\begin{gathered} \mathrm{Cr}_{1} 33 \mathrm{Cr}_{2} 102 \mathrm{X} 205 \mathrm{~N} 207 \mathrm{I} \\ (11.6)(18.5) \quad(10.6)^{d} \end{gathered}$	$\begin{aligned} & \text { Cr } 66 \text { X } 96 \mathrm{SmF} 226 \mathrm{SmI} 232 \mathrm{SmC}^{c} 250 \mathrm{SmA} 251 \mathrm{I} \\ & \begin{array}{c} (3.2)(1.9) \end{array} \quad(6.7) \quad(6.7) \end{aligned}$
17	- $\mathrm{CH}_{2} \mathrm{O}-(\mathrm{Ph})$	Cr $137 \mathrm{~N} 182.6 \mathrm{I}^{e}$	$\mathrm{Cr}_{1} 70 \mathrm{Cr}_{2} 111 \mathrm{~N} 183.4 \mathrm{I}^{e}$	Cr $112 \mathrm{~N} 229.5 \mathrm{I}^{e}$	Cr 189 N $235 \mathrm{I}^{f}$
18	$-\mathrm{CH}_{2} \mathrm{CH}_{2}$-(Ph)	$\begin{aligned} & \text { Cr } 106 \text { N } 118 \text { I }^{g} \\ & (31.6)(1.4) \end{aligned}$	$\begin{aligned} & \text { Cr } 85 \text { N } 110 \text { I } \\ & (27.3) \quad(1.6) \end{aligned}$	Cr 98 N $173 \mathrm{I}^{h}$	Cr 155 N $181 \mathrm{I}^{i}$
19	-OOC-(Ph)	$\begin{gathered} \mathrm{Cr} 203(\mathrm{~N} 139)^{c} \mathrm{I} \\ (69.5) \end{gathered}$	$\begin{gathered} \text { Cr } 160(\mathrm{~N} 128) \mathrm{I} \\ (52.7)(0.4) \end{gathered}$	$\begin{gathered} \text { Cr } 121 \mathrm{~N} 195 \mathrm{I} \\ (48.8)(0.2) \end{gathered}$	Cr 130 SmA 207 N $221 \mathrm{I}^{\text {j }}$
20	-COO-(Ph)	$\begin{array}{r} \mathrm{Cr} 133 \mathrm{~N} 230 \mathrm{I} \\ (39.2)(2.0) \\ \hline \end{array}$	$\begin{aligned} & \text { Cr } 120 \mathrm{~N} 234 \mathrm{I} \\ & (15.8) \quad(1.0) \end{aligned}$	$\begin{aligned} & \text { Cr } 133 \mathrm{~N} 275 \mathrm{I} \\ & (30.8)(1.3) \end{aligned}$	$\begin{aligned} & \text { Cr } 230 \text { N } 287 \text { I } \\ & (56.9)(1.5) \end{aligned}$

${ }^{a}$ Obtained on heating; Cr: crystal, S : smectic, N : nematic, I: isotropic, X: unidentified phase.
${ }^{b}$ Ref. [2]
${ }^{c}$ Optical determination obtained on cooling.
${ }^{d}$ Combined enthalpies for two transitions.
${ }^{e}$ Ref [6]
${ }^{f}$ Ref. [7]
${ }^{8}$ Previously reported Cr 104 N 114 I, ref. [8]
${ }^{h}$ Ref. [9]
${ }^{i}$ Ref. [10]
${ }^{\prime} \operatorname{Ref}$ [11]

Table 2: Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ and enthalpies (kJ/mol) for $\mathbf{1 6 A}[\mathrm{n}] .{ }^{a}$

\mathbf{n}	Transition temperatures 5$\mathrm{Cr}_{1} 66 \mathrm{Cr}_{2} 120 \mathrm{~N} 155 \mathrm{I}$ $(15.5) \quad(26.9) \quad(2.4)$
6	Cr 108 N 132 I $(34.3) \quad(2.4)$
7	$\mathrm{Cr}_{1} 76 \mathrm{Cr}_{2} 92 \mathrm{~N} 124 \mathrm{I}$ $(30.6)(27.8) \quad(1.9)$

$a_{\text {Obtained on heating; Cr: crystal, } \mathrm{N} \text { : nematic, I: isotropic. }}^{\text {. }}$

4. References

1. Price, C. C.; Mueller, G. P. J. Am. Chem. Soc. 1944, 66, 632-634. doi:10.1021/ja01232a038
2. Kaszynski, P.; Kulikiewicz, K. K.; Januszko, A.; Douglass, A. G.; Tilford, R. W.; Pakhomov, S.; Patel, M. K.; Ke, Y.; Radziszewski, G. J.; Young, V. G., Jr. submitted.
3. Garrett, P. M.; Smart, J. C.; Hawthorne, M. F. J. Am. Chem. Soc. 1969, 91, 47074709. doi:10.1021/ja01045a021
4. Fox, M. A.; MacBride, J. A. H.; Peace, R. J.; Wade, K. J. Chem. Soc., Dalton Trans. 1998, 401-412. doi:10.1039/a707154j
5. Neubert, M. E.; Wildman, P. J.; Zawaski, M. J.; Hanlon, C. A.; Benyo, T. L.; De Vries, A. Mol. Cryst. Liq. Cryst. 1987, 145, 111-158. doi:10.1080/00268948708080217
6. Kaszynski, P.; Januszko, A.; Ohta, K.; Nagamine, T.; Potaczek, P.; Young, V. G., Jr.; Endo, Y. Liq. Cryst. 2008, 35, 1169-1190. doi:10.1080/02678290802409775
7. Kelker, H.; Scheurle, B. J. Phys. (Paris) 1969, 30-C4, 104-108. doi: 10.1051/jphyscol:1969425
8. Kaszynski, P.; Huang, J.; Jenkins, G. S.; Bairamov, K. A.; Lipiak, D. Mol. Cryst. Liq. Cryst. 1995, 260, 315-332. doi:10.1080/10587259508038705
9. Compound ID \# 37494 in LiqCryst 4.6 database.
10. Neubert, M. E.; Stahl, M. E.; Cline, R. E. Mol. Cryst. Liq. Cryst. 1982, 89, 93117. doi:10.1080/00268948208074472
11. Leblanc, J. P.; Tessier, M.; Judas, D.; Friedrich, C.; Noël, C.; Maréchal, E. Macromolecules 1993, 26, 4391-4399. doi:10.1021/ma00069a001

[^0]: * Corresponding author

